1
|
Hangda Q, Peng S, Guangping L, Shurui L, Zhongxin Z. Byakangelicin alleviates sepsis-associated acute kidney injury by inhibiting inflammation and apoptosis. J Nat Med 2024; 78:985-994. [PMID: 38809334 DOI: 10.1007/s11418-024-01813-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/03/2024] [Indexed: 05/30/2024]
Abstract
Inflammation and apoptosis are common in many pathological conditions. Studies have shown that many natural compounds can regulate the signal pathways related to inflammation and apoptosis and can prevent sepsis-associated acute kidney injury (SA-AKI). Several studies have reported the potential anti-inflammatory effect of byakangelicin (BK), a component from the roots of Angelica gigas. However, the role of BK in SA-AKI remains unknown. Here, we report that BK is a potential therapeutic drug for SA-AKI. Experimental results show that BK has high anti-inflammatory activity, inhibits the activation of the NF-κB signaling pathway, and then reduces the production of IL-6, TNF-a, and IFN-γ. In addition, we study the effect of BK on renal cell apoptosis and find that BK significantly reduces the expression of apoptosis-related genes. Further research suggests that BK may exert the above pharmacological effects through 26S protease regulatory subunit 8 (PSMC5). These findings indicate that BK, as an inhibitor of inflammation and apoptosis, can be used to treat SA-AKI.
Collapse
Affiliation(s)
- Qu Hangda
- Zunyi Medical and Pharmaceutical College, Guizhou, 563006, China.
| | - Shi Peng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Liang Guangping
- Zunyi Medical and Pharmaceutical College, Guizhou, 563006, China
| | - Liu Shurui
- Zunyi Medical and Pharmaceutical College, Guizhou, 563006, China
| | - Zhang Zhongxin
- Zunyi Medical and Pharmaceutical College, Guizhou, 563006, China
| |
Collapse
|
2
|
Bartnik M. Methoxyfuranocoumarins of Natural Origin-Updating Biological Activity Research and Searching for New Directions-A Review. Curr Issues Mol Biol 2024; 46:856-883. [PMID: 38275669 PMCID: PMC10813879 DOI: 10.3390/cimb46010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Plant secondary metabolites, including furanocoumarins, have attracted attention for decades as active molecules with therapeutic potential, especially those occurring in a limited number of species as evolutionarily specific and chemotaxonomically important. The most famous methoxyfuranocoumarins (MFCs), bergapten, xanthotoxin, isopimpinellin, phellopterin, byakangelicol, byakangelicin, isobergapten, pimpinellin, sphondin, as well as rare ones such as peucedanin and 8-methoxypeucedanin, apaensin, cnidilin, moellendorffiline and dahuribiethrins, have recently been investigated for their various biological activities. The α-glucosidase inhibitory activity and antioxidant potential of moellendorffiline, the antiproliferative and proapoptotic properties of non-UV-activated bergapten and xanthotoxin, the effect of MFC on the activity of tyrosinase, acetyl- and butylcholinesterase, and the role of these compounds as adjuvants in anticancer and antibacterial tests have been confirmed. The anticonvulsant effects of halfordin, the antidepressant effects of xanthotoxin, and the antiadipogenic, neuroprotective, anti-amyloid-β, and anti-inflammatory (via increasing SIRT 1 protein expression) properties of phellopterin, as well as the activity of sphondin against hepatitis B virus, have also attracted interest. It is worth paying attention to the agonistic effect of xanthotoxin on bitter taste receptors (TAS2Rs) on cardiomyocytes, which may be important in the future treatment of tachycardia, as well as the significant anti-inflammatory activity of dahuribiethrins. It should be emphasized that MFCs, although in many cases isolated for the first time many years ago, are still of great interest as bioactive molecules. The aim of this review is to highlight key recent developments in the study of the diverse biological activities of MFCs and attempt to highlight promising directions for their further research. Where possible, descriptions of the mechanisms of action of MFC are provided, which is related to the constantly discovered therapeutic potential of these molecules. The review covers the results of experiments from the last ten years (2014-2023) conducted on isolated natural cMFCs and includes the activity of molecules that have not been activated by UV rays.
Collapse
Affiliation(s)
- Magdalena Bartnik
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Chodźki 1 Street, 20-093 Lublin, Poland
| |
Collapse
|
3
|
Lin Z, Cheng X, Zheng H. Umbelliferon: a review of its pharmacology, toxicity and pharmacokinetics. Inflammopharmacology 2023:10.1007/s10787-023-01256-3. [PMID: 37308634 DOI: 10.1007/s10787-023-01256-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023]
Abstract
Coumarin, a plant secondary metabolite, has various pharmacological activities, including antioxidant stress and anti-inflammatory effects. Umbelliferone, a common coumarin compound found in almost all higher plants, has been extensively studied for its pharmacological effects in different disease models and doses with complex action mechanisms. This review aims to summarize these studies and provide useful information to relevant scholars. The pharmacological studies demonstrate that umbelliferone has diverse effects such as anti-diabetes, anti-cancer, anti-infection, anti-rheumatoid arthritis, neuroprotection, and improvement of liver, kidney, and myocardial tissue damage. The action mechanisms of umbelliferone include inhibition of oxidative stress, inflammation, and apoptosis, improvement of insulin resistance, myocardial hypertrophy, and tissue fibrosis, in addition to regulation of blood glucose and lipid metabolism. Among the action mechanisms, the inhibition of oxidative stress and inflammation is the most critical. In short, these pharmacological studies disclose that umbelliferone is expected to treat many diseases, and more research should be conducted.
Collapse
Affiliation(s)
- Zhi Lin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People's Republic of China
| | - Xi Cheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People's Republic of China
| | - Hui Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People's Republic of China.
| |
Collapse
|
4
|
Song J, Kim JY, You G, Kang YY, Yang J, Mok H. Formulation of Glycyrrhizic Acid-based Nanocomplexes for Enhanced Anti-cancer and Anti-inflammatory Effects of Curcumin. BIOTECHNOL BIOPROC E 2022; 27:163-170. [PMID: 35530367 PMCID: PMC9059693 DOI: 10.1007/s12257-021-0198-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 12/04/2022]
Abstract
In this study, nanocomplexes composed of glycyrrhizic acid (GA) derived from the root of the licorice plant (Glycyrrhiza glabra) were formulated for the delivery of curcumin (CUR). Sonication of amphiphilic GA solution with hydrophobic CUR resulted in the production of nanosized complexes with a size of 164.8 ± 51.7 nm, which greatly enhanced the solubility of CUR in aqueous solution. A majority of the CURs were released from these GA/ CUR nanocomplexes within 12 h. GA/CUR nanocomplexes exhibited excellent intracellular uptake in human breast cancer cells (Michigan cancer foundation-7/multi-drug resistant cells), indicating enhanced anti-cancer effects compared to that of free CUR. In addition, GA/CUR nanocomplexes demonstrated high intracellular uptake into macrophages (RAW264.7 cells), consequently reducing the release of the pro-inflammatory cytokine tumor necrosis factor-α. Furthermore, GA/CUR nanocomplexes successfully reduced the levels of serum pro-inflammatory cytokines and splenomegaly in a rheumatoid arthritis model.
Collapse
Affiliation(s)
- Jihyeon Song
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029 Korea
| | - Jun Yeong Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029 Korea
| | - Gayeon You
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029 Korea
| | - Yoon Young Kang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029 Korea
| | - Jiwon Yang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029 Korea
| | - Hyejung Mok
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029 Korea
| |
Collapse
|
5
|
Utomo RY, Sugie A, Okada S, Miura K, Nakamura H. Detoxification of amyloid β fibrils by curcumin derivatives and their verification in a Drosophila Alzheimer's model. Chem Commun (Camb) 2022; 58:2576-2579. [PMID: 35107458 DOI: 10.1039/d1cc07000b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Curcumin derivatives B and N were developed as disaggregation agents of amyloid β (Aβ) fibrils. The detoxification provided by each compound at a concentration of 1 μM was observed in neuroblastoma cells. Furthermore, both compounds significantly rescued locomotion dysfunction in an Aβ-expressing Drosophila model of Alzheimer's disease.
Collapse
Affiliation(s)
- Rohmad Yudi Utomo
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa 226-8503, Japan.
| | - Atsushi Sugie
- Brain Research Institute, Niigata University, 757, Ichiban-cho, Asahimachidori, Chuo-ku, Niigata 951-8585, Japan.
| | - Satoshi Okada
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa 226-8503, Japan. .,Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa 226-8503, Japan.,JST, PRESTO, 4259 Nagatsuta, Midori, Yokohama, Kanagawa 226-8503, Japan
| | - Kazuki Miura
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa 226-8503, Japan. .,Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroyuki Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa 226-8503, Japan. .,Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
6
|
Kiyonga AN, Hong G, Kim HS, Suh YG, Jung K. Facile and Rapid Isolation of Oxypeucedanin Hydrate and Byakangelicin from Angelica dahurica by Using [Bmim]Tf 2N Ionic Liquid. Molecules 2021; 26:830. [PMID: 33562719 PMCID: PMC7915976 DOI: 10.3390/molecules26040830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 11/16/2022] Open
Abstract
Ionic liquids (ILs) have sparked much interest as alternative solvents for plant materials as they provide distinctive properties. Therefore, in this study, the capacity of ILs to extract oxypeucedanin hydrate and byakangelicin from the roots of Angelica dahurica (A. dahurica) was investigated. The back-extraction method was examined to recover target components from the IL solution as well. Herein, [Bmim]Tf2N demonstrated outstanding performance for extracting oxypeucedanin hydrate and byakangelicin. Moreover, factors including solvent/solid ratio, extraction temperature and time were investigated and optimized using a statistical approach. Under optimum extraction conditions (solvent/solid ratio 8:1, temperature 60 °C and time 180 min), the yields of oxypeucedanin hydrate and byakangelicin were 98.06% and 99.52%, respectively. In addition, 0.01 N HCl showed the most significant ability to back-extract target components from the [Bmim]Tf2N solution. The total content of both oxypeucedanin hydrate (36.99%) and byakangelicin (45.12%) in the final product exceeded 80%. Based on the data, the proposed approach demonstrated satisfactory extraction ability, recovery and enrichment of target compounds in record time. Therefore, the developed approach is assumed essential to considerably reduce drawbacks encountered during the separation of oxypeucedanin hydrate and byakangelicin from the roots of A. dahurica.
Collapse
Affiliation(s)
| | | | | | | | - Kiwon Jung
- Institute of Pharmaceutical Sciences, College of Pharmacy, CHA University, Sungnam 13844, Korea; (A.N.K.); (G.H.); (H.S.K.); (Y.-G.S.)
| |
Collapse
|
7
|
Zhang T, He L, Yang W, Wang Y, Peng J, Sun P, Yang Q, Jia Y, Zhao K, Qian Y. Byakangelicin inhibits IL-1β-induced mouse chondrocyte inflammation in vitro and ameliorates murine osteoarthritis in vivo. Int Immunopharmacol 2020; 85:106605. [PMID: 32485353 DOI: 10.1016/j.intimp.2020.106605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 12/17/2022]
Abstract
Osteoarthritis (OA) is a chronic musculoskeletal degeneration disease, resulting in severe consequences such as chronic pain and functional disability. Owing to the complex pathology, there are currently available preventative clinical therapies for OA. Several studies have reported the potential anti-inflammatory effects of byakangelicin (BYA), a component of the Angelica dahurica root extract; however, the effects of BYA in OA remain unknown. In this study, we investigated the protective effects of BYA in interleukin (IL)-1β-induced mouse chondrocytes in vitro and on surgical destabilization in a medial meniscus (DMM) mouse OA model in vivo. In vitro, BYA treatment inhibited IL-1β-mediated inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor-alpha, and IL-6 expression. Moreover, BYA promoted the expression of type two collagen and aggrecan but inhibited the expression of thrombospondin motifs 5 and matrix metalloproteinases, leading to degradation of the extracellular matrix. In addition, BYA mechanistically suppressed nuclear factor-kappa B signaling in the IL-1β-induced chondrocytes. The protective effects of BYA in OA development were also observed in vivo using the DMM model. In conclusion, our results highlight BYA as a candidate for OA treatment and prevention.
Collapse
Affiliation(s)
- Tan Zhang
- Department of Orthopedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, China
| | - Lei He
- Department of Orthopedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, China
| | - Wanlei Yang
- Department of Orthopedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, China
| | - Yanben Wang
- Department of Orthopedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, China
| | - Jiaxuan Peng
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi 530021, China
| | - Peng Sun
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qichang Yang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yewei Jia
- Department of Orthopedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, China
| | - Kanxian Zhao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yu Qian
- Department of Orthopedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, China.
| |
Collapse
|