1
|
Xiong Q, Zhang Y, Cai Y, Zhu Y, Jing Y, Li H, Zheng G, Chen J, Wang S, Xu Z, Yu Y, Shi Y, Yong H, Cao X. Deciphering mechanism of Buyang Huanwu Decoction in regulating macrophage polarization to alleviate atherosclerosis via virtual screening and experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2024:119152. [PMID: 39580134 DOI: 10.1016/j.jep.2024.119152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buyang Huanwu Decoction (BYHWD), a traditional prescription known for its Supplementing Qi and Promoting Blood Circulation, has demonstrated noteworthy therapeutic roles in regulating macrophage polarization to atherosclerosis (AS). However, its underlying mechanisms remain unknown. AIM OF THE STUDY The purpose of this paper was to decipher mechanism of BYHWD in regulating macrophage polarization to alleviate AS. MATERIALS AND METHODS A comprehensive virtual screening strategy, incorporating network pharmacology and batch molecular docking, combined with experimental validation techniques, was employed to systematically elucidate the underlying mechanism of BYHWD regulating macrophage polarization to alleviate AS. RESULTS Firstly, based on high-fat diet induced AS model in apolipoprotein E-deficient mice, it was found that BYHWD can significantly regulate macrophage polarization to alleviate AS. Then, the network pharmacological analysis revealed that the core targets of BYHWD regulating macrophage polarization to alleviate AS mainly involved TP53, AKT1 and BCL2. The mitochondrial function and metabolism were the main biological processes. Meanwhile, the main chemical components were identified as 3-O-p-coumaroylquinic acid, D-mandelonitrile, Ellagic acid, Ferulic acid, 5-hydroxy-L-tryptophan zwitterion, Isoliquiritigenin, Senkyunolide-F, Anofinic acid, Trimethylhydroquinone and Senkyunolide-E by batch molecular docking strategy. Further, the in vitro experiments demonstrated that BYHWD not only regulated macrophage polarization and alleviated macrophage foam formation but also modulated mitochondrial function and the expression of TP53, p-AKT, and BCL2 proteins. Finally, multivariate statistical analysis confirmed that the ameliorative effect of BYHWD on AS was closely related to mitochondrial function and macrophage polarization regulated by TP53, AKT1 and BCL2. CONCLUSIONS BYHWD could activate key targets, including TP53, AKT1, and BCL2, to alleviate mitochondrial dysfunction and regulate macrophage polarization, thereby improving AS. The 10 active compounds of BYHWD, including 5-hydroxy-L-tryptophan zwitterion and Isoliquiritigenin, played an important role in regulating macrophages polarization to alleviate AS.
Collapse
Affiliation(s)
- Qingping Xiong
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Yuhan Zhang
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Yisa Cai
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Yong Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, PR China
| | - Yi Jing
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Heng Li
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Guangzhen Zheng
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Jie Chen
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Shiyan Wang
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Zhimeng Xu
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Yadong Yu
- Department of Neurology, Lianshui County People's Hospital, Huai'an 223400, Jiangsu, PR China.
| | - Yingying Shi
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China.
| | - Hui Yong
- Department of Cardiology, Huai'an Hospital Affiliated to Yangzhou University(The Fifth People's Hospital of Huai'an), Huai'an 223000, Jiangsu, PR China.
| | - Xiangyang Cao
- Department of Neurology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223002, Jiangsu, PR China.
| |
Collapse
|
2
|
Zhou G, Liu Y, Wu H, Zhang D, Yang Q, Li Y. Research Progress on Histone Deacetylases Regulating Programmed Cell Death in Atherosclerosis. J Cardiovasc Transl Res 2024; 17:308-321. [PMID: 37821683 DOI: 10.1007/s12265-023-10444-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
Histone deacetylases (HDACs) are epigenetic modifying enzyme that is closely related to chromatin structure and gene transcription, and numerous studies have found that HDACs play an important regulatory role in atherosclerosis disease. Apoptosis, autophagy and programmed necrosis as the three typical programmed cell death modalities that can lead to cell loss and are closely related to the developmental process of atherosclerosis. In recent years, accumulating evidence has shown that the programmed cell death mediated by HDACs is increasingly important in the pathophysiology of atherosclerosis. This paper first gives a brief overview of HDACs, the mechanism of programmed cell death, and their role in atherosclerosis, and then further elaborates on the role and mechanism of HDACs in regulating apoptosis, autophagy, and programmed necrosis in atherosclerosis, respectively, to provide new effective measures and theoretical basis for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Gang Zhou
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, China
- Department of Central Experimental Laboratory, Yichang Central People's Hospital, Yichang, 443003, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443003, China
| | - Yanfang Liu
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, China
- Department of Central Experimental Laboratory, Yichang Central People's Hospital, Yichang, 443003, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443003, China
| | - Hui Wu
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, China.
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443003, China.
- Department of Cardiology, Yichang Central People's Hospital, Yiling Road 183, Yichang, 443003, Hubei, China.
| | - Dong Zhang
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, China
- Department of Central Experimental Laboratory, Yichang Central People's Hospital, Yichang, 443003, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443003, China
| | - Qingzhuo Yang
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, China
- Department of Central Experimental Laboratory, Yichang Central People's Hospital, Yichang, 443003, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443003, China
| | - Yi Li
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, China
- Department of Central Experimental Laboratory, Yichang Central People's Hospital, Yichang, 443003, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443003, China
| |
Collapse
|
3
|
Liao Q, Li F, Xue M, Chen W, Tao Z, Song Y, Yuan Y. Polydatin alleviates sepsis‑induced acute lung injury via downregulation of Spi‑B. Biomed Rep 2023; 19:102. [PMID: 38025835 PMCID: PMC10646764 DOI: 10.3892/br.2023.1684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/07/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis-induced acute lung injury (ALI) is related to the dysregulation of inflammatory responses. Polydatin supplement was reported to exhibit anti-inflammatory effects in several diseases. The present study aimed to investigate the role of polydatin in sepsis-induced ALI. A cecum ligation and puncture (CLP)-induced mouse ALI model was established first and the pathological changes of lung tissues were assessed using hematoxylin and eosin staining. Meanwhile, to mimic sepsis-induced ALI in vitro, pulmonary microvascular endothelial cells (PMVECs) were treated with lipopolysaccharide (LPS). Pro-inflammatory cytokines levels were measured in lung tissues and PMVECs using ELISA. Reverse transcription-quantitative PCR was used to measure the mRNA levels of Spi-B in lung tissues and PMVECs. Moreover, the expression levels of Spi-B, p-PI3K, p-Akt, and p-NF-κB in lung tissues and PMVECs were determined using western blotting. The data revealed that polydatin attenuated CLP-induced lung injury and inhibited sepsis-induced inflammatory responses in mice. Furthermore, polydatin significantly inhibited the expression of Spi-B, p-PI3K, p-Akt, and p-NF-κB in lung tissues of mice subjected to CLP-induced ALI, while this phenomenon was reversed through Spi-B overexpression. Consistently, the anti-inflammatory effect of polydatin was abolished by Spi-B overexpression. Taken together, the current findings revealed that polydatin alleviated sepsis-induced ALI via the downregulation of Spi-B.
Collapse
Affiliation(s)
- Qingwu Liao
- Shanghai Key Laboratory of Perioperative Stress and Protection, Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Fang Li
- Department of Geriatrics, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, Fujian 361015, P.R. China
| | - Mingming Xue
- Department of Emergency, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Wenan Chen
- Department of Emergency, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Zhengang Tao
- Department of Emergency, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yuejiao Song
- Department of Anesthesia, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, Fujian 361015, P.R. China
| | - Ying Yuan
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
4
|
Zhang X, Wang Z, Li X, Chen J, Yu Z, Li X, Sun C, Hu L, Wu M, Liu L. Polydatin protects against atherosclerosis by activating autophagy and inhibiting pyroptosis mediated by the NLRP3 inflammasome. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116304. [PMID: 36870461 DOI: 10.1016/j.jep.2023.116304] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/04/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polydatin is a bioactive ingredient extracted from the roots of the Reynoutria japonica Houtt, and it is a natural precursor of resveratrol. Polydatin is a useful inhibitor of inflammation and acts as a regulator of lipid metabolism. However, the specific mechanisms of action of polydatin in atherosclerosis (AS) remains poorly explained. AIM OF THE STUDY The aim of this study was to assess the efficacy of polydatin on inflammation induced by the inflammatory cell death and autophagy in AS. MATERIALS AND METHODS Apolipoprotein E knockout (ApoE-/-) mice were fed with a high-fat diet (HFD) for 12 weeks to induce the formation of atherosclerotic lesions. The ApoE-/- mice were then randomly divided into the following six groups: (1) model group, (2) simvastatin group, (3) MCC950 group, (4) low dose polydatin group (Polydatin-L), (5) medium dose polydatin group (Polydatin-M), (6) and high dose polydatin group (Polydatin-H). The C57BL/6J mice were treated as controls and administered a standard chow diet. All mice were gavaged once daily for 8 weeks. The distribution of aortic plaques was observed by En Oil-red-O staining and hematoxylin and eosin staining (H&E). Oil-red-O staining was used to observe lipid content in the aortic sinus plaque; Masson trichrome staining was used to gauge collagen content in the plaque; and immunohistochemistry was used to evaluate smooth muscle actin (α-SMA) and CD68 macrophages marker expression levels in the plaque, which were used to assess the vulnerability index of the plaque. The lipid levels were measured using an enzymatic assay with an automatic biochemical analyzer. The level of inflammation was detected by enzyme-linked-immunosorbent assay (ELISA). Autophagosomes were detected by transmission electron microscopy (TEM). Pyroptosis was detected by terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL)/caspase-1 and other proteins related to the expression levels of autophagy and pyroptosis were detected by Western blot analysis. RESULTS Nucleotide oligomerization (NOD)-like receptor (NLR) family pyrin domain-containing protein 3 (NLRP3) inflammasome activation leads to pyroptosis, including the cleavage of caspase-1, interleukin (IL)-1β and IL-18 production, and the co-expression of TUNEL/caspase-1-all of these are inhibited by polydatin, whose inhibitory effect is similar to that of MCC950, a specific inhibitor of NLRP3. Further, polydatin decreased the protein expression of NLRP3 and the phosphorylated mammalian target of rapamycin (p-mTOR), and increased the number of autophagosomes as well as the increased the cytoplasmic microtubule-associated protein light chain 3 (LC3)/autophagosome membrane-type LC3 ratio. Moreover, the protein expression levels of p62 decreased, suggesting that polydatin can increase autophagy. CONCLUSIONS Polydatin can inhibit the activation of the NLRP3 inflammasome and cleavage of caspase-1, thereby inhibiting pyroptosis and secretion of inflammatory cytokines, and promoting autophagy through NLRP3/mTOR pathway in AS.
Collapse
Affiliation(s)
- Xiaonan Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zeping Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoya Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiye Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zongliang Yu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Changxin Sun
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Lanqing Hu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Longtao Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
5
|
Zhi W, Liu Y, Wang X, Zhang H. Recent advances of traditional Chinese medicine for the prevention and treatment of atherosclerosis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115749. [PMID: 36181983 DOI: 10.1016/j.jep.2022.115749] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atherosclerosis (AS) is a common systemic disease with increasing morbidity and mortality worldwide. Traditional Chinese medicine (TCM) with characteristics of multiple pathways and targets, presents advantages in the diagnosis and treatment of atherosclerosis. AIM OF THE STUDY With the modernization of TCM, the active ingredients and molecular mechanisms of TCM for AS treatment have been gradually revealed. Therefore, it is necessary to examine the existing studies on TCM therapies aimed at regulating AS over the past two decades. MATERIALS AND METHODS Using "atherosclerosis" and "Traditional Chinese medicine" as keywords, all relevant TCM literature published in the last 10 years was collected from electronic databases (such as Elsevier, Springer, PubMed, CNKI, and Web of Science), books and papers until March 2022, and the critical information was statistically analyzed. RESULTS In this review, we highlighted extracts of 8 single herbs, a total of 41 single active ingredients, 20 TCM formulae, and 25 patented drugs, which were described with chemical structure, source, model, efficacy and potential mechanism. CONCLUSION We summarized the cytopathological basis for the development of atherosclerosis involving vascular endothelial cells, macrophages and vascular smooth muscle cells, and categorically elaborated the medicinal TCM used for AS, all of which provide the current evidence on the better management of atherosclerosis by TCM.
Collapse
Affiliation(s)
- Wenbing Zhi
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an, 710003, PR China.
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an, 710003, PR China
| | - Xiumei Wang
- The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China.
| | - Hong Zhang
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an, 710003, PR China.
| |
Collapse
|
6
|
Wu Q, Lv Q, Liu X, Ye X, Cao L, Wang M, Li J, Yang Y, Li L, Wang S. Natural compounds from botanical drugs targeting mTOR signaling pathway as promising therapeutics for atherosclerosis: A review. Front Pharmacol 2023; 14:1083875. [PMID: 36744254 PMCID: PMC9894899 DOI: 10.3389/fphar.2023.1083875] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease that is a major cause of cardiovascular diseases (CVDs), including coronary artery disease, hypertension, myocardial infarction, and heart failure. Hence, the mechanisms of AS are still being explored. A growing compendium of evidence supports that the activity of the mechanistic/mammalian target of rapamycin (mTOR) is highly correlated with the risk of AS. The mTOR signaling pathway contributes to AS progression by regulating autophagy, cell senescence, immune response, and lipid metabolism. Various botanical drugs and their functional compounds have been found to exert anti- AS effects by modulating the activity of the mTOR signaling pathway. In this review, we summarize the pathogenesis of AS based on the mTOR signaling pathway from the aspects of immune response, autophagy, cell senescence, and lipid metabolism, and comb the recent advances in natural compounds from botanical drugs to inhibit the mTOR signaling pathway and delay AS development. This review will provide a new perspective on the mechanisms and precision treatments of AS.
Collapse
Affiliation(s)
- Qian Wu
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Qianyu Lv
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao’an Liu
- Capital University of Medical, Beijing, China
| | - Xuejiao Ye
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Cao
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Manshi Wang
- Beijing Xicheng District Guangwai Hospital, Beijing, China
| | - Junjia Li
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yingtian Yang
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Lanlan Li
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Shihan Wang
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Karami A, Fakhri S, Kooshki L, Khan H. Polydatin: Pharmacological Mechanisms, Therapeutic Targets, Biological Activities, and Health Benefits. Molecules 2022; 27:6474. [PMID: 36235012 PMCID: PMC9572446 DOI: 10.3390/molecules27196474] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Polydatin is a natural potent stilbenoid polyphenol and a resveratrol derivative with improved bioavailability. Polydatin possesses potential biological activities predominantly through the modulation of pivotal signaling pathways involved in inflammation, oxidative stress, and apoptosis. Various imperative biological activities have been suggested for polydatin towards promising therapeutic effects, including anticancer, cardioprotective, anti-diabetic, gastroprotective, hepatoprotective, neuroprotective, anti-microbial, as well as health-promoting roles on the renal system, the respiratory system, rheumatoid diseases, the skeletal system, and women's health. In the present study, the therapeutic targets, biological activities, pharmacological mechanisms, and health benefits of polydatin are reviewed to provide new insights to researchers. The need to develop further clinical trials and novel delivery systems of polydatin is also considered to reveal new insights to researchers.
Collapse
Affiliation(s)
- Ahmad Karami
- Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Leila Kooshki
- Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
8
|
Polydatin Attenuates Cisplatin-Induced Acute Kidney Injury via SIRT6-Mediated Autophagy Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9035547. [PMID: 36160707 PMCID: PMC9507782 DOI: 10.1155/2022/9035547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/17/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022]
Abstract
In the treatment of malignant tumors, the effectiveness of cisplatin (CP) is limited by its nephrotoxicity, leading to cisplatin-induced acute kidney injury (CP-AKI). Polydatin (PD) has been demonstrated to regulate autophagy in tumors, sepsis, and diabetes. We have recently confirmed that PD attenuated CP-AKI by inhibiting ferroptosis, but it is not clear whether PD can regulate autophagy to protect from CP-AKI. The purpose of this study was to investigate the effect of PD on autophagy in CP-treated HK-2 cells and CP-AKI mouse models, exploring the role of sirtuin 6 (SIRT6) upregulated by PD. In this study, the blocking of autophagy flux was observed in both CP-treated HK-2 cells in vitro and CP-AKI mouse models in vivo, whereas this blocking was reversed by PD, which was characterized by the increase of autophagy microtubule-associated protein light chain 3 II expression and autophagolysosome/autophagosome ratio and the decrease of p62 expression. Furthermore, PD also significantly increased the expression of SIRT6 in vivo and in vitro. The protective effect of PD manifested by the stimulating of autophagy flux, with the reducing of inflammatory response and oxidative stress, which included downregulation of tumor necrosis factor-α and interleukin-1β, decreased activity of myeloperoxidase and content of malondialdehyde, and increased activity of superoxide dismutase and level of glutathione, both in vivo and in vitro, was reversed by either inhibition of autophagy flux by chloroquine or downregulation of SIRT6 by OSS-128167. Taken together, the present findings provide the first evidence demonstrating that PD exhibited nephroprotective effects on CP-AKI by restoring SIRT6-mediated autophagy flux mechanisms.
Collapse
|
9
|
Synergistic Effect of Polydatin and Polygonatum sibiricum Polysaccharides in Combating Atherosclerosis via Suppressing TLR4-Mediated NF- κB Activation in ApoE-Deficient Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3885153. [PMID: 35845572 PMCID: PMC9283052 DOI: 10.1155/2022/3885153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022]
Abstract
Objective Atherosclerosis is a chronic inflammatory disease, which is closely related to hyperlipidemia, inflammatory responses, and oxidative stress. As natural products, polydatin (PD) and Polygonatum sibiricum polysaccharides (PSP) have remarkable pharmacological effects in anti-inflammatory, antioxidant stress, and lipid regulation. In this study, we sought to investigate whether the combination of polydatin and P. sibiricum polysaccharides play an anti-atherosclerotic role in alleviating inflammatory responses by inhibiting the toll-like receptor4 (TLR4)/myeloid differentiation factor88(MyD88)/nuclear factor-kappa B(NF-κB) signaling pathway. Methods Thirty-two ApoE-/- mice were fed with a high-fat diet (HFD) starting at the age of 8 weeks. Mice were randomly divided into four groups; (1) model group, (2) PD (100 mg/kg) + PSP (50 mg/kg) group, (3) TAK-242 (3 mg/kg) (TLR4 inhibitor) group, (4) PD (100 mg/kg) + PSP (50 mg/kg) + TAK-242 (3 mg/kg) group. Eight age-matched wild-type C57BL/6J mice fed an ordinary diet were used as a control group. Blood lipid levels were measured with an automatic biochemical analyzer. The lipid accumulation and histopathological changes in the aorta and liver were observed by Oil Red O and hematoxylin and eosin (H&E) staining, respectively. ELISA was performed to measure the serum levels of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). Western blot analysis was performed to analyze the expression of key proteins in the TLR4/MyD88/NF-κB signaling pathway. Results Compared with the model group, the combination of PD and PSP significantly inhibit serum lipids (low-density lipoprotein cholesterol, total cholesterol, and triglyceride) and cell adhesion molecules (VCAM-1, ICAM-1). Oil Red O staining indicated that the combination of PD and PSP decrease lipid accumulation in the aorta and liver. Moreover, H&E staining suggested that the combination of PD and PSP alleviate aortic intimal hyperplasia, inflammatory cell infiltration, and hepatic steatosis. Finally, the combination of PD and PSP inhibit the expression of TLR4, MyD88, and the phosphorylation level of NF-κB p65 protein in the aorta. Conclusions Polydatin synergizes with P. sibiricum polysaccharides in preventing the development of atherosclerosis in ApoE-/- mice by inhibiting the TLR4/MyD88/NF-κB signaling pathway.
Collapse
|
10
|
Kaempferol promotes the osteogenesis in rBMSCs via mediation of SOX2/miR-124-3p/PI3K/Akt/mTOR axis. Eur J Pharmacol 2022; 927:174954. [PMID: 35421359 DOI: 10.1016/j.ejphar.2022.174954] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND It is reported that the osteogenesis in bone marrow mesenchymal stem cells (BMSCs) can alleviate osteoporosis progression. It has been found that Kae can promote the osteogenesis in BMSCs. However, the mechanism by which Kae mediates the osteogenesis in BMSCs is largely unknown. METHODS RBMSCs were collected from rats. The cytotoxicity of Kae was detected by CCK-8 assay. The osteogenic calcification in rBMSCs was measured by alizarin red staining, and ALP staining was performed to test the ALP activity in osteoblasts. The binding relationship between SOX2 and miR-124-3p was explored by dual luciferase report assay and Chromatin Immunoprecipitation (ChIP). RT-qPCR and western blot were performed to assess mRNA and protein levels, respectively. RESULTS Kae (10 μM) significantly increased the calcification, ALP activity, SOX2 level, activated PI3K/Akt/mTOR signaling and inhibited miR-124-3p level in rBMSCs, while knockdown of SOX2 reversed this phenomenon. Meanwhile, SOX2 suppressed the transcription of miR-124-3p, and SOX2 promoted the osteogenic differentiation in rBMSCs via regulation of miR-124-3p. MiR-124-3p could inactivate PI3K/Akt/mTOR to inhibit the osteogenic differentiation. CONCLUSION Kae significantly promoted the osteogenesis in rBMSCs via mediation of SOX2/miR-124-3p/PI3K/Akt/mTOR axis. Thus, our study might shed new lights in exploring new methods against osteoporosis.
Collapse
|
11
|
MK2206 attenuates atherosclerosis by inhibiting lipid accumulation, cell migration, proliferation, and inflammation. Acta Pharmacol Sin 2022; 43:897-907. [PMID: 34316032 PMCID: PMC8976090 DOI: 10.1038/s41401-021-00729-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/27/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is a common comorbidity in patients with cancer, and the main leading cause of noncancer-related deaths in cancer survivors. Considering that current antitumor drugs usually induce cardiovascular injury, the quest for developing new antitumor drugs, especially those with cardiovascular protection, is crucial for improving cancer prognosis. MK2206 is a phase II clinical anticancer drug and the role of this drug in cardiovascular disease is still unclear. Here, we revealed that MK2206 significantly reduced vascular inflammation, atherosclerotic lesions, and inhibited proliferation of vascular smooth muscle cell in ApoE-/- mice in vivo. We demonstrated that MK2206 reduced lipid accumulation by promoting cholesterol efflux but did not affect lipid uptake and decreased inflammatory response by modulating inflammation-related mRNA stability in macrophages. In addition, we revealed that MK2206 suppressed migration, proliferation, and inflammation in vascular smooth muscle cells. Moreover, MK2206 inhibited proliferation and inflammation of endothelial cells. The present results suggest that MK2206, as a promising drug in clinical antitumor therapy, exhibits anti-inflammatory and antiatherosclerotic potential. This report provides a novel strategy for the prevention of cardiovascular comorbidities in cancer survivors.
Collapse
|
12
|
Exploring the Therapeutic Mechanisms of Huzhang-Shanzha Herb Pair against Coronary Heart Disease by Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5569666. [PMID: 34887932 PMCID: PMC8651359 DOI: 10.1155/2021/5569666] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 10/08/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022]
Abstract
Background Coronary heart disease (CHD) seriously affects human health, and its pathogenesis is closely related to atherosclerosis. The Huzhang (the root of Polygonum cuspidatum)–Shanzha (the fruit of Crataegus sp.), a classic herb pair, has been widely used for the treatment of CHD. In recent years, Huzhang–Shanzha herb pair (HSHP) was found to have a wide range of effects in CHD; however, its therapeutic specific mechanisms remain to be further explored. The aim of this study was to elucidate the molecular mechanism of HSHP in the treatment of CHD using a network pharmacology analysis approach. Methods The Batman-TCM database was used to explore bioactive compounds and corresponding targets of HSHP. CHD disease targets were extracted from Genecards, OMIM, PharmGkb, TTD, and DrugBank databases. Then, the protein-protein interaction (PPI) network was constructed using the STRING web platform and Cytoscape software. GO functional and KEGG pathway enrichment analyses were carried out on the Metascape web platform. Finally, molecular docking of the active components was assessed to verify the potential targets of HSHP to treat CHD by the AutoDock Vina and PyMOL software. Results Totally, 243 active components and 2459 corresponding targets of LDP were screened out. Eighty-five common targets of HSHP and CHD were identified. The results of the network analysis showed that resveratrol, anthranone, emodin, and ursolic acid could be defined as four therapeutic components. TNF, ESR1, NFКB1, PPARG, INS, TP53, NFКBIA, AR, PIK3R1, PIK3CA, PTGS2, and NR3C1 might be the 12 key targets. These targets were mainly involved in the regulation of biological processes, such as inflammatory responses and lipid metabolism. Enrichment analysis showed that the identified genes were mainly involved in fluid shear force, insulin resistance (IR), inflammation, and lipid metabolism pathways to contribute to CHD. This suggests that resveratrol, anthranone, emodin, and ursolic acid from HSHP can be the main therapeutic components of atherosclerosis. Conclusion Using network pharmacology, we provide new clues on the potential mechanism of action of HSHP in the treatment of CHD, which may be closely related to the fluid shear force, lipid metabolism, and inflammatory response.
Collapse
|
13
|
Bae H, Lee W, Song J, Hong T, Kim MH, Ham J, Song G, Lim W. Polydatin Counteracts 5-Fluorouracil Resistance by Enhancing Apoptosis via Calcium Influx in Colon Cancer. Antioxidants (Basel) 2021; 10:antiox10091477. [PMID: 34573109 PMCID: PMC8469995 DOI: 10.3390/antiox10091477] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Colon cancer is a disease with a high prevalence rate worldwide, and for its treatment, a 5-fluorouracil (5-FU)-based chemotherapeutic strategy is generally used. However, conventional anticancer agents have some limitations, including the development of drug resistance. Therefore, there has recently been a demand for the improvement of antitumor agents using natural products with low side effects and high efficacy. Polydatin is a natural active compound extracted from an annual plant, and widely known for its anticancer effects in diverse types of cancer. However, it is still not clearly understood how polydatin ameliorates several drawbacks of standard anticancer drugs by reinforcing the chemosensitivity against 5-FU, and neither are the intrinsic mechanisms behind this process. In this study, we examined how polydatin produces anticancer effects in two types of colon cancer, called HCT116 and HT-29 cells. Polydatin has the ability to repress the progression of colon cancer, and causes a modification of distribution in the cell cycle by a flow cytometry analysis. It also induces mitochondrial dysfunctions through oxidative stress and the loss of mitochondrial membrane potential. The present study investigated the apoptosis caused by the disturbance of calcium regulation and the expression levels of related proteins through flow cytometry and immunoblotting analysis. It was revealed that polydatin suppresses the signaling pathways of the mitogen-activated protein kinase (MAPK) and PI3K/AKT. In addition, it was shown that polydatin combined with 5-FU counteracts drug resistance in 5-FU-resistant cells. Therefore, this study suggests that polydatin has the potential to be developed as an innovative medicinal drug for the treatment of colon cancer.
Collapse
Affiliation(s)
- Hyocheol Bae
- Department of Oriental Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Korea;
| | - Woonghee Lee
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; (W.L.); (J.H.)
| | - Jisoo Song
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (J.S.); (T.H.)
| | - Taeyeon Hong
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (J.S.); (T.H.)
| | - Myung Hyun Kim
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Jiyeon Ham
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; (W.L.); (J.H.)
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; (W.L.); (J.H.)
- Correspondence: (G.S.); (W.L.); Tel.: +82-2-3290-3881 (G.S.); +82-2-910-4773 (W.L.)
| | - Whasun Lim
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (J.S.); (T.H.)
- Correspondence: (G.S.); (W.L.); Tel.: +82-2-3290-3881 (G.S.); +82-2-910-4773 (W.L.)
| |
Collapse
|