1
|
Hu R, Geng Y, Huang Y, Liu Z, Li F, Song K, Ma W, Dong H, Zhang M, Lei T, Song Y, Zhang Z. Jiawei Buzhong Yiqi Decoction attenuates polycystic ovary syndrome through regulating kisspeptin-GPR54-AKT-SHBG system. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155931. [PMID: 39116604 DOI: 10.1016/j.phymed.2024.155931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is one of the most common reproductive endocrine disorders. Accumulated evidence has suggested the indispensable role of kisspeptin-G protein-coupled receptor (GPR54) system and SHBG in development of PCOS. However, potential mechanisms and their relationship are unclear. Jiawei Buzhong Yiqi Decoction (JWBZYQ) has been reported to ameliorate obese PCOS. Whereas, potential mechanisms remain elusive. PURPOSE To determine whether JWBZYQ attenuates PCOS by regulating the kisspeptin-GPR54 system and SHBG production. And to explore potential mechanisms. METHODS An overweight PCOS rat model was developed with testosterone propionate (TP) and high-fat diet (HFD). The efficacy of JWBZYQ was assessed by tracking changes in weight, estrous cycle, ovarian morphology, and serum sex hormone levels. Additionally, kisspeptin-GPR54 system expression in multiple organs and PI3K-AKT pathway activity in liver of different rats were detected. Modifications in SHBG production were also measured. Kisspeptin54 was administered to establish a cellular model. The levels of AKT phosphorylation and SHBG protein within HepG2 cells were analyzed. Finally, confirmatory studies were performed using AKT phosphorylation activator and inhibitor. RESULTS JWBZYQ effectively attenuated the overweight, disrupted estrous cycle, altered sex hormone levels, and aberrant ovarian morphology in PCOS rats. Meanwhile, PCOS rats exhibited elevated levels of kisspeptin and GPR54, along with reduced SHBG levels, which could be reversed by JWBZYQ. These alterations might be connected with the activation of AKT phosphorylation. In vitro experiment identified that JWBZYQ could rectify the hyperactivated AKT phosphorylation and deficient production of SHBG caused by kisspeptin54. CONCLUSIONS Overexpressed kisspeptin-GPR54 system inhibited SHBG synthesis in PCOS. JWBZYQ curtailed the exorbitant expression of kisspeptin and GPR54, which moderated the rise in AKT phosphorylation and subsequently promoted the production of SHBG.
Collapse
Affiliation(s)
- Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhuo Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kunkun Song
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenwen Ma
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Haoxu Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mingmin Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting Lei
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yufan Song
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhuo Zhang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
2
|
Yong Z, Mimi C, Yingjie L, Yichen G, Yansu Y, Zhi Z, Hui L, Si Y, Chongming W, Xiaopo Z, Ning M, Weiying L. Mangiferin ameliorates polycystic ovary syndrome in rats by modulating insulin resistance, gut microbiota, and ovarian cell apoptosis. Front Pharmacol 2024; 15:1457467. [PMID: 39376609 PMCID: PMC11456450 DOI: 10.3389/fphar.2024.1457467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/29/2024] [Indexed: 10/09/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex endocrine and metabolic disorder characterized by hyperandrogenism, prolonged anovulation and polycystic ovaries. However, there are no effective interventions to treat this disorder. As previously shown, mangiferin modulated the AMPK and NLRP3 signal pathways to alleviate nonalcoholic fatty liver disease (NAFLD). In recent years, mangiferin has emerged as a promising drug candidate for treating metabolic diseases. In this study, we evaluated the effects of mangiferin on a letrozole (LET) combined with high-fat diet (HFD)-induced PCOS rat model through estrous cycle detection, serum/tissue biochemical analysis, and hematoxylin and eosin (HE) staining of ovarian tissue. The mechanisms of mangiferin's effects on PCOS rats were analyzed using 16S rRNA sequencing, RNA-seq, western blotting (WB), and immunohistochemical (IHC) staining. Our results displayed that mangiferin showed a promising effect in PCOS rats. It improved lipid metabolism, glucose tolerance, insulin resistance, hormonal imbalance, ovarian dysfunction, and adipocyte abnormalities. RNA-seq analysis indicated that mangiferin may be involved in several signal pathways, including apoptosis, necrosis, and inflammation. Furthermore, western blot and immunohistochemical staining demonstrated that mangiferin regulates Caspase-3 and Cytc, exhibiting anti-apoptotic activity in the ovaries. Additionally, mangiferin significantly altered the gut microbiota community of PCOS rats, changing the abundance of firmicutes, bacteroidota, proteobacteria, and actinobacteria at the phylum level and the abundance of Blautia, Coprococcus, Roseburia, and Pseudomonas at the genus level. In conclusion, mangiferin is a promising and novel therapeutic agent for PCOS as it ameliorates insulin resistance, gut microbiota and ovarian cell apoptosis.
Collapse
Affiliation(s)
- Zhang Yong
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and Department of Pharmacology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
- Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China
| | - Chen Mimi
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and Department of Pharmacology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
- Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China
| | - Li Yingjie
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Guo Yichen
- Reproductive Medical Center, Hainan Women and Children’s Medical Center, Haikou, China
| | - Yu Yansu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and Department of Pharmacology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Zhou Zhi
- Reproductive Medical Center, Hainan Women and Children’s Medical Center, Haikou, China
| | - Lu Hui
- Reproductive Medical Center, Hainan Women and Children’s Medical Center, Haikou, China
| | - Yao Si
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and Department of Pharmacology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Wu Chongming
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhang Xiaopo
- Haikou Key Laboratory of Li Nationality Medicine, Hainan Key Laboratory for Research and Development of Tropical Herbs, Engineering Research Center of Tropical Medicine lnnovation and Transformation of Ministry of Education and International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China
| | - Ma Ning
- Reproductive Medical Center, Hainan Women and Children’s Medical Center, Haikou, China
| | - Lu Weiying
- Reproductive Medical Center, Hainan Women and Children’s Medical Center, Haikou, China
| |
Collapse
|
3
|
Bathaei P, Imenshahidi M, Hosseinzadeh H. Effects of Berberis vulgaris, and its active constituent berberine on cytochrome P450: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03326-x. [PMID: 39141022 DOI: 10.1007/s00210-024-03326-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024]
Abstract
The cytochrome P450 (CYP450) family is crucial for metabolizing drugs and natural substances. Numerous compounds, such as pharmaceuticals and dietary items, can influence CYP activity by either enhancing or inhibiting these enzymes, potentially leading to interactions between drugs or between drugs and food. This research explores the impact of barberry and its primary component "berberine" on key human CYP450 enzymes. The text discusses the effects of this plant on the 12 primary human CYP450 enzymes, with summarized data presented in tables. Berberine exerts an influence on the function of various CYP450 isoforms, including CYP3A4/5, CYP2D6, CYP2C9, CYP2E1, CYP1A1/2, and most isoforms within the CYP2B subfamily. Given the significant role of these CYP450 isoforms in metabolizing commonly used drugs and endogenous substances, as well as activating procarcinogens into carcinogenic metabolites, the influence of barberry and its active constituent on these enzymes may impact the pharmacokinetics and toxicity profiles of various compounds. More specifically, regarding the crucial role of CYP2D6 and CYP3A4 in metabolizing clinically used drugs, and the inhibitory effects of berberine on these two CYP450 isoforms, it seems that the most important drug interaction of berberine that should be considered is related to its inhibitory effect on CYP2D6 and CYP3A4. In conclusion, due to the impact of barberry on multiple CYP450 isoforms, healthcare providers should conduct thorough consultations and investigations to ensure patient safety and prevent any potential adverse interactions before recommending the consumption of these herbs. Additional research, particularly clinical trials is crucial for preventing any potentially adverse interactions in patients who consume this herb.
Collapse
Affiliation(s)
- Pooneh Bathaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Wang S, Wang Y, Qin Q, Li J, Chen Q, Zhang Y, Li X, Liu J. Berberine Protects Against Dihydrotestosterone-Induced Human Ovarian Granulosa Cell Injury and Ferroptosis by Regulating the Circ_0097636/MiR-186-5p/SIRT3 Pathway. Appl Biochem Biotechnol 2024; 196:5265-5282. [PMID: 38153651 DOI: 10.1007/s12010-023-04825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
Polycystic ovarian syndrome (PCOS) is an endocrine syndrome in women of reproductive age. Berberine (BBR) is a Chinese herbal monomer that exhibits many pharmacological properties related to PCOS treatment. This study aims to analyze the effect of BBR on a cell model of PCOS and the underlying mechanism. Human ovarian granulosa (KGN) cells were treated with dihydrotestosterone (DHT) to mimic a PCOS cell model. The RNA expression of circ_0097636, miR-186-5p, and sirtuin3 (SIRT3) was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Protein expression was detected by western blotting. Cell viability was analyzed by CCK-8 assay. Cell proliferation and apoptosis were investigated by 5-ethynyl-2'-deoxyuridine (EdU) assay and flow cytometry assay, respectively. The levels of interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α) were analyzed by enzyme-linked immunosorbent assays (ELISAs). Fe2+ concentration was assessed by an iron assay kit. Oxidative stress was assessed by detecting reactive oxygen species (ROS) level and malondialdehyde (MDA) level using commercial kits. The association of miR-186-5p with circ_0097636 and SIRT3 was identified by dual-luciferase reporter assay and RNA pull-down assay. Circ_0097636 expression was downregulated in the follicular fluid of PCOS patients and DHT-treated KGN cells when compared with control groups. BBR treatment partially relieved the DHT-induced inhibitory effect on cell proliferation and promoted effects on cell apoptosis, inflammation, ferroptosis, and oxidative stress in KGN cells. Additionally, circ_0097636 bound to miR-186-5p, and SIRT3 was identified as a target gene of miR-186-5p in KGN cells. BBR treatment ameliorated DHT-induced KGN cell injury by upregulating circ_0097636 and SIRT3 expression and downregulating miR-186-5p expression. Moreover, circ_0097636 overexpression protected KGN cells from DHT-induced injury by increasing SIRT3 expression. BBR ameliorated DHT-induced KGN cell injury and ferroptosis by regulating the circ_0097636/miR-186-5p/SIRT3 pathway.
Collapse
Affiliation(s)
- Suqin Wang
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan City, Shanxi, China
- Department of Gynecology & Obstetrics, Fifth Hospital of Shanxi Medical University, Taiyuan City, 030012, Shanxi, China
| | - Yingfang Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang City, 471023, Henan, China
| | - Qin Qin
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan City, Shanxi, China
- Center for Reproductive Medicine, Fifth Hospital of Shanxi Medical University, No. 29, Shuangtasi Road, Yingze District, Taiyuan City, 030012, Shanxi, China
| | - Jianfang Li
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan City, Shanxi, China
- Department of Gynecology & Obstetrics, Fifth Hospital of Shanxi Medical University, Taiyuan City, 030012, Shanxi, China
| | - Qiaoyun Chen
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan City, Shanxi, China
- Center for Reproductive Medicine, Fifth Hospital of Shanxi Medical University, No. 29, Shuangtasi Road, Yingze District, Taiyuan City, 030012, Shanxi, China
| | - Ye Zhang
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan City, Shanxi, China
- Center for Reproductive Medicine, Fifth Hospital of Shanxi Medical University, No. 29, Shuangtasi Road, Yingze District, Taiyuan City, 030012, Shanxi, China
| | - Xiuqing Li
- Reproductive center, Coal Central Hospital of Shanxi Province, Taiyuan City, Shanxi, China
| | - Jianrong Liu
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan City, Shanxi, China.
- Center for Reproductive Medicine, Fifth Hospital of Shanxi Medical University, No. 29, Shuangtasi Road, Yingze District, Taiyuan City, 030012, Shanxi, China.
| |
Collapse
|
5
|
Palomba S, Costanzi F, Caserta D, Vitagliano A. Pharmacological and non-pharmacological interventions for improving endometrial receptivity in infertile patients with polycystic ovary syndrome: a comprehensive review of the available evidence. Reprod Biomed Online 2024; 49:104381. [PMID: 39454320 DOI: 10.1016/j.rbmo.2024.104381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 10/28/2024]
Abstract
Direct and indirect evidence suggests that endometrial receptivity may play a crucial role in the reduced fertility rate of women with polycystic ovary syndrome (PCOS). Various pharmacological and non-pharmacological strategies with potential effects on endometrial receptivity in patients with PCOS have been proposed. The aim of this study was to summarize the rationale and the clinical and experimental evidence of interventions tested for improving endometrial receptivity in infertile patients with PCOS. A systematic review was conducted by consulting electronic databases. All interventions with a potential influence on endometrial receptivity in infertile patients with PCOS were evaluated, and their main biological mechanisms were analysed. In total, 24 interventions related to endometrial receptivity were identified. Notwithstanding a strong biological rationale, no intervention aimed at improving endometrial receptivity in women with PCOS is supported by an adequate body of evidence, limiting their use in clinical practice. Further high-quality research is needed in this field to limit potentially ineffective and unsafe add-on treatments in infertile patients with PCOS.
Collapse
Affiliation(s)
- Stefano Palomba
- Unit of Gynaecology, Department of Medical-Surgical Sciences and Translational Medicine, University 'Sapienza' of Rome, Sant'Andrea Hospital, Rome, Italy.
| | - Flavia Costanzi
- Unit of Gynaecology, Department of Medical-Surgical Sciences and Translational Medicine, University 'Sapienza' of Rome, Sant'Andrea Hospital, Rome, Italy; University 'Sapienza' of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Donatella Caserta
- Unit of Gynaecology, Department of Medical-Surgical Sciences and Translational Medicine, University 'Sapienza' of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Amerigo Vitagliano
- Unit of Obstetrics and Gynaecology, Department of Interdisciplinary Medicine, University of Bari, Bari, Italy
| |
Collapse
|
6
|
He S, Li H, Zhang Q, Zhao W, Li W, Dai C, Li B, Cheng J, Wu S, Zhou Z, Yang J, Li S. Berberine alleviates inflammation in polycystic ovary syndrome by inhibiting hyaluronan synthase 2 expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155456. [PMID: 38537446 DOI: 10.1016/j.phymed.2024.155456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a heterogeneous metabolic and endocrine disorder that causes anovulatory infertility and abnormal folliculogenesis in women of reproductive age. Several studies have revealed inflammation in PCOS follicles, and recent evidence suggests that Berberine (BBR) effectively reduces inflammatory responses in PCOS, however, the underlying mechanisms remain unclear. PURPOSE To determine the underlying mechanisms by which BBR alleviates inflammation in PCOS. STUDY DESIGN Primary human GCs from healthy women and women with PCOS, and KGN cells were used for in vitro studies. ICR mice were used for in vivo studies. METHODS Gene expression was measured using RT-qPCR. HAS2, inflammatory cytokines, and serum hormones were assayed by ELISA. Protein expression profiles were assayed by Western blot. Chronic low-grade inflammatory mouse models were developed by intraperitoneal injection with LPS, and PCOS mouse models were established by subcutaneous intraperitoneal injection of DHEA. BBR and 4-MU were administered by gavage. Ovarian morphologic changes were evaluated using H&E staining. HAS2 expression in the ovary was assayed using Western blot and immunohistochemistry. RESULTS Our results confirmed that HAS2 expression and hyaluronan (HA) accumulation are closely associated with inflammatory responses in PCOS. Data obtained from in vitro studies showed that HAS2 and inflammatory genes (e.g., MCP-1, IL-1β, and IL-6) are significantly upregulated in PCOS samples and LPS-induced KGN cells compared to their control groups. In addition, these effects were reversed by blocking HAS2 expression or HA synthesis using BBR or 4-MU, respectively. Furthermore, HAS2 overexpression induces the expression of inflammatory genes in PCOS. These results were further confirmed in LPS- and DHEA-induced mouse models, where inflammatory genes were reduced by BBR or 4-MU, and ovarian morphology was restored. CONCLUSIONS Our results define previously unknown links between HAS2 and chronic low-grade inflammation in the follicles of women with PCOS. BBR exerts its anti-inflammatory effects by down-regulating HAS2. This study provides a novel therapeutic target for alleviating ovarian inflammation in women with PCOS.
Collapse
Affiliation(s)
- Shaojing He
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Hui Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing, 210014, China
| | - Qianjie Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Weimin Zhao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing, 210014, China
| | - Wei Li
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Chaohui Dai
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing, 210014, China
| | - Bixia Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing, 210014, China
| | - Jinhua Cheng
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing, 210014, China
| | - Shuang Wu
- Hubei Provincial Hospital of Traditional Chinese Medicine Affiliated to Hubei University of Traditional Chinese Medicine, Wuhan, 430060, China
| | - Zhongming Zhou
- Hubei Provincial Hospital of Traditional Chinese Medicine Affiliated to Hubei University of Traditional Chinese Medicine, Wuhan, 430060, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Saijiao Li
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| |
Collapse
|
7
|
Yi C, Zou H, Lin X, Liu S, Wang J, Tian Y, Deng X, Luo J, Li C, Long Y. Zhibai dihuang pill (ZBDH) exhibits therapeutic effects on idiopathic central sexual precocity in rats by modulating the gut microflora. Heliyon 2024; 10:e29723. [PMID: 38707434 PMCID: PMC11066310 DOI: 10.1016/j.heliyon.2024.e29723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024] Open
Abstract
To reveal the role of gut microbiota (GM) in the occurrence and development of idiopathic central precocious puberty (ICPP) using 16S rDNA sequencing and bioinformatics analysis. The Danazol-induced ICPP model was successfully constructed in this study. ZBDH and GnRHa treatments could effectively inhibit ICPP in rats, as manifested by the delayed vaginal opening time, reduced weight, decreased uterine organ coefficient, and decreased uterine wall thickness and corpus luteum number, as well as remarkably reduced serum hormone (LH, FSH, and E2) levels. According to 16S rDNA sequencing analysis results, there was no significant difference in the GM community diversity across different groups; however, the composition of the microbial community and the abundance of the dominant microbial community were dramatically different among groups. ZBDH and GnRHa treatments could effectively reduce the abundance of Muribaculateae and Lactobacillus and promote Prevotella abundance. ZBDH and GnRHa were effective in treating Danazol-induced ICPP model rats. The therapeutic effects of ZBDH and GnRHa could be related to the changes in GM in rats.
Collapse
Affiliation(s)
- Canhong Yi
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Hui Zou
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Xiaojuan Lin
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Shanshan Liu
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Juan Wang
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Yuquan Tian
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Xujing Deng
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Jianhong Luo
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Chan Li
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Yin Long
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| |
Collapse
|
8
|
Hu R, Huang Y, Geng Y, Liu Z, Li F, Zhang Z, Ma W, Song K, Dong H, Song Y, Zhang M. Jiawei Buzhong Yiqi decoction ameliorates polycystic ovary syndrome via oocyte-granulosa cell communication. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117654. [PMID: 38158097 DOI: 10.1016/j.jep.2023.117654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiawei Buzhong Yiqi Decoction (JWBZYQ), from records of FuqingzhuNvke, is a classical formula for treating obese women related infertility. JWBZYQ has been shown to be effective in treating polycystic ovary syndrome (PCOS) in both clinical studies and practical practice, with the pharmacological mechanism remaining unknown. AIM OF THE STUDY To explore the potential therapeutic effects and mechanistic insights of JWBZYQ in PCOS. MATERIALS AND METHODS An overweight PCOS rat model was established via testosterone propionate (TP) injection and 45% high-fat diet (HFD). Then they were categorized into five distinct groups: Control group, Model group, low-dose of JWBZYQ (JWBZYQ1) group, high-dose of JWBZYQ (JWBZYQ2) group, and metformin (Met) group. Body weight, estrous cycle, and sex hormone levels were observed. Hematoxylin-Eosin staining was employed to investigate the histological characteristics of the ovaries. To identify the pathways that changed significantly, transcriptome analysis was performed. The protein and mRNA levels of key molecules in ovarian zona pellucida (ZP) organization, transzonal projections (TZPs) assembly, steroid hormone receptors, and steroidogenesis were assessed using phalloidin staining, immunohistochemistry, Western blot, and polymerase chain reaction. RESULTS RNA-seq analysis demonstrated that regulation of hormone secretion, cilium assembly, cell projection assembly, and ZP production may all have crucial impact on the etiology of PCOS and therapeutic effect of JWBZYQ. In particular, PCOS rats exhibited elevated expressions of ZP1-3, which can be reversed by JWBZYQ2 particularly. Simultaneously, TZPs assembly was totally disrupted in PCOS rats, evidenced by the phalloidin staining, upregulated calcium-/calmodulin-dependent protein kinase II beta (CaMKIIβ), and deficient p-CaMKIIβ, myosin X (MYO10), proline-rich tyrosine kinase 2 (PTK2), and Fascin. Nonetheless, JWBZYQ or metformin treatment revived the disturbance, repairing the oocyte-granulosa cell communication, regulating steroidogenesis in PCOS rats. In this way, JWBZYQ and metformin exerted remarkable effects in alleviating altered ovarian morphology and function in PCOS rats, with JWBZYQ2 revealing the best effect. CONCLUSIONS JWBZYQ restored the altered ovarian morphology and function by regulating the oocyte-granulosa cell communication, which was related with ZP organization and TZPs assembly in the ovary.
Collapse
Affiliation(s)
- Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Zhuo Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Zhuo Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Wenwen Ma
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kunkun Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Haoxu Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yufan Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Mingmin Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
9
|
Ge H, Chang H, Wang Y, Cong J, Liu Y, Zhang B, Wu X. Establishment and validation of a nomogram model for predicting ovulation in the PCOS women. Medicine (Baltimore) 2024; 103:e37733. [PMID: 38579058 PMCID: PMC10994453 DOI: 10.1097/md.0000000000037733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/06/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND The mechanisms underlying ovulatory dysfunction in PCOS remain debatable. This study aimed to identify the factors affecting ovulation among PCOS patients based on a large sample-sized randomized control trial. METHODS Data were obtained from a multi-centered randomized clinical trial, the PCOSAct, which was conducted between 2011 and 2015. Univariate and multivariate analysis using binary logistic regression were used to construct a prediction model and nomogram. The accuracy of the model was assessed using receiver operating characteristic (ROC) curves and calibration curves. RESULTS The predictive variables included in the training dataset model were luteinizing hormone (LH), free testosterone, body mass index (BMI), period times per year, and clomiphene treatment. The ROC curve for the model in the training dataset was 0.81 (95% CI [0.77, 0.85]), while in the validation dataset, it was 0.7801 (95% CI [0.72, 0.84]). The model showed good discrimination in both the training and validation datasets. Decision curve analysis demonstrated that the nomogram designed for ovulation had clinical utility and superior discriminative ability for predicting ovulation. CONCLUSIONS The nomogram composed of LH, free testosterone, BMI, period times per year and the application of clomiphene may predict the ovulation among PCOS patients.
Collapse
Affiliation(s)
- Hang Ge
- Heilongjiang University of Chinese Medicine, Harbin Heilongjiang, China
| | - Hui Chang
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin Heilongjiang, China
| | - Yu Wang
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin Heilongjiang, China
| | - Jing Cong
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin Heilongjiang, China
| | - Yang Liu
- Heilongjiang University of Chinese Medicine, Harbin Heilongjiang, China
| | - Bei Zhang
- Xuzhou Central Hospital, Xuzhou Jiangsu, China
| | - Xiaoke Wu
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin Heilongjiang, China
- Heilongjiang provincial hospital, Harbin Heilongjiang, China
| |
Collapse
|
10
|
Wang B, Gao M, Yao Y, Shen H, Li H, Sun J, Wang L, Zhang X. Enhancing endometrial receptivity: the roles of human chorionic gonadotropin in autophagy and apoptosis regulation in endometrial stromal cells. Reprod Biol Endocrinol 2024; 22:37. [PMID: 38576003 PMCID: PMC10993617 DOI: 10.1186/s12958-024-01205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
Inadequate endometrial receptivity often results in embryo implantation failure and miscarriage. Human chorionic gonadotropin (hCG) is a key signaling molecule secreted during early embryonic development, which regulates embryonic maternal interface signaling and promotes embryo implantation. This study aimed to examine the impact of hCG on endometrial receptivity and its underlying mechanisms. An exploratory study was designed, and endometrial samples were obtained from women diagnosed with simple tubal infertility or male factor infertile (n = 12) and recurrent implantation failure (RIF, n = 10). Using reverse transcription-quantitative PCR and western blotting, luteinizing hormone (LH)/hCG receptor (LHCGR) levels and autophagy were detected in the endometrial tissues. Subsequently, primary endometrial stromal cells (ESCs) were isolated from these control groups and treated with hCG to examine the presence of LHCGR and markers of endometrial receptivity (HOXA10, ITGB3, FOXO1, LIF, and L-selectin ligand) and autophagy-related factors (Beclin1, LC3, and P62). The findings revealed that the expressions of receptivity factors, LHCGR, and LC3 were reduced in the endometrial tissues of women with RIF compared with the control group, whereas the expression of P62 was elevated. The administration of hCG to ESCs specifically activated LHCGR, stimulating an increase in the endometrial production of HOXA10, ITGB3, FOXO1, LIF and L-selectin ligands. Furthermore, when ESCs were exposed to 0.1 IU/mL hCG for 72 h, the autophagy factors Beclin1 and LC3 increased within the cells and P62 decreased. Moreover, the apoptotic factor Bax increased and Bcl-2 declined. However, when small interfering RNA was used to knock down LHCGR, hCG was less capable of controlling endometrial receptivity and autophagy molecules in ESCs. In addition, hCG stimulation enhanced the phosphorylation of ERK1/2 and mTOR proteins. These results suggest that women with RIF exhibit lower levels of LHCGR and compromised autophagy function in their endometrial tissues. Thus, hCG/LHCGR could potentially improve endometrial receptivity by modulating autophagy and apoptosis.
Collapse
Affiliation(s)
- Bin Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Mingxia Gao
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China.
- Key Laboratory for Reproductive Medicine and Embryo, Gansu Province, Lanzhou, China.
| | - Ying Yao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Haofei Shen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Hongwei Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Jingjing Sun
- Medical Laboratory Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Liyan Wang
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Reproductive Medicine and Embryo, Gansu Province, Lanzhou, China
| | - Xuehong Zhang
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China.
- Key Laboratory for Reproductive Medicine and Embryo, Gansu Province, Lanzhou, China.
| |
Collapse
|
11
|
Xuan F, Ren Y, Lu J, Zhou W, Jin R, Chen A, Ye Y. CPEB1 induces autophagy and promotes apoptosis in ovarian granulosa cells of polycystic ovary syndrome. Mol Reprod Dev 2024; 91:e23741. [PMID: 38616716 DOI: 10.1002/mrd.23741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Inflammatory damage in ovarian granulosa cells (GCs) is a key mechanism in polycystic ovary syndrome (PCOS), cytoplasmic polyadenylation element binding protein-1 (CPEB1) is important in inflammatory regulation, however, its role in PCOS is unclear. We aim to research the mechanism of CPEB1 in ovarian GCs in PCOS using dehydroepiandrosterone (DHEA)-induced PCOS rat models and testosterone-incubated GC models. The pathophysiology in PCOS rats was analyzed. Quantitative-realtime-PCR, TUNEL, immunohistochemistry, and Western blot were applied for quantification. Additionally, cell counting kit-8, flow cytometry, immunofluorescence, Western blot, and Monodansylcadaverine staining were performed. We found that PCOS rat models exhibited a disrupted estrus cycle, elevated serum levels of testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH), increased LH/FSH ratio, and heightened ovarian index. Furthermore, reduced corpus luteum and increased follicular cysts were observed in ovarian tissue. In ovarian tissue, autophagy and apoptosis were activated and CPEB1 was overexpressed. In vitro, CPEB1 overexpression inhibited cell viability and sirtuin-1 (SIRT1), activated tumor necrosis factor-α, and interleukin-6 levels, as well as apoptosis and autophagy; however, CPEB1 knockdown had the opposite effect. In conclusion, overexpression of CPEB1 activated autophagy and apoptosis of ovarian GCs in PCOS.
Collapse
Affiliation(s)
- Feilan Xuan
- Department of Obstetrics and Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuefang Ren
- Department of Gynecology, Huzhou Maternity & Child Health Care Hospital, Huzhou, Zhejiang, China
| | - Jiali Lu
- Department of Gynecology, Huzhou Maternity & Child Health Care Hospital, Huzhou, Zhejiang, China
| | - Weimei Zhou
- Department of Ultrasound, Jiaojiang Maternal and Child Health Hospital, Taizhou, Zhejiang, China
| | - Ruiying Jin
- Department of Gynecology, Jiaojiang Maternal and Child Health Hospital, Taizhou, Zhejiang, China
| | - Aixue Chen
- Department of Gynecology, Changxing People's Hospital of Chongming District, Shanghai, China
| | - Yongju Ye
- Department of Gynecology, Lishui Hospital of Traditional Chinese Medicine, Lishui, Zhejiang, China
| |
Collapse
|
12
|
Wahid S, Ramli MDC, Fazleen NE, Naim RM, Mokhtar MH. Exploring the Therapeutic Potential of Natural Products in Polycystic Ovarian Syndrome (PCOS): A Mini-Review of Lipid Profile, Blood Glucose, and Ovarian Histological Improvements. Life (Basel) 2024; 14:150. [PMID: 38276279 PMCID: PMC10817691 DOI: 10.3390/life14010150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 01/27/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women that is characterized by fluid-filled sacs in the ovaries and various symptoms, including high androgen levels, endometrial irregularities, and cysts. Although the main cause of PCOS remains unknown, it has been linked to genetic, endocrine, and metabolic factors, and there are several treatment options, including lifestyle modifications, medications, and surgery. Natural products such as medicinal plants and fruits are being explored as potential treatments for PCOS because of their bioactive compounds with pharmacological effects related to antioxidant, antimicrobial, anticancer, and antidiabetic properties. Some of these compounds improve insulin sensitivity, reduce inflammation, and enhance glucose metabolism, thereby benefiting patients with PCOS. This mini-review examined the effects of natural products on PCOS, including their effects on ovarian histological changes, blood glucose, sex hormones, and lipid profiles, based on animal and human studies. This study suggests that the use of natural products as complementary medicines can be a promising resource for the development of effective therapeutics for PCOS; however, further research is needed to fully understand their benefits.
Collapse
Affiliation(s)
- Syawany Wahid
- School of Graduate Studies, Management and Science University, Shah Alam 40100, Malaysia; (S.W.)
| | | | - Nur Ezza Fazleen
- International Medical School, Management and Science University, Shah Alam 40100, Malaysia
| | - Rosli Muhammad Naim
- School of Graduate Studies, Management and Science University, Shah Alam 40100, Malaysia; (S.W.)
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
13
|
Wang K, Li Y, Chen Y. Androgen excess: a hallmark of polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1273542. [PMID: 38152131 PMCID: PMC10751361 DOI: 10.3389/fendo.2023.1273542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a metabolic, reproductive, and psychological disorder affecting 6-20% of reproductive women worldwide. However, there is still no cure for PCOS, and current treatments primarily alleviate its symptoms due to a poor understanding of its etiology. Compelling evidence suggests that hyperandrogenism is not just a primary feature of PCOS. Instead, it may be a causative factor for this condition. Thus, figuring out the mechanisms of androgen synthesis, conversion, and metabolism is relatively important. Traditionally, studies of androgen excess have largely focused on classical androgen, but in recent years, adrenal-derived 11-oxygenated androgen has also garnered interest. Herein, this Review aims to investigate the origins of androgen excess, androgen synthesis, how androgen receptor (AR) signaling mediates adverse PCOS traits, and the role of 11-oxygenated androgen in the pathophysiology of PCOS. In addition, it provides therapeutic strategies targeting hyperandrogenism in PCOS.
Collapse
Affiliation(s)
- Kexin Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanhua Li
- Department of General Practice, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Chen
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
14
|
Yilmaz F, Ilgen O, Mankan A, Yilmaz B, Kurt S. The effects of berberine on ischemia-reperfusion injuries in an experimental model of ovarian torsion. Clin Exp Reprod Med 2023; 50:292-298. [PMID: 37995758 PMCID: PMC10711249 DOI: 10.5653/cerm.2023.06366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 11/25/2023] Open
Abstract
OBJECTIVE Ovarian torsion is a gynecological disorder that causes ischemia-reperfusion injuries in the ovary. Our study investigated berberine's short- and long-term effects on ovarian ischemia-reperfusion injuries. METHODS This study included 28 Wistar albino female rats weighing 180 to 220 g, which were divided into four groups: sham (S), torsion/detorsion (T/D), torsion/ detorsion+single dose berberine (T/D+Bb), and torsion/detorsion+15 days berberine (T/D+15Bb). The torsion and detorsion model was applied in all non-sham groups. In the T/D+Bb group, a single dose of berberine was administered, while in the T/D+15Bb group, berberine was administered over a period of 15 days. After the rats were euthanized, their ovaries were excised. The left ovaries were used for histopathologic evaluation, which included ovarian injury scoring and follicle count, while the right ovaries were used for biochemical analyses (tissue transforming growth factor-β [TGF-β] and alpha-smooth muscle actin [α-SMA] levels). RESULTS The histopathologic evaluation scores for the ovaries were significantly lower in the T/D+B group (p<0.05) and the T/D+15B group (p<0.005) than in the T/D group. The follicle counts in the T/D group were lower than those in both the sham and treated groups (p<0.005). The TGF-β levels were significantly lower in the T/D+15B group (p<0.005), whereas the α-SMA levels did not show a significant difference. CONCLUSION Both short- and long-term berberine use could potentially have therapeutic effects on ovarian torsion. Long-term berberine use exhibited anti-inflammatory effects by reducing TGF-β levels, thereby preventing ischemia-reperfusion injuries. Therefore, we suggest that long-term berberine use could be beneficial for ovarian torsion.
Collapse
Affiliation(s)
- Filiz Yilmaz
- Department of Histology and Embryology, Hitit University, Erol Olcok Research and Training Hospital, IVF Center, Corum, Turkey
| | - Orkun Ilgen
- Department of Obstetrics and Gynecology, Erzurum Research and Training Hospital, Erzurum, Turkey
| | - Alper Mankan
- Department of Obstetrics and Gynecology, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Bayram Yilmaz
- Pathology Department, Training and Research Hospital, Hitit University, Corum, Turkey
| | - Sefa Kurt
- Department of Obstetrics and Gynecology, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
15
|
Jung W, Choi H, Kim J, Kim J, Kim W, Nurkolis F, Kim B. Effects of natural products on polycystic ovary syndrome: From traditional medicine to modern drug discovery. Heliyon 2023; 9:e20889. [PMID: 37867816 PMCID: PMC10589870 DOI: 10.1016/j.heliyon.2023.e20889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/24/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023] Open
Abstract
Polycystic Ovary Syndrome (PCOS) is a common endocrine disorder with a worldwide prevalence of 6-10 % of women of reproductive age. PCOS is a risk factor for cardiometabolic disorders such as type 2 diabetes, myocardial infarction, and stroke in addition to exhibiting signs of hyperandrogenism and anovulation. However, there is no known cure for PCOS, and medications have only ever been used symptomatically, with a variety of adverse effects. Drugs made from natural plant products may help treat PCOS because several plant extracts have been widely recognized to lessen the symptoms of PCOS. In light of this, 72 current studies on natural products with the potential to control PCOS were examined. By controlling the PI3K/AKT signaling pathway and decreasing NF-κB and cytokines such as tumor necrosis factor (TNF), interleukin-1 (IL-1), and interleukin-6 (IL-6), certain plant-derived chemicals might reduce inflammation. Other substances altered the HPO axis, which normalized hormones. Additionally, other plant components increased glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) levels to reduce radiation-induced oxidative stress. The other substances prevented autophagy by impairing beclin 1, autophagy-related 5 (ATG5), and microtubule-associated protein 1A/1B-light chain 3 - II (LC3- II). The main focus of this comprehensive review is the possibility of plant extracts as natural bio-resources of PCOS treatment by regulating inflammation, hormones, reactive oxygen species (ROS), or autophagy.
Collapse
Affiliation(s)
- Woobin Jung
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Hyojoo Choi
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Jimin Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Jeongwoo Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Woojin Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Fahrul Nurkolis
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Indonesia
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
| |
Collapse
|
16
|
Chavez GN, Jaworsky K, Basu A. The Effects of Plant-Derived Phytochemical Compounds and Phytochemical-Rich Diets on Females with Polycystic Ovarian Syndrome: A Scoping Review of Clinical Trials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6534. [PMID: 37569074 PMCID: PMC10418663 DOI: 10.3390/ijerph20156534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Polycystic ovarian syndrome (PCOS) is an endocrine condition that impacts nutritional status, metabolic, and hormonal function in females of reproductive age. This condition is associated with increased androgen production (hyperandrogenism) and decreased insulin sensitivity, which often leads to insulin resistance and hyperinsulinemia. This increase in androgen production and insulin resistance is strongly associated with a high incidence of obesity, type-2 diabetes mellitus (T2DM), cardiovascular diseases (CVD), and certain types of gonad-related cancers among females who suffer from this condition. As research continues to grow, it has been demonstrated that PCOS is a complex condition, and some of its characteristics vary among the females that have this disorder. However, it has been suggested that oxidative stress and low-grade chronic inflammation could play an important role in the development of PCOS. Current evidence suggest that phytochemicals could potentially help with weight-loss by reducing oxidative stress and low-grade inflammation, as well as aid in metabolic and hormonal regulation due to their antioxidant properties. Some of the bioactive compounds found in plants that have shown positive effects in the attenuation of PCOS include flavonoids, polyphenols, phytoestrogen, and polyunsaturated fatty acids (PUFAs). Thus, a review of the current literature published on PCOS and phytochemicals was conducted in PubMed, Google Scholar, and the Academy of Nutrition and Dietetics databases for articles published between 2013 and 2023 with a study duration of 1 to 3 months and adequate sample sizes. The main purpose of this review of literature was to investigate the metabolic effects of phytochemical compounds and phytochemical-rich diets on females with PCOS by comparing the results of several randomized clinical trials.
Collapse
Affiliation(s)
- Guadalupe Nayeli Chavez
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV 89154, USA; (G.N.C.); (K.J.)
| | - Kataryna Jaworsky
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV 89154, USA; (G.N.C.); (K.J.)
- Kirk Kerkorian School of Medicine, University of Nevada, Las Vegas, NV 89106, USA
| | - Arpita Basu
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV 89154, USA; (G.N.C.); (K.J.)
| |
Collapse
|
17
|
Yang J, Wang L, Ma J, Diao L, Chen J, Cheng Y, Yang J, Li L. Endometrial proteomic profile of patients with repeated implantation failure. Front Endocrinol (Lausanne) 2023; 14:1144393. [PMID: 37583433 PMCID: PMC10424929 DOI: 10.3389/fendo.2023.1144393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 07/13/2023] [Indexed: 08/17/2023] Open
Abstract
Introduction Successful embryo implantation, is the initiating step of pregnancy, relies on not only the high quality of the embryo but also the synergistic development of a healthy endometrium. Characterization and identification of biomarkers for the receptive endometrium is an effective method for increasing the probability of successful embryo implantation. Methods Endometrial tissues from 22 women with a history of recurrent implantation failure (RIF) and 19 fertile controls were collected using biopsy catheters on 7-9 days after the peak of luteinizing hormone. Differentially expressed proteins (DEPs) were identified in six patients with RIF and six fertile controls using isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomics analysis. Results Two hundred and sixty-three DEPs, including proteins with multiple bioactivities, such as protein translation, mitochondrial function, oxidoreductase activity, fatty acid and amino acid metabolism, were identified from iTRAQ. Four potential biomarkers for receptive endometrium named tubulin polymerization-promoting protein family member 3 TPPP3, S100 Calcium Binding Protein A13 (S100A13), 17b-hydroxysteroid dehydrogenase 2 (HSD17B2), and alpha-2-glycoprotein 1, zinc binding (AZGP1) were further verified using ProteinSimple Wes and immunohistochemical staining in all included samples (n=22 for RIF and n=19 for controls). Of the four proteins, the protein levels of TPPP3 and HSD17B2 were significantly downregulated in the endometrium of patients with RIF. Discussion Poor endometrial receptivity is considered the main reason for the decrease in pregnancy success rates in patients suffering from RIF. iTRAQ techniques based on isotope markers can identify and quantify low abundance proteomics, and may be suitable for identifying differentially expressed proteins in RIF. This study provides novel evidence that TPPP3 and HSD17B2 may be effective targets for the diagnosis and treatment of non-receptive endometrium and RIF.
Collapse
Affiliation(s)
- Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Linlin Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Jingwen Ma
- Department of Reproductive Medicine, Chengdu XiNan Gynecological Hospital, Chengdu, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Jiao Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Longfei Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| |
Collapse
|
18
|
Guo Y, Tong X, Tang P, Zuo W, Tan Y. Nourishing Kidney Promoting Ovulation Decoction (NKPOD) Attenuates Polycystic Ovary Syndrome by Downregulating miRNA-224. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:9402155. [PMID: 37123085 PMCID: PMC10139811 DOI: 10.1155/2023/9402155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 05/02/2023]
Abstract
Background Currently, exploring effective agents is urgently required for polycystic ovary syndrome (PCOS) treatment. Although nourishing kidney promoting ovulation decoction (NKPOD) as a traditional Chinese medicine decoction is widely employed to increase pregnancy rates, whether NKPOD attenuates ovulation disorders in PCOS patients remains unknown. Here, we aim to explore the clinical significance and the underlying mechanisms of NKPOD in ovulation disorders. Methods PCOS patients were recruited to confirm the clinical significance of NKPOD in attenuating ovulation disorder. Subsequently, regulation targets of NKPOD were identified through network pharmacology analysis. Additionally, a series of experiments were performed to observe the impacts of NKPOD on miRNA-224 transcription through transcription factor AR. Results In this study, NKPOD administration improved hormone dysregulation and reproductive outcomes in PCOS patients. Interestingly, 100 potential targets related to NKPOD and PCOS were screened, and transcription regulation was observed to be the most enriched function. Mechanistically, NKPOD inhibited miRNA-224 transcription through reducing AR expression, in which AR as a transcription factor directly regulated miRNA-224 transcription. Conclusions Collectively, these findings highlight the therapeutic effect of NKPOD on PCOS, which could provide promising therapeutic agents for PCOS.
Collapse
Affiliation(s)
- Yinhua Guo
- Department of Reproductive Medicine, Jiangsu Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing 210000, Jiangsu, China
| | - Xingli Tong
- Department of Reproductive Medicine, Jiangsu Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing 210000, Jiangsu, China
| | - Peipei Tang
- Department of Reproductive Medicine, Jiangsu Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing 210000, Jiangsu, China
| | - Wenting Zuo
- Department of Reproductive Medicine, Jiangsu Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing 210000, Jiangsu, China
| | - Yong Tan
- Department of Reproductive Medicine, Jiangsu Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing 210000, Jiangsu, China
| |
Collapse
|
19
|
Xia Q, Wang W, Liu Z, Xiao J, Qiao C, Zhao Y, Li B, Liu Y, Peng Y, Yang X, Shi J, Gao X, Wang D. New insights into mechanisms of berberine in alleviating reproductive disorders of polycystic ovary syndrome: Anti-inflammatory properties. Eur J Pharmacol 2023; 939:175433. [PMID: 36535493 DOI: 10.1016/j.ejphar.2022.175433] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a complex reproductive disorder that seriously harms female reproductive health and decreases quality of life. Although spontaneous or assisted ovulation occurs, women with PCOS suffer from poor-quality oocytes and embryos and lower fertilization and final pregnancy rates. Therefore, it is urgent to identify new pathological mechanisms and discover the underlying therapeutic targets for reproductive disorders associated with PCOS. Berberine, one of the famous traditional Chinese medicines, has been shown to improve ovulation and live birth rates in women with PCOS. The effects of berberine on insulin resistance and abnormal glucose and lipid metabolism for restoring the reproductive health of women with PCOS are well recognized and have been widely studied, but much less attention has been given to its anti-inflammatory properties. Chronic low-grade inflammation is the unifying feature of PCOS and may contribute to reproductive disorders in PCOS. Berberine can modulate the inflammatory state of the ovaries and uterus in PCOS. The anti-inflammatory properties of berberine may provide new insight into the mechanisms by which berberine alleviates reproductive disorders associated with PCOS. Here, we summarized the most recent insights into the anti-inflammatory properties of berberine in PCOS reproductive disorders to inspire researchers to pursue new study directions involving berberine.
Collapse
Affiliation(s)
- Qing Xia
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Wenjing Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Zijie Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Jiaying Xiao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Cong Qiao
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Yu Zhao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Bowen Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Yuanli Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China; Basic Medical Institute, Heilongjiang Medical Science Academy, Harbin, China; Translational Medicine Center of Northern China, Harbin, China; Key Laboratory of Heilongjiang Province for Genetically Modified Animals, Harbin Medical University, Harbin, China
| | - Yahui Peng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China; Basic Medical Institute, Heilongjiang Medical Science Academy, Harbin, China; Translational Medicine Center of Northern China, Harbin, China; Key Laboratory of Heilongjiang Province for Genetically Modified Animals, Harbin Medical University, Harbin, China
| | - Xinyu Yang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Jiabin Shi
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China; Basic Medical Institute, Heilongjiang Medical Science Academy, Harbin, China; Translational Medicine Center of Northern China, Harbin, China; Key Laboratory of Heilongjiang Province for Genetically Modified Animals, Harbin Medical University, Harbin, China.
| | - Dayong Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China; Basic Medical Institute, Heilongjiang Medical Science Academy, Harbin, China; Translational Medicine Center of Northern China, Harbin, China; Key Laboratory of Heilongjiang Province for Genetically Modified Animals, Harbin Medical University, Harbin, China.
| |
Collapse
|
20
|
Luo ED, Jiang HM, Chen W, Wang Y, Tang M, Guo WM, Diao HY, Cai NY, Yang X, Bian Y, Xing SS. Advancements in lead therapeutic phytochemicals polycystic ovary syndrome: A review. Front Pharmacol 2023; 13:1065243. [PMID: 36699064 PMCID: PMC9868606 DOI: 10.3389/fphar.2022.1065243] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine diseases in women of reproductive age and features complex pathological symptoms and mechanisms. Existing medical treatments have, to some extent, alleviated the deterioration of PCOS. However, these strategies only temporarily control symptoms, with a few side effects and no preventive effect. Phytochemicals extracted from medicinal herbs and plants are vital for discovering novel drugs. In recent years, many kinds of research have proven that phytochemicals isolated from traditional Chinese medicine (TCM) and medicinal plants show significant potential in preventing, alleviating, and treating PCOS. Nevertheless, compared to the abundance of experimental literature and minimal specific-topic reviews related to PCOS, there is a lack of systematic reviews to summarize these advancements in this promising field. Under this background, we systematically document the progress of bioactive phytochemicals from TCM and medicinal plants in treating PCOS, including flavonoids, polyphenols, and alkaloids. According to the literature, these valuable phytochemicals demonstrated therapeutic effects on PCOS supported by in vivo and in vitro experiments, mainly depending on anti-inflammatory, antioxidation, improvement of hormone disorder and insulin resistance (IR), and alleviation of hyperinsulinemia. Based on the current progress, future research directions should emphasize 1) exploring bioactive phytochemicals that potentially mediate bone metabolism for the treatment of PCOS; 2) improving unsatisfactory bioavailability by using advanced drug delivery systems such as nanoparticles and antibody-conjugated drugs, as well as a chemical modification; 3) conducting in-depth research on the pathogenesis of PCOS to potentially impact the gut microbiota and its metabolites in the evolution of PCOS; 4) revealing the pharmacological effects of these bioactive phytochemicals on PCOS at the genetic level; and 5) exploring the hypothetical and unprecedented functions in regulating PCOS by serving as proteolysis-targeting chimeras and molecular glues compared with traditional small molecule drugs. In brief, this review aims to provide detailed mechanisms of these bioactive phytochemicals and hopefully practical and reliable insight into clinical applications concerning PCOS.
Collapse
Affiliation(s)
- Er-Dan Luo
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hai-Mei Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Chen
- Traditional Chinese Medicine Department, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Chengdu, China
| | - Mi Tang
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wen-Mei Guo
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao-Yang Diao
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ning-Yuan Cai
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Yang
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Bian
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Chengdu, China
| | - Sha-Sha Xing
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
21
|
Ionescu OM, Frincu F, Mehedintu A, Plotogea M, Cirstoiu M, Petca A, Varlas V, Mehedintu C. Berberine-A Promising Therapeutic Approach to Polycystic Ovary Syndrome in Infertile/Pregnant Women. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010125. [PMID: 36676074 PMCID: PMC9864590 DOI: 10.3390/life13010125] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a disorder with an unknown etiology that features a wide range of endocrine and metabolic abnormalities that hamper fertility. PCOS women experience difficulties getting pregnant, and if pregnant, they are prone to miscarriage, gestational diabetes, pregnancy-induced hypertension and preeclampsia, high fetal morbidity, and perinatal mortality. Insulin, the pancreatic hormone best known for its important role in glucose metabolism, has an underrated position in reproduction. PCOS women who have associated insulin resistance (with consequent hyperinsulinemia) have fertility issues and adverse pregnancy outcomes. Lowering the endogen insulin levels and insulin resistance appears to be a target to improve fertility and pregnancy outcomes in those women. Berberine is an alkaloid with a high concentration in various medicinal herbs that exhibits a hypoglycaemic effect alongside a broad range of other therapeutic activities. Its medical benefits may stand up for treating different conditions, including diabetes mellitus. So far, a small number of pharmacological/clinical trials available in the English language draw attention towards the good results of berberine's use in PCOS women with insulin resistance for improving fertility and pregnancy outcomes. Our study aims to uncover how berberine can counteract the negative effect of insulin resistance in PCOS women and improve fertility and pregnancy outcomes.
Collapse
Affiliation(s)
- Oana-Maria Ionescu
- Faculty of Medicine “Carol Davila”, University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
| | - Francesca Frincu
- Faculty of Medicine “Carol Davila”, University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
- Correspondence:
| | - Andra Mehedintu
- Faculty of Medicine “Carol Davila”, University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
| | - Mihaela Plotogea
- Department of Obstetrics and Gynecology, “Nicolae Malaxa” Clinical Hospital, 022441 Bucharest, Romania
| | - Monica Cirstoiu
- Faculty of Medicine “Carol Davila”, University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
| | - Aida Petca
- Faculty of Medicine “Carol Davila”, University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
| | - Valentin Varlas
- Faculty of Medicine “Carol Davila”, University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
| | - Claudia Mehedintu
- Faculty of Medicine “Carol Davila”, University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
| |
Collapse
|
22
|
Su YN, Wang MJ, Yang JP, Wu XL, Xia M, Bao MH, Ding YB, Feng Q, Fu LJ. Effects of Yulin Tong Bu formula on modulating gut microbiota and fecal metabolite interactions in mice with polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1122709. [PMID: 36814581 PMCID: PMC9939769 DOI: 10.3389/fendo.2023.1122709] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Polycystic ovarian syndrome (PCOS) is a common endocrine disorder characterized by hyperandrogenism, ovarian dysfunction and polycystic ovarian morphology. Gut microbiota dysbiosis and metabolite are associated with PCOS clinical parameters. Yulin Tong Bu formula (YLTB), a traditional Chinese medicine formula, has been recently indicated to be capable of ameliorating polycystic ovary symptoms and correcting abnormal glucose metabolism. However, the therapeutic mechanism of YLTB on PCOS has not been fully elucidated. METHODS A pseudo sterile mouse model was established during this four-day acclimatization phase by giving the animals an antibiotic cocktail to remove the gut microbiota. Here, the therapeutic effects of YLTB on PCOS were investigated using dehydroepiandrosterone plus high-fat diet-induced PCOS mice model. Female prepuberal mice were randomly divided into three groups; namely, the control group, PCOS group and YLTB (38.68 g·kg-1·day-1) group. To test whether this effect is associated with the gut microbiota, we performed 16S rRNA sequencing studies to analyze the fecal microbiota of mice. The relationships among metabolites, gut microbiota, and PCOS phenotypes were further explored by using Spearman correlation analysis. Then, the effect of metabolite ferulic acid was then validated in PCOS mice. RESULTS Our results showed that YLTB treatment ameliorated PCOS features (ovarian dysfunction, delayed glucose clearance, decreased insulin sensitivity, deregulation of glucolipid metabolism and hormones, etc.) and significantly attenuated PCOS gut microbiota dysbiosis. Spearman correlation analysis showed that metabolites such as ferulic acid and folic acid are negatively correlated with PCOS clinical parameters. The effect of ferulic acid was similar to that of YLTB. In addition, the bacterial species such as Bacteroides dorei and Bacteroides fragilis were found to be positively related to PCOS clinical parameters, using the association study analysis. CONCLUSION These results suggest that YLTB treatment systematically regulates the interaction between the gut microbiota and the associated metabolites to ameliorate PCOS, providing a solid theoretical basis for further validation of YLTB effect on human PCOS trials.
Collapse
Affiliation(s)
- Ya-Nan Su
- Department of Herbal Medicine, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, School of traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Mei-Jiao Wang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Jun-Pu Yang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Xiang-Lu Wu
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Min Xia
- Department of Gynecology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Mei-Hua Bao
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, China
| | - Yu-Bin Ding
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Qian Feng
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Gynecology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
- Department of Obstetrics and Gynecology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
- *Correspondence: Li-Juan Fu, ; Qian Feng,
| | - Li-Juan Fu
- Department of Herbal Medicine, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, School of traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, China
- *Correspondence: Li-Juan Fu, ; Qian Feng,
| |
Collapse
|
23
|
Liu H, Li J, Chang X, He F, Ma J. Modeling Obesity-Associated Ovarian Dysfunction in Drosophila. Nutrients 2022; 14:nu14245365. [PMID: 36558524 PMCID: PMC9783805 DOI: 10.3390/nu14245365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
We perform quantitative studies to investigate the effect of high-calorie diet on Drosophila oogenesis. We use the central composite design (CCD) method to obtain quadratic regression models of body fat and fertility as a function of the concentrations of protein and sucrose, two major macronutrients in Drosophila diet, and treatment duration. Our results reveal complex interactions between sucrose and protein in impacting body fat and fertility when they are considered as an integrated physiological response. We verify the utility of our quantitative modeling approach by experimentally confirming the physiological responses-including increased body fat, reduced fertility, and ovarian insulin insensitivity-expected of a treatment condition identified by our modeling method. Under this treatment condition, we uncover a Drosophila oogenesis phenotype that exhibits an accumulation of immature oocytes and a halt in the production of mature oocytes, a phenotype that bears resemblance to key aspects of the human condition of polycystic ovary syndrome (PCOS). Our analysis of the dynamic progression of different aspects of diet-induced pathophysiology also suggests an order of the onset timing for obesity, ovarian dysfunction, and insulin resistance. Thus, our study documents the utility of quantitative modeling approaches toward understanding the biology of Drosophila female reproduction, in relation to diet-induced obesity and type II diabetes, serving as a potential disease model for human ovarian dysfunction.
Collapse
Affiliation(s)
- Huanju Liu
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou 310058, China
| | - Jiajun Li
- ZJU-UOE Institute, Zhejiang University School of Medicine, Haining 314400, China
| | - Xinyue Chang
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou 310058, China
| | - Feng He
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou 310058, China
- Correspondence: (F.H.); (J.M.)
| | - Jun Ma
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou 310058, China
- Women’s Reproductive Health Research Laboratory of Zhejiang Province, Hangzhou 310006, China
- Zhejiang University-University of Toronto Joint Institute of Genetics and Genome Medicine, Hangzhou 310058, China
- Correspondence: (F.H.); (J.M.)
| |
Collapse
|
24
|
Expatiating the Pharmacological and Nanotechnological Aspects of the Alkaloidal Drug Berberine: Current and Future Trends. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123705. [PMID: 35744831 PMCID: PMC9229453 DOI: 10.3390/molecules27123705] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022]
Abstract
Traditionally, herbal compounds have been the focus of scientific interest for the last several centuries, and continuous research into their medicinal potential is underway. Berberine (BBR) is an isoquinoline alkaloid extracted from plants that possess a broad array of medicinal properties, including anti-diarrheal, anti-fibrotic, antidiabetic, anti-inflammatory, anti-obesity, antihyperlipidemic, antihypertensive, antiarrhythmic, antidepressant, and anxiolytic effects, and is frequently utilized as a traditional Chinese medicine. BBR promotes metabolisms of glucose and lipids by activating adenosine monophosphate-activated protein kinase, stimulating glycolysis and inhibiting functions of mitochondria; all of these ameliorate type 2 diabetes mellitus. BBR has also been shown to have benefits in congestive heart failure, hypercholesterolemia, atherosclerosis, non-alcoholic fatty liver disease, Alzheimer’s disease, and polycystic ovary syndrome. BBR has been investigated as an interesting pharmacophore with the potential to contribute significantly to the research and development of novel therapeutic medicines for a variety of disorders. Despite its enormous therapeutic promise, the clinical application of this alkaloid was severely limited because of its unpleasant pharmacokinetic characteristics. Poor bioavailability, limited absorption, and poor water solubility are some of the obstacles that restricted its use. Nanotechnology has been suggested as a possible solution to these problems. The present review aims at recent updates on important therapeutic activities of BBR and different types of nanocarriers used for the delivery of BBR in different diseases.
Collapse
|
25
|
Mishra N, Verma R, Jadaun P. Study on the Effect of Berberine, Myoinositol, and Metformin in Women with Polycystic Ovary Syndrome: A Prospective Randomised Study. Cureus 2022; 14:e21781. [PMID: 35251851 PMCID: PMC8890747 DOI: 10.7759/cureus.21781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 11/05/2022] Open
|
26
|
Autophagy as a Therapeutic Target of Natural Products Enhancing Embryo Implantation. Pharmaceuticals (Basel) 2021; 15:ph15010053. [PMID: 35056110 PMCID: PMC8779555 DOI: 10.3390/ph15010053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022] Open
Abstract
Infertility is an emerging health issue worldwide, and female infertility is intimately associated with embryo implantation failure. Embryo implantation is an essential process during the initiation of prenatal development. Recent studies have strongly suggested that autophagy in the endometrium is the most important factor for successful embryo implantation. In addition, several studies have reported the effects of various natural products on infertility improvement via the regulation of embryo implantation, embryo quality, and endometrial receptivity. However, it is unclear whether natural products can improve embryo implantation ability by regulating endometrial autophagy. Therefore, we performed a literature review of studies on endometrial autophagy, embryo implantation, natural products, and female infertility. Based on the information from these studies, this review suggests a new treatment strategy for female infertility by proposing natural products that have been proven to be safe and effective as endometrial autophagy regulators; additionally, we provide a comprehensive understanding of the relationship between the regulation of endometrial autophagy by natural products and female infertility, with an emphasis on embryo implantation.
Collapse
|