1
|
Kang YF, Bai X, Wang KY, Wang T, Pan CL, Xie C, Liang B, Liao HL. Zhilong Huoxue Tongyu Capsule regulates the macrophage polarization and inflammatory response via the let-7i/TLR9/MyD88 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118208. [PMID: 38636581 DOI: 10.1016/j.jep.2024.118208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhilong Huoxue Tongyu Capsule (ZL) is clinically prescribed for acute ischemic stroke (AIS). However, only a few studies have addressed the mechanisms of ZL in treating AIS. AIM OF THE STUDY To explore the underlying mechanism of macrophage polarization and inflammation mediated by ZL, and to provide a reference for AIS treatment. MATERIALS AND METHODS Sixteen SD rats were fed with different dose of ZL (0, 0.4, 0.8, and 1.6 g/kg/d) for 4 days to prepare ZL serum. After 500 ng/mL lipopolysaccharide (LPS) stimulation, RAW264.7 cells were administrated with ZL serum. Then, experiments including ELISA, flow cytometry, real-time quantitative PCR and Western blot were performed to verify the effects of ZL on macrophage polarization and inflammation. Next, let-7i inhibitor was transfected in RAW264.7 cells when treated with LPS and ZL serum to verify the regulation of ZL on the let-7i/TLR9/MyD88 signaling pathway. Moreover, the interaction between let-7i and TLR9 was confirmed by the dual-luciferase assay. RESULTS ZL serum significantly decreased the expression of interleukin (IL)-6 and tumor necrosis factor-α (TNF-α), and increased the expression of IL-10 and transforming growth factor β1 (TGF-β1) of LPS stimulated-macrophages. Furthermore, ZL serum polarized macrophages toward M2, decreased the expressions of TLR9, MyD88, and iNOS, as well as increased the expressions of let-7i, CHIL3, and Arginase-1. It is worth mentioning that the effect of ZL serum is dose-dependent. However, let-7i inhibitor restored all the above effects in LPS stimulated-macrophages. In addition, TLR9 was the target of let-7i. CONCLUSIONS ZL targeted let-7i to inhibit TLR9 expression, thereby inhibiting the activation of the TLR9/MyD88 pathway, promoting the M2 polarization, and inhibiting the development of inflammation in AIS.
Collapse
Affiliation(s)
- Ya-Fei Kang
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China; Department of Neurology, Bazhong Hospital of Traditional Chinese Medicine, Bazhong, China
| | - Xue Bai
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Kong-Yu Wang
- Department of Intensive Care Medicine, Bazhong Hospital of Traditional Chinese Medicine, Bazhong, China
| | - Tao Wang
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Chuan-Ling Pan
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Cheng Xie
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Bo Liang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Hui-Ling Liao
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| |
Collapse
|
2
|
Zhao X, Yang F, Wu H, Fan Z, Wei G, Zou Y, Xue J, Liu M, Chen G. Zhilong Huoxue Tongyu capsule improves myocardial ischemia/reperfusion injury via the PI3K/AKT/Nrf2 axis. PLoS One 2024; 19:e0302650. [PMID: 38687744 PMCID: PMC11060539 DOI: 10.1371/journal.pone.0302650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/08/2024] [Indexed: 05/02/2024] Open
Abstract
INTRODUCTION Zhilong Huoxue Tongyu Capsule (ZL) is a Chinese medicine used for the treatment of cardio-cerebral diseases. However, the pharmacological mechanisms underlying its regulation of myocardial ischemia/reperfusion injury (MI/RI) remain unclear. PURPOSE This study aims to investigate the effects and mechanisms of ZL on MI/RI in mice. MATERIALS AND METHODS C57BL/6J mice were randomly assigned to four groups: Sham group, I/R group, ZL group, and ZLY group. The MI/RI mouse model was established by ligation of the left anterior descending coronary artery for 30 minutes, followed by reperfusion for 120 minutes to restore blood perfusion. Cardiac function was evaluated using cardiac ultrasound. Histopathological changes and myocardial infarction area were assessed using Hematoxylin and eosin (H&E) staining and triphenyltetrazolium chloride (TTC) staining. The changes in oxidative stress- and ferroptosis-related markers were detected. RT-qPCR, Western blot, and ELISA were conducted to further explore the mechanism of ZL in improving MI/RI. RESULTS Our findings demonstrated that ZL exerted a protective effect against MI/RI by inhibiting ferroptosis, evidenced by the upregulation of antioxidant enzymes such as GSH and GPX4, coupled with the downregulation of ACSL4, a pro-ferroptosis factor. Furthermore, ZL positively impacted the PI3K/AKT/Nrf2 pathway by promoting ATPase activities and enhancing the relative protein expression of its components. Notably, the administration of a PI3K/AKT inhibitor reversed the antioxidant and anti-ferroptosis effects of ZL to some extent, suggesting a potential role for this pathway in mediating ZL's protective effects. CONCLUSIONS ZL protects against MI/RI-induced ferroptosis by modulating the PI3K/AKT signaling pathway, leading to increased Nrf2 expression and activation of the HO-1/GPX4 pathway. These findings shed light on the potential therapeutic mechanisms of ZL in the context of cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaoping Zhao
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Fang Yang
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hao Wu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zhongcai Fan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Gang Wei
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yuan Zou
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jinyi Xue
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Mengnan Liu
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Gong Chen
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Wu Y, Ma Y, Zhong W, Shen H, Ye J, Du S, Li P. Alleviation of endothelial dysfunction of Pheretima guillemi (Michaelsen)-derived protein DPf3 in ponatinib-induced thrombotic zebrafish and mechanisms explored through ox-LDL-induced HUVECs and TMT-based proteomics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117669. [PMID: 38159828 DOI: 10.1016/j.jep.2023.117669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thrombus generation is one of the leading causes of death in human, and vascular endothelial dysfunction is a major contributor to thrombosis. Pheretima guillemi (Michaelsen), a traditional medicinal animal known as "Dilong", has been utilized to cure thrombotic disorders for many years. DPf3, a group of functional proteins extracted from P. guillemi, has been characterized and identified to possess antithrombotic bioactivity via in vitro and ex vivo experiments. AIM OF THE STUDY This study is aimed to investigate the vascular-protection activity and related mechanism of antithrombotic protein DPf3 purified from Pheretima guillelmi systematically. MATERIALS AND METHODS The antithrombotic activity and vascular endothelium protection effect of DPf3 was explored in vivo using ponatinib-induced vascular endothelial injury zebrafish thrombus model. Then, (hi) ox-LDL-induced HUVECs was applied to investigate the protection mechanism of DPf3 against the injury of vascular endothelium. In addition, TMT-based proteomics analysis was used to study the biomarkers, biological processes and signal pathways involved in the antithrombotic and vascular protective effects of DPf3 holistically. RESULTS DPf3 exerted robust in vivo antithrombosis and vascular endothelial protection ability. DPf3 was identified to prevent HUVECs from damage by reducing ROS production, and to reduce monocyte adhesion by decreasing the protein content of adhesion factor VCAM 1. DPf3 was also observed to weaken the migration ability of injured cells and inhibit abnormal angiogenesis. The mechanism of DPf3's antithrombotic and vascular protective activity was mainly related to the regulation of lipid metabolism, energy metabolism, complement and coagulation system, ECM receptor interaction, MAPK signal pathway, etc. CONCLUSIONS: This study demonstrates that DPf3 has strong antithrombotic and endothelial protective effects. The endothelial protective ability and related mechanisms of DPf3 provide a scientific reference for the traditional use of earthworms in the treatment of thrombosis.
Collapse
Affiliation(s)
- Yali Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China; Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China.
| | - Yunnan Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Wanling Zhong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Huijuan Shen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jinhong Ye
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Pengyue Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
4
|
Feng W, Kao TC, Jiang J, Zeng X, Chen S, Zeng J, Chen Y, Ma X. The dynamic equilibrium between the protective and toxic effects of matrine in the development of liver injury: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1315584. [PMID: 38348397 PMCID: PMC10859759 DOI: 10.3389/fphar.2024.1315584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Background: Matrine, an alkaloid derived from the dried roots of Sophora flavescens Aiton, has been utilized for the treatment of liver diseases, but its potential hepatotoxicity raises concerns. However, the precise condition and mechanism of action of matrine on the liver remain inconclusive. Therefore, the objective of this systematic review and meta-analysis is to comprehensively evaluate both the hepatoprotective and hepatotoxic effects of matrine and provide therapeutic guidance based on the findings. Methods: The meta-analysis systematically searched relevant preclinical literature up to May 2023 from eight databases, including PubMed, Web of Science, Cochrane Library, Embase, China National Knowledge Infrastructure, WanFang Med Online, China Science and Technology Journal Database, and China Biomedical Literature Service System. The CAMARADES system assessed the quality and bias of the evidence. Statistical analysis was conducted using STATA, which included the use of 3D maps and radar charts to display the effects of matrine dosage and frequency on hepatoprotection and hepatotoxicity. Results: After a thorough screening, 24 studies involving 657 rodents were selected for inclusion. The results demonstrate that matrine has bidirectional effects on ALT and AST levels, and it also regulates SOD, MDA, serum TG, serum TC, IL-6, TNF-α, and CAT levels. Based on our comprehensive three-dimensional analysis, the optimal bidirectional effective dosage of matrine ranges from 10 to 69.1 mg/kg. However, at a dose of 20-30 mg/kg/d for 0.02-0.86 weeks, it demonstrated high liver protection and low toxicity. The molecular docking analysis revealed the interaction between MT and SERCA as well as SREBP-SCAP complexes. Matrine could alter Ca2+ homeostasis in liver injury via multiple pathways, including the SREBP1c/SCAP, Notch/RBP-J/HES1, IκK/NF-κB, and Cul3/Rbx1/Keap1/Nrf2. Conclusion: Matrine has bidirectional effects on the liver at doses ranging from 10 to 69.1 mg/kg by influencing Ca2+ homeostasis in the cytoplasm, endoplasmic reticulum, Golgi apparatus, and mitochondria. Systematic review registration: https://inplasy.com/, identifier INPLASY202340114.
Collapse
Affiliation(s)
- Weiyi Feng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Te-chan Kao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiajie Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuang Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Bi T, Zhou Y, Mao L, Liang P, Liu J, Yang L, Ren G, Mazhar M, Shen H, Liu P, Spáčil R, Guo Q, Luo G, Yang S, Ren W. Zhilong Huoxue Tongyu capsule alleviates myocardial fibrosis by improving endothelial cell dysfunction. J Tradit Complement Med 2024; 14:40-54. [PMID: 38223805 PMCID: PMC10785151 DOI: 10.1016/j.jtcme.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/06/2023] [Accepted: 07/06/2023] [Indexed: 01/16/2024] Open
Abstract
Background and aim Zhilong Huoxue Tongyu (ZL) capsule is a classical traditional Chinese medicine (TCM) with satisfactory curative effects. Endothelial cell (EC) dysfunction plays an important role during myocardial fibrosis (MF). But the therapeutic effect of ZL capsule on EC dysfunction remains unknown in the development of MF. This study aims to investigate the effect of ZL capsule on EC dysfunction during MF in vivo. Experimental procedure The model of MF is established in vivo by injecting isoproterenol for 14 days, simultaneously, we examined the therapeutic effect of ZL capsule on MF in vivo. An integrative approach combining biomarker examination, echocardiography and myocardial fibrosis condition using Hematoxylin-eosin staining, Masson staining, and Sirius red staining were performed to assess the efficacy of ZL capsule against MF. Subsequently, comprehensive immunofluorescence staining was performed to evaluate the therapeutic effect of ZL capsule on EC dysfunction. Results and conclusion Prior to experiments, analysis of the published single-cell sequencing data was performed and it was discovered that EC dysfunction plays an important role. Further pharmacological results showed that ZL capsule could alleviate fibrosis injury and collagen fiber deposition. The mechanism investigation results showed that the endothelial-to-mesenchymal transition (EndMT) and MHC class-II (MHC-II) expression in EC were improved. In addition, ZL capsule can attenuate the inflammatory response during MF by intervening the activation of CD4+T cell mediated by EC. For the first time, we provided evidence that ZL capsule could improve MF by alleviating EC dysfunction via the regulation of EndMT and expression of MHC-II. Taxonomy classification by evise Myocardial fibrosis, Chinese Herbal Medicine, Traditional Medicine, Endothelium, dysfunction, Endothelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Tao Bi
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Yanan Zhou
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Linshen Mao
- Department of Cardiovascular Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Pan Liang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 853, China
| | - Jiali Liu
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Luyin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Guilin Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- The National T.C.M Service Export Base of the Affiliated T.C.M Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Hongping Shen
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Ping Liu
- Department of Cardiovascular Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Roman Spáčil
- The Czech Center for Traditional Chinese Medicine, Jeremenkova 1211/40, Olomouc, 77900, Czech Republic
| | - Qing Guo
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Gang Luo
- Department of Cardiovascular Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- The National T.C.M Service Export Base of the Affiliated T.C.M Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 853, China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- The National T.C.M Service Export Base of the Affiliated T.C.M Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
6
|
Jiang J, Kao TC, Hu S, Li Y, Feng W, Guo X, Zeng J, Ma X. Protective role of baicalin in the dynamic progression of lung injury to idiopathic pulmonary fibrosis: A meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154777. [PMID: 37018850 DOI: 10.1016/j.phymed.2023.154777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND AND PURPOSE The pathological progression of lung injury (LI) to idiopathic pulmonary fibrosis (IPF) is a common feature of the development of lung disease. At present, effective strategies for preventing this progression are unavailable. Baicalin has been reported to specifically inhibit the progression of LI to IPF. Therefore, this meta-analysis aimed to assess its clinical application and its potential as a therapeutic drug for lung disease based on integrative analysis. METHODS We systematically searched preclinical articles in eight databases and reviewed them subjectively. The CAMARADES scoring system was used to assess the degree of bias and quality of evidence, whereas the STATA software (version 16.0 software) was used for statistical analysis, including a 3D analysis of the effects of dosage frequency of baicalin in LI and IPF. The protocol of this meta-analysis is documented in the PROSPERO database (CRD42022356152). RESULTS A total of 23 studies and 412 rodents were included after several rounds of screening. Baicalin was found to reduce the levels of TNF-α, IL-1β, IL-6, HYP, TGF-β and MDA and the W/D ratio and increase the levels of SOD. Histopathological analysis of lung tissue validated the regulatory effects of baicalin, and the 3D analysis of dosage frequency revealed that the effective dose of baicalin is 10-200 mg/kg. Mechanistically, baicalin can prevent the progression of LI to IPF by modulating p-Akt, p-NF-κB-p65 and Bcl-2-Bax-caspase-3 signalling. Additionally, baicalin is involved in signalling pathways closely related to anti-apoptotic activity and regulation of lung tissue and immune cells. CONCLUSION Baicalin at the dose of 10-200 mg/kg exerts protective effects against the progression of LI to IPF through anti-inflammatory and anti-apoptotic pathways.
Collapse
Affiliation(s)
- Jiajie Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Te-Chan Kao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Sihan Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Weiyi Feng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xiaochuan Guo
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
7
|
Geng L, Zheng LZ, Kang YF, Pan CL, Wang T, Xie C, Liang B, Liao HL. Zhilong Huoxue Tongyu Capsule attenuates hemorrhagic transformation through the let-7f/TLR4 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116521. [PMID: 37080368 DOI: 10.1016/j.jep.2023.116521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hemorrhagic transformation after acute ischemic stroke is a life-threatening disease that currently has no effective chemotherapy. Zhilong Huoxue Tongyu Capsule (ZL) is an empirical prescription of traditional Chinese medicine that is used to prevent and treat cardiovascular and cerebrovascular diseases in China. However, only a few studies have addressed the mechanisms of ZL in treating hemorrhagic transformation. AIM OF THE STUDY To evaluate the anti-inflammatory effects of ZL on hemorrhagic transformation model rats and lipopolysaccharide (LPS)-induced RAW264.7 macrophages and to explore the underlying molecular mechanisms. MATERIALS AND METHODS Murine RAW264.7 cells were treated with ZL and LPS (1 μg/mL), and cell viability was detected by cell counting kit-8 assay. RT-qPCR was used to detect the expression of inflammatory chemokines, microRNA let-7a/e/i/f, toll like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and nuclear factor kappa-B (NF-κB) p65. The protein expression levels of TLR4, MyD88, NF-κB p65, and apoptosis related molecules were determined by Western blotting. The apoptosis rate of RAW264.7 macrophages was detected by Annexin V-FITC/PI double staining. A hemorrhagic transformation model in rats was established by intraperitoneal injection of high glucose solution combined with thread embolization. Then, the model rats were observed behaviourally, pathologically, and molecularly. The gene expression of TLR4, MyD88, and NF-κB p65 was measured by RT-qPCR and used to evaluate the protective effect of ZL against hemorrhagic transformation in rats. RESULTS ZL (5, 20, 40 μg/mL) was beneficial in cell proliferation. LPS (1 μg/mL) stimulated the production of inflammatory chemokines and inhibited the production of let-7a/e/i/f, with let-7f being influenced most strongly. Moreover, overexpression of let-7f decreased the gene and protein levels of TLR4, MyD88, and NF-κB p65, downregulated TLR4, and inhibited its transcriptional activity. ZL (5, 20, and 40 μg·mL-1) inhibited the production of TLR4, MyD88, and NF-κB p65 and promoted the production of let-7f in a concentration-dependent manner. Furthermore, the blockade of TLR4 antagonized the promoting effects of TLR4 pathway activation in cell inflammation and apoptosis by downregulating let-7f. Critically, it was confirmed in vivo and in vitro that ZL upregulated the expression of let-7f and inhibited the gene expression of TLR4, MyD88, and NF-κB p65 to reduce inflammatory cell infiltration, which determined the occurrence of hemorrhagic transformation. CONCLUSIONS ZL can reduce inflammatory response by upregulating let-7f and subsequently inhibiting the TLR4 signaling pathway, thereby decreasing the occurrence of hemorrhagic transformation.
Collapse
Affiliation(s)
- Lu Geng
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China; Internal Medicine Department One, Wenjiang Traditional Chinese Medicine Hospital of Chengdu, Chengdu, China
| | - Li-Zhu Zheng
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China; Traditional Chinese Medicine Hospital of Long Chang City, Neijiang, China
| | - Ya-Fei Kang
- Bazhong Hospital of Traditional Chinese Medicine, Bazhong, China
| | - Chuan-Ling Pan
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China; College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Tao Wang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China; College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Chen Xie
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China; College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Bo Liang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Hui-Ling Liao
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China; College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
8
|
Gao L, Xia X, Shuai Y, Zhang H, Jin W, Zhang X, Zhang Y. Gut microbiota, a hidden protagonist of traditional Chinese medicine for acute ischemic stroke. Front Pharmacol 2023; 14:1164150. [PMID: 37124192 PMCID: PMC10133705 DOI: 10.3389/fphar.2023.1164150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Acute ischemic stroke (AIS) is one of the leading diseases causing death and disability worldwide, and treatment options remain very limited. Traditional Chinese Medicine (TCM) has been used for thousands of years to treat ischemic stroke and has been proven to have significant efficacy, but its mechanism of action is still unclear. As research related to the brain-gut-microbe axis progresses, there is increasing evidence that the gut microbiota plays an important role during AIS. The interaction between TCM and the gut microbiota has been suggested as a possible key link to the therapeutic effects of TCM. We have compiled and reviewed recent studies on the relationship between AIS, TCM, and gut microbiota, with the expectation of providing more ideas to elucidate the mechanism of action of TCM in the treatment of AIS.
Collapse
Affiliation(s)
- Lin Gao
- Emergency Department, Chengdu University of Traditional Chinese Medicine Affiliated Hospital, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiuwen Xia
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yinqi Shuai
- Emergency Department, Chengdu University of Traditional Chinese Medicine Affiliated Hospital, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hong Zhang
- Emergency Department, Chengdu University of Traditional Chinese Medicine Affiliated Hospital, Chengdu, Sichuan, China
| | - Wei Jin
- Emergency Department, Chengdu University of Traditional Chinese Medicine Affiliated Hospital, Chengdu, Sichuan, China
| | - Xiaoyun Zhang
- Emergency Department, Chengdu University of Traditional Chinese Medicine Affiliated Hospital, Chengdu, Sichuan, China
- *Correspondence: Yi Zhang, ; Xiaoyun Zhang,
| | - Yi Zhang
- Geriatric Department, Chengdu University of Traditional Chinese Medicine Affiliated Hospital, Chengdu, Sichuan, China
- *Correspondence: Yi Zhang, ; Xiaoyun Zhang,
| |
Collapse
|
9
|
Wang R, Ren J, Li S, Bai X, Guo W, Yang S, Wu Q, Zhang W. Efficacy evaluation of Buyang Huanwu Decoction in the treatment of ischemic stroke in the recovery period: A systematic review of randomized controlled trials. Front Pharmacol 2022; 13:975816. [PMID: 36313307 PMCID: PMC9613954 DOI: 10.3389/fphar.2022.975816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/22/2022] [Indexed: 12/02/2022] Open
Abstract
Background and purpose: Buyang Huanwu decoction (BYHWD) is widely used in the treatment of ischemic stroke in the recovery period, and many clinical trials have been reported, but its clinical efficacy and safety have not been fully evaluated. In this study, we conducted a systematic review and meta-analysis to evaluate the clinical efficacy and safety of BYHWD in the recovery period. Materials and methods: Eight databases, including CNKI, Wanfang Database, VIP Database, China Biomedical Literature Database, PubMed, Cochrane Library, EMBASE, and Web of Science, were searched from the establishment of the database to 13 April 2022. We selected all eligible randomized controlled trials of BYHWD in the treatment of ischemic stroke during the recovery period. Systematic review and meta-analysis were conducted in accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines. The National Institutes of Health Stroke Score (NIHSS) was the primary outcome, and the Chinese Stroke Scale (CSS), activities of daily living (ADL), and adverse drug reaction (ADR) were the secondary outcomes. Results: A total of 39 randomized controlled trials were included, and 3,683 patients in the recovery period of ischemic stroke were recruited. Compared with conventional treatment alone, BYHWD combined with conventional treatment significantly decreased the NIHSS score (MD = -1.44, 95% CI: 1.75, -1.12, p < 0.00001), the CSS score (MD = -1.18, 95% CI: 2.02, -0.34, p = 0.006), improved the ADL (MD = 4.33, 95% CI: 3.06, 5.61, p < 0.00001), and did not increase the adverse reactions of patients (OR = 0.88, 95% CI: 0.48, 1.61, p = 0.67). Conclusion: BYHWD is an effective and safe therapy for the recovery of ischemic stroke. To further determine the efficacy and safety of BYHWD in the treatment of ischemic stroke in the recovery period, more high-quality, multicenter, and prospective RCTs are needed.
Collapse
Affiliation(s)
- Raoqiong Wang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Junhao Ren
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Shuangyang Li
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xue Bai
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Wubin Guo
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Sijin Yang, ; Qibiao Wu, ; Wei Zhang,
| | - Qibiao Wu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
- Zhuhai MUST Science and Technology Research Institute, Zhuhai, China
- *Correspondence: Sijin Yang, ; Qibiao Wu, ; Wei Zhang,
| | - Wei Zhang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
- *Correspondence: Sijin Yang, ; Qibiao Wu, ; Wei Zhang,
| |
Collapse
|
10
|
Luo X, Zhang Z, Zheng Z, Ye Q, Wang J, Wu Q, Huang G. Art therapy as an adjuvant treatment for schizophrenia: A protocol for an updated systematic review and subgroup meta-analysis of randomized clinical trials following the PRISMA guidelines. Medicine (Baltimore) 2022; 101:e30935. [PMID: 36221342 PMCID: PMC9542883 DOI: 10.1097/md.0000000000030935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The efficacy of art therapy as an adjuvant treatment for schizophrenia remains inconclusive, and variation in the effects of art therapy on schizophrenia by the type of schizophrenia, severity of schizophrenia, type of art therapy, follow-up duration, or different populations has never been systematically assessed. The objective of this study is to systematically evaluate the effects of art therapy on schizophrenia and to determine whether there are some potential influencing factors affecting the effects of art therapy. METHODS Seven online databases will be searched from their inception until June 30, 2022. All the relevant randomized clinical trials (RCTs) comparing art therapy plus standardized treatment versus standardized treatment alone for schizophrenia will be selected and assessed for inclusion. The Cochrane risk-of-bias tool will be used to evaluate the methodological quality of the included RCTs. Review Manager 5.4 will be used to analyze all the data obtained. Mental health symptoms are defined as the primary outcome, and the secondary outcomes include the Global Assessment of Functioning score, quality of life, functional remission, and the level of self-esteem. Subgroup analyses will be performed based on the type of schizophrenia, severity of schizophrenia, type of art therapy, follow-up duration, or different populations. RESULTS The results will be published in a peer-reviewed journal. CONCLUSIONS This updated systematic review and subgroup meta-analysis will evaluate the effects of art therapy as adjunctive treatment to standardized treatment in patients with schizophrenia and determine whether there are some potential confounding variables affecting the effects of art therapy on the outcomes of schizophrenia patients, thus strengthening the evidence base for the clinical application of this combination therapy for schizophrenia.
Collapse
Affiliation(s)
- Xuexing Luo
- Faculty of Humanities and Arts, Macau University of Science and Technology, Taipa, Macau, China
| | - Zheyu Zhang
- Faculty of Humanities and Arts, Macau University of Science and Technology, Taipa, Macau, China
| | - Zhong Zheng
- Faculty of Humanities and Arts, Macau University of Science and Technology, Taipa, Macau, China
- College of Art and Design, Wuhan Technology and Business University, Wuhan, Hubei, China
| | - Qian Ye
- Faculty of Humanities and Arts, Macau University of Science and Technology, Taipa, Macau, China
- Jingdezhen China Ceramics Museum, Jingdezhen, Jiangxi, China
| | - Jue Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
- *Correspondence: Jue Wang, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China (e-mail: ); Qibiao Wu, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China (e-mail: ); Guanghui Huang, Faculty of Humanities and Arts, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China (e-mail: )
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, Guangdong, China
- *Correspondence: Jue Wang, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China (e-mail: ); Qibiao Wu, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China (e-mail: ); Guanghui Huang, Faculty of Humanities and Arts, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China (e-mail: )
| | - Guanghui Huang
- Faculty of Humanities and Arts, Macau University of Science and Technology, Taipa, Macau, China
- *Correspondence: Jue Wang, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China (e-mail: ); Qibiao Wu, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China (e-mail: ); Guanghui Huang, Faculty of Humanities and Arts, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China (e-mail: )
| |
Collapse
|
11
|
Exploring the Ferroptosis Mechanism of Zhilong Huoxue Tongyu Capsule for the Treatment of Intracerebral Hemorrhage Based on Network Pharmacology and In Vivo Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5033135. [PMID: 36199551 PMCID: PMC9527400 DOI: 10.1155/2022/5033135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/03/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
Abstract
Objective. The purpose of this study is to explore the mechanism of the Zhilong Huoxue Tongyu (ZL) capsule in the treatment of intracerebral hemorrhage (ICH) via targeting ferroptosis based on network pharmacology. Methods. The active ingredients and related key targets of the ZL capsule were screened using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were also performed. Finally, identified targets were validated in an in-vivo model of ICH. Results. A total of 30 active ingredients and 33 intersecting targets were identified through a TCMSP database search. Ingredients-Targets-Pathways network was constructed to filter out the key targets according to the degree value. TP53 was selected as the key target. The in-vivo validation studies demonstrated that TP53 was down-regulated and GPX4 was upregulated in rats following ZL capsule treatment. Conclusions. It is concluded that the ZL capsule could alleviate ICH in a muti-target and multi-pathway manner. ZL capsule could alleviate ICH by inhibiting ferroptosis, and TP53 is identified to be the potential target. Further research is needed to clarify the detailed anti-ferroptotic mechanism of the ZL capsule.
Collapse
|
12
|
Li Y, Cui R, Fan F, Lu Y, Ai Y, Liu H, Liu S, Du Y, Qin Z, Sun W, Yu Q, Liu Q, Cheng Y. The Efficacy and Safety of Ischemic Stroke Therapies: An Umbrella Review. Front Pharmacol 2022; 13:924747. [PMID: 35935837 PMCID: PMC9355553 DOI: 10.3389/fphar.2022.924747] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Ischemic stroke is a leading cause of morbidity and mortality in neurological diseases. Numerous studies have evaluated the efficacy and safety of ischemic stroke therapies, but clinical data were largely inconsistent. Therefore, it is necessary to summarize and analyze the published clinical research data in the field.Objective: We aimed to perform an umbrella review to evaluate the efficacy and safety of ischemic stroke therapies.Methods: We conducted a search for meta-analyses and systematic reviews on PubMed, the Cochrane Library, and the Web of Science to address this issue. We examined neurological function deficit and cognitive function scores, quality of life, and activities of daily living as efficacy endpoints and the incidence of adverse events as safety profiles.Results: Forty-three eligible studies including 377 studies were included in the umbrella review. The results showed that thrombolytic therapy (tPA; alteplase, tenecteplase, and desmoteplase), mechanical thrombectomy (MTE), edaravone with tPA, stem cell-based therapies, stent retrievers, acupuncture with Western medicines, autologous bone marrow stromal cells, antiplatelet agents (aspirin, clopidogrel, and tirofiban), statins, and Western medicines with blood-activating and stasis-dispelling herbs (NaoShuanTong capsule, Ginkgo biloba, Tongqiao Huoxue Decoction, Xuesaitong injection) can improve the neurological deficits and activities of daily living, and the adverse effects were mild for the treatment of ischemic stroke. Moreover, ligustrazine, safflower yellow, statins, albumin, colchicine, MLC601, salvianolic acids, and DL-3-n-butylphthalide showed serious adverse events, intracranial hemorrhage, or mortality in ischemic stroke patients.Conclusion: Our study demonstrated that tPA, edaravone and tPA, tPA and MTE, acupuncture and Western medicines, and blood-activating and stasis-dispelling herbs with Western medicines are the optimum neurological function and activities of daily living medication for patients with ischemic stroke.Systematic Review Registration: https://inplasy.com/, identifier [INPLASY202250145].
Collapse
Affiliation(s)
- Yongbiao Li
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| | - Ruyi Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fangcheng Fan
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| | - Yangyang Lu
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| | - Yangwen Ai
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| | - Hua Liu
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| | - Shaobao Liu
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| | - Zhiping Qin
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| | - Wenjing Sun
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| | - Qianqian Yu
- The People’s Hospital of Xin Tai City (Nephropathy Department), Beijing, China
| | - Qingshan Liu
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Beijing, China
- *Correspondence: Qingshan Liu, ; Yong Cheng,
| | - Yong Cheng
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Beijing, China
- Institute of National Security, Minzu University of China, Beijing, China
- *Correspondence: Qingshan Liu, ; Yong Cheng,
| |
Collapse
|
13
|
Li N, Sun J, Chen JL, Bai X, Wang TH. Gene Network Mechanism of Zhilong Huoxue Tongyu Capsule in Treating Cerebral Ischemia–Reperfusion. Front Pharmacol 2022; 13:912392. [PMID: 35873563 PMCID: PMC9302771 DOI: 10.3389/fphar.2022.912392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/16/2022] [Indexed: 01/23/2023] Open
Abstract
Objective: To investigate the effect of Zhilong Huoxue Tongyu capsule (ZLH) in the treatment of cerebral ischemia–reperfusion injury and determine the underlying molecular network mechanism. Methods: The treatment effect of Zhilong Huoxue Tongyu capsule (ZLH) was evaluated for cerebral ischemia–reperfusion injury in middle cerebral artery occlusion (MACO) rat, and the underlying molecular network mechanism was explored by using molecular network analysis based on network pharmacology, bioinformatics including protein–protein interaction (PPI) network, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG), as well as molecular docking. Results: The neurological function of rats in the ZLH group was significantly improved compared to those in the NS group (p = 0.000), confirming the positive effect of ZLH for the treatment of brain ischemia. There were 126 intersecting genes screened in ischemia–reperfusion cerebrum that are associated with several important biological processes, such as lipopolysaccharide, and the most important cell component, such as raft, as well as the most important molecular function pointed as cytokine receptor binding. The most important KEGG signaling pathway was the AGE-RAGE signaling pathway in diabetic complications. Moreover, according to the STRING interaction in the PPI network, 10 hub genes including MAPK14, FOS, MAPK1, JUN, MYC, RELA, ESR1, STAT1, AKT1, and IL6 were selected and exhibited in Cytoscape and molecular docking. Lastly, the relation between PPI, GO, and KEGG was analyzed. These findings indicated that multiple hub network genes have been involved in behavior improvement in cerebral ischemia–reperfusion rats subjected to ZLH treatment. Conclusion: Zhilong Huoxue Tongyu capsule improves cerebral ischemia–reperfusion and is associated with multiple network gene expressions.
Collapse
Affiliation(s)
- Na Li
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
| | - Jie Sun
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ji-Lin Chen
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
| | - Xue Bai
- Department of Encephalopathy, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
- *Correspondence: Ting-Hua Wang, ; Xue Bai,
| | - Ting-Hua Wang
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Ting-Hua Wang, ; Xue Bai,
| |
Collapse
|
14
|
Zhilong Huoxue Tongyu Capsule Alleviated the Pyroptosis of Vascular Endothelial Cells Induced by ox-LDL through miR-30b-5p/NLRP3. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3981350. [PMID: 35126599 PMCID: PMC8813228 DOI: 10.1155/2022/3981350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022]
Abstract
Background Our previous studies have demonstrated a protective role of Zhilong Huoxue Tongyu capsule in atherosclerosis (AS); however, the molecular mechanisms are unclear. Methods Human coronary artery endothelial cells (HCAECs) were induced with oxidized low-density lipoprotein (ox-LDL) to obtain cellular AS models. Then, the medicated serum of Zhilong Huoxue Tongyu capsule was obtained and used for treatment with ox-LDL-induced HCAECs. The cell viability was detected by CCK-8 assay. Besides, the binding between miR-30b-5p and NLRP3 was determined by the dual-luciferase reporter gene system assay. Furthermore, ox-LDL-induced HCAECs were transfected with miR-30b-5p mimic or miR-30b-5p inhibitor. The pyroptosis of HCAECs was assessed by flow cytometry, LDH content detection, and qRT-PCR assays. Results 10% medicated serum of Zhilong Huoxue Tongyu capsule was the maximum nontoxic concentration and it was used in subsequent assays. The rate of pyroptosis, LDH content, and the mRNA expression level of pyroptosis-related genes including NLRP3, ASC, Caspase 1, IL-1β, and IL-18 were prominently enhanced after HCAECs were induced by ox-LDL, which were markedly rescued with medicated serum of Zhilong Huoxue Tongyu capsule. In addition, the medicated serum of Zhilong Huoxue Tongyu capsule significantly enhanced the ox-LDL-induced reduction of miR-30b-5p level. NLRP3 could bind to miR-30b-5p and was negatively corrected with miR-30b-5p. Moreover, all the rates of pyroptosis, LDH content, and the mRNA expression levels of pyroptosis-related genes including NLRP3, ASC, Caspase 1, IL-1β, and IL-18 were further observably decreased after ox-LDL-induced HCAECs treated with medicated serum were transfected with miR-30b-5p mimic, while these were significantly rescued with transfection of miR-30b-5p inhibitor. Conclusion Zhilong Huoxue Tongyu capsule alleviated the pyroptosis of vascular endothelial cells induced by ox-LDL through miR-30b-5p/NLRP3.
Collapse
|