1
|
Xing Y, Zhong W, Wu X, Ni Z, Lv W, Fan Y, Chen L, Lin H, Xie Y, Lin J, Niu Y. AFB1 consolidates HBV harm to induce liver injury and carcinogenic risk by inactivating FTCD-AS1-PXR-MASP1 axis. Toxicology 2025; 511:154057. [PMID: 39824452 DOI: 10.1016/j.tox.2025.154057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/20/2025]
Abstract
Aflatoxin B1 (AFB1) has been reported to synergize with hepatitis B virus (HBV) to induce development of hepatocellular carcinoma (HCC). Precise daily exposure to AFB1 and its contribution to liver injury have not been quantified and have even been disregarded due to lack of convenient detection, and the strong species specificity of HBV infection has restricted research on their synergistic harm. Hence, our objective was to investigate the molecular mechanisms by which AFB1 exacerbates HBV-related injury. We constructed tree shrew models with 400 μg HBV plasmid and 4 mg/kg AFB1 co-exposure for 4-6 days. Injury and molecule expression resulting from HBV and AFB1 toxicity were observed in vivo and in vitro. Expression datasets of tree shrew livers, human HCC, and pregnane X receptor (PXR) activation were employed to screen vital pathways and target genes. The oncogenic hepatitis B virus x (HBx) protein, HBV-related histopathological damage, metabolic dysregulation, and several cancer-related signaling pathways were enriched in injured tree shrew livers, and PXR signaling was inhibited after co-exposure to HBV and AFB1. Furthermore, in human HCC and HBV-integrated Hep3B and HepG2.215 cells, FTCD Antisense RNA 1 (FTCD-AS1), PXR and mannose-binding lectin-associated serine protease 1 (MASP1) exhibited strong correlation. Overexpression of FTCD-AS1 and PXR alleviated cell damage in exposure to 5 μM AFB1 for 48 h. In summary, inactivation of the FTCD-AS1-PXR-MASP1 axis was pinpointed as the key event in AFB1-enhanced HBV infection, metabolic dysregulation and carcinogenic injury.
Collapse
Affiliation(s)
- Yaqi Xing
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Wusheng Zhong
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Xuejun Wu
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Zhengzhong Ni
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Wenya Lv
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Ying Fan
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Ling Chen
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Haorui Lin
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Yangmin Xie
- Department of Experimental Animal Center, Medical College of Shantou University, Shantou 515041, China
| | - Jianwei Lin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China.
| | - Yongdong Niu
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
2
|
Marques D, Vaziri N, Greenway SC, Bousman C. DNA methylation and histone modifications associated with antipsychotic treatment: a systematic review. Mol Psychiatry 2025; 30:296-309. [PMID: 39227433 DOI: 10.1038/s41380-024-02735-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Antipsychotic medications are essential when treating schizophrenia spectrum and other psychotic disorders, but the efficacy and tolerability of these medications vary from person to person. This interindividual variation is likely mediated, at least in part, by epigenomic processes that have yet to be fully elucidated. Herein, we systematically identified and evaluated 65 studies that examine the influence of antipsychotic drugs on epigenomic changes, including global methylation (9 studies), genome-wide methylation (22 studies), candidate gene methylation (16 studies), and histone modification (18 studies). Our evaluation revealed that haloperidol was consistently associated with increased global hypermethylation, which corroborates with genome-wide analyses, mostly performed by methylation arrays. In contrast, clozapine seems to promote hypomethylation across the epigenome. Candidate-gene methylation studies reveal varying effects post-antipsychotic therapy. Some genes like Glra1 and Drd2 are frequently found to undergo hypermethylation, whereas other genes such as SLC6A4, DUSP6, and DTNBP1 are more likely to exhibit hypomethylation in promoter regions. In examining histone modifications, the literature suggests that clozapine changes histone methylation patterns in the prefrontal cortex, particularly elevating H3K4me3 at the Gad1 gene and affecting the transcription of genes like mGlu2 by modifying histone acetylation and interacting with HDAC2 enzymes. Risperidone and quetiapine, however, exhibit distinct impacts on histone marks across different brain regions and cell types, with risperidone reducing H3K27ac in the striatum and quetiapine modifying global H3K9me2 levels in the prefrontal cortex, suggesting antipsychotics demonstrate selective influence on histone modifications, which demonstrates a complex and targeted mode of action. While this review summarizes current knowledge, the intricate dynamics between antipsychotics and epigenetics clearly warrant more exhaustive exploration with the potential to redefine our understanding and treatment of psychiatric conditions. By deciphering the epigenetic changes associated with drug treatment and therapeutic outcomes, we can move closer to personalized medicine in psychiatry.
Collapse
Affiliation(s)
- Diogo Marques
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nazanin Vaziri
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Steven C Greenway
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Chad Bousman
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
3
|
Liao J, Yang Z, Yang J, Lin H, Chen B, Fu H, Lin X, Lu B, Gao F. Investigating the cardiotoxicity of N-n-butyl haloperidol iodide: Inhibition mechanisms on hERG channels. Toxicology 2024; 508:153916. [PMID: 39128488 DOI: 10.1016/j.tox.2024.153916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The human Ether-à-go-go-Related Gene (hERG) encodes a protein responsible for forming the alpha subunit of the IKr channel, which plays a crucial role in cardiac repolarization. The proper functioning of hERG channels is paramount in maintaining a normal cardiac rhythm. Inhibition of these channels can result in the prolongation of the QT interval and potentially life-threatening arrhythmias. Cardiotoxicity is a primary concern in the field of drug development. N-n-Butyl haloperidol iodide (F2), a derivative of haloperidol, has been investigated for its therapeutic potential. However, the impact of this compound on cardiac toxicity, specifically on hERG channels, remains uncertain. This study employs computational and experimental methodologies to examine the inhibitory mechanisms of F2 on hERG channels. Molecular docking and molecular dynamics simulations commonly used techniques in computational biology to predict protein-ligand complexes' binding interactions and stability. In the context of the F2-hERG complex, these methods can provide valuable insights into the potential binding modes and strength of interaction between F2 and the hERG protein. On the other hand, electrophysiological assays are experimental techniques used to characterize the extent and nature of hERG channel inhibition caused by various compounds. By measuring the electrical activity of the hERG channel in response to different stimuli, these assays can provide important information about the functional effects of ligand binding to the channel. The study's key findings indicate that F2 interacts with the hERG channel by forming hydrogen bonding, π-cation interactions, and hydrophobic forces. This interaction leads to the inhibition of hERG currents in a concentration-dependent manner, with an IC50 of 3.75 μM. The results presented in this study demonstrate the potential cardiotoxicity of F2 and underscore the significance of considering hERG channel interactions during its clinical development. This study aims to provide comprehensive insights into the interaction between F2 and hERG, which will may guid us in the safe use of F2 and in the development of new derivatives with high efficiency while low toxicity.
Collapse
Affiliation(s)
- Jilin Liao
- Department of Pharmacy, the Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Zhenyu Yang
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Jinhua Yang
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Hailing Lin
- Department of Pharmacy, the Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Bingxuan Chen
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Hongbo Fu
- Department of Pharmacy, the Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xiaojie Lin
- Department of Pharmacy, the Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Binger Lu
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Pharmacy, the First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China.
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 515041, China.
| |
Collapse
|
4
|
Zhang Y, Sun B, Wang L, Shen W, Shen S, Cheng X, Liu X, Xia H. Curcumin-Loaded Liposomes in Gel Protect the Skin of Mice against Oxidative Stress from Photodamage Induced by UV Irradiation. Gels 2024; 10:596. [PMID: 39330198 PMCID: PMC11431562 DOI: 10.3390/gels10090596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Prolonged exposure to ultraviolet (UV) irradiation can cause oxidative stress in the skin, accompanied by rapid immunosuppressive effects, resulting in a peroxidation reaction throughout the body. Curcumin (Cur), as the bioactive compound of turmeric, is a natural polyphenol with potent antioxidant properties but is often overlooked due to its poor solubility and low bioavailability. In this study, curcumin-loaded liposomes in a sodium alginate gel complex preparation were designed to improve the bioavailability of curcumin and to study its preventive effect on photodamage. Cur-loaded liposomes (Cur-L), Cur-loaded gel (Cur-G) based on an alginate matrix, and curcumin-loaded liposomes in gel (Cur-LG) were prepared, and their antioxidant effects and drug diffusion abilities were evaluated. The antioxidant capacity of Cur, Cur-L, Cur-G, and Cur-LG was also studied in a mouse model of photodamage. Cur had the highest antioxidant activity at about 4 mg/mL. Cur-LG at this concentration showed antioxidant effects during 1,1-diphenyl-2-trinitrophenylhydrazine (DPPH) and H2O2 experiments. During the UV light damage test, Cur-LG demonstrated the ability to effectively neutralize free radicals generated as a result of lipid peroxidation in the skin, serum, and liver, thereby enhancing the overall activity of superoxide dismutase (SOD). In conclusion, using Cur-LG may protect against epidermal and cellular abnormalities induced by UV irradiation.
Collapse
Affiliation(s)
- Yongli Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Bin Sun
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Lu Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wang Shen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Si Shen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xiaoman Cheng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xuan Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Hongmei Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
5
|
Lin X, Lin T, Liu M, Chen D, Chen J. Liensinine diperchlorate and artemisitene synergistically attenuate breast cancer progression through suppressing PI3K-AKT signaling and their efficiency in breast cancer patient-derived organoids. Biomed Pharmacother 2024; 176:116871. [PMID: 38861856 DOI: 10.1016/j.biopha.2024.116871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
Breast cancer (BC) is the most prevalent cancer among women around the world. Finding new and efficient drugs has become a crucial aspect of BC treatment. Liensinine diperchlorate (LIN) and artemisitene (ATT) are natural compounds with potential anti-cancer activities extracted from lotus (Nelumbo nucifera Gaertn) seeds and Artemisia annua, respectively. However, the synergistic anti-breast cancer effectiveness and mechanism of LIN and ATT remain unknown. This study intended to reveal the biological functions and underlying mechanism of combined LIN and ATT treatment in BC. Herein, we first reported that LIN and ATT synergistically mitigated the proliferation, migration as well as invasion of BC cells. Besides, LIN boosted the stimulatory effect of ATT on reactive oxygen species (ROS)-mediated apoptosis in BC cells. Interestingly, LIN and ATT synergistically attenuated the growth of BC patient-derived organoids. Moreover, LIN augmented the inhibitory efficacy of ATT on BC growth in vivo without obvious side effects. Furthermore, the inactivation of PI3K-AKT pathway and its regulated proteins contributed to the therapeutic role of LIN and ATT treatment in BC. Intriguingly, a prediction model constructed as per RNA sequencing data indicated that the combination of LIN and ATT treatment might ameliorate the prognosis of BC patients. In conclusion, our present investigation demonstrated that LIN and ATT synergistically inhibited BC cell proliferation, migration as well as invasion and enhanced ROS-mediated apoptosis via suppressing the PI3K-AKT signaling, and suggested that combining LIN and ATT treatment might be a promising choice for BC therapy.
Collapse
Affiliation(s)
- Xian Lin
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Tengyu Lin
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Meng Liu
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Dong Chen
- Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China.
| | - Jian Chen
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China.
| |
Collapse
|
6
|
Li Y, Deng X, Tan X, Li Q, Yu Z, Wu W, Ma X, Zeng J, Wang X. Protective role of curcumin in disease progression from non-alcoholic fatty liver disease to hepatocellular carcinoma: a meta-analysis. Front Pharmacol 2024; 15:1343193. [PMID: 38313314 PMCID: PMC10834658 DOI: 10.3389/fphar.2024.1343193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024] Open
Abstract
Background: Pathological progression from non-alcoholic fatty liver disease (NAFLD) to liver fibrosis (LF) to hepatocellular carcinoma (HCC) is a common dynamic state in many patients. Curcumin, a dietary supplement derived from the turmeric family, is expected to specifically inhibit the development of this progression. However, there is a lack of convincing evidence. Methods: The studies published until June 2023 were searched in PubMed, Web of Science, Embase, and the Cochrane Library databases. The SYstematic Review Center for Laboratory animal Experimentation (SYRCLE) approach was used to evaluate the certainty of evidence. StataSE (version 15.1) and Origin 2021 software programs were used to analyze the critical indicators. Results: Fifty-two studies involving 792 animals were included, and three disease models were reported. Curcumin demonstrates a significant improvement in key indicators across the stages of NAFLD, liver fibrosis, and HCC. We conducted a detailed analysis of common inflammatory markers IL-1β, IL-6, and TNF-α, which traverse the entire disease process. The research results reveal that curcumin effectively hinders disease progression at each stage by suppressing inflammation. Curcumin exerted hepatoprotective effects in the dose range from 100 to 400 mg/kg and treatment duration from 4 to 10 weeks. The mechanistic analysis reveals that curcumin primarily exerts its hepatoprotective effects by modulating multiple signaling pathways, including TLR4/NF-κB, Keap1/Nrf2, Bax/Bcl-2/Caspase 3, and TGF-β/Smad3. Conclusion: In summary, curcumin has shown promising therapeutic effects during the overall progression of NAFLD-LF-HCC. It inhibited the pathological progression by synergistic mechanisms related to multiple pathways, including anti-inflammatory, antioxidant, and apoptosis regulation.
Collapse
Affiliation(s)
- Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qianrong Li
- Department of Obstetrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhi Yu
- Department of Obstetrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenbin Wu
- Health Care Office of the Service Bureau of Agency for Offices Administration of the Central Military Commission, Beijing, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyin Wang
- Department of Obstetrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Xu Z, Zheng L, Li S. Paclitaxel-induced inhibition of NSCLC invasion and migration via RBFOX3-mediated circIGF1R biogenesis. Sci Rep 2024; 14:774. [PMID: 38191906 PMCID: PMC10774373 DOI: 10.1038/s41598-024-51500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
We previously reported that circIGF1R is significantly downregulated in non-small cell lung cancer (NSCLC) cells and tissues. It inhibits cancer cell invasion and migration, although the underlying molecular mechanisms remain elusive. The invasion and migration of NSCLC cells was analyzed by routine in vivo and in vitro functional assays. Fluorescent in situ hybridization, luciferase reporter assay, RNA pull-down assay and RNA immunoprecipitation (RIP) assay were performed to explore the molecular mechanisms. Mechanism of action of paclitaxel-induced RBFOX3-mediated inhibition of NSCLC invasion and migration was investigated through in vitro and in vivo experiments.Our study reveals that circIGF1R acts as a Competing Endogenous RNA (ceRNA) for miR-1270, thereby regulating Van-Gogh-like 2 (VANGL2) expression and subsequently inhibiting NSCLC cell invasion and migration via the Wnt pathway. We also found that RNA binding protein fox-1 homolog 3 (RBFOX3) enhances circIGF1R biogenesis by binding to IGF1R pre-mRNA, which in turn suppresses migration and invasion in NSCLC cells. Additionally, the chemotherapeutic drug paclitaxel was shown to impede NSCLC invasion and migration by inducing RBFOX3-mediated circIGF1R biogenesis.RBFOX3 inhibits the invasion and migration of NSCLC cells through the circIGF1R/ miR-1270/VANGL2 axis, circIGF1R has the potential to serve as a biomarker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Zhanyu Xu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Liping Zheng
- Department of Anesthesia Catheter Room, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Shikang Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
8
|
Fatima F, Chourasiya NK, Mishra M, Kori S, Pathak S, Das R, Kashaw V, Iyer AK, Kashaw SK. Curcumin and its Derivatives Targeting Multiple Signaling Pathways to Elicit Anticancer Activity: A Comprehensive Perspective. Curr Med Chem 2024; 31:3668-3714. [PMID: 37221681 DOI: 10.2174/0929867330666230522144312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/23/2023] [Accepted: 04/07/2023] [Indexed: 05/25/2023]
Abstract
The uncontrolled growth and spread of aberrant cells characterize the group of disorders known as cancer. According to GLOBOCAN 2022 analysis of cancer patients in either developed countries or developing countries the main concern cancers are breast cancer, lung cancer, and liver cancer which may rise eventually. Natural substances with dietary origins have gained interest for their low toxicity, anti-inflammatory, and antioxidant effects. The evaluation of dietary natural products as chemopreventive and therapeutic agents, the identification, characterization, and synthesis of their active components, as well as the enhancement of their delivery and bioavailability, have all received significant attention. Thus, the treatment strategy for concerning cancers must be significantly evaluated and may include the use of phytochemicals in daily lifestyle. In the present perspective, we discussed one of the potent phytochemicals, that has been used over the past few decades known as curcumin as a panacea drug of the "Cure-all" therapy concept. In our review firstly we included exhausted data from in vivo and in vitro studies on breast cancer, lung cancer, and liver cancer which act through various cancer-targeting pathways at the molecular level. Now, the second is the active constituent of turmeric known as curcumin and its derivatives are enlisted with their targeted protein in the molecular docking studies, which help the researchers design and synthesize new curcumin derivatives with respective implicated molecular and cellular activity. However, curcumin and its substituted derivatives still need to be investigated with unknown targeting mechanism studies in depth.
Collapse
Affiliation(s)
- Firdous Fatima
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Nikhil Kumar Chourasiya
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Mitali Mishra
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivam Kori
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Sandhya Pathak
- Department of Chemistry, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Ratnesh Das
- Department of Chemistry, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Varsha Kashaw
- Sagar Institute of Pharmaceutical Sciences, Sagar (M.P.), India
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
- Molecular Imaging Program, Karmanos Cancer Institute, Detroit, Michigan, USA
| | - Sushil Kumar Kashaw
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| |
Collapse
|
9
|
Zhang J, Liu Y, Wang X, Wang Z, Xing E, Li J, Wang D. Curcumin inhibits proliferation of hepatocellular carcinoma cells by blocking PTPN1 and PTPN11 expression. Oncol Lett 2023; 26:307. [PMID: 37332329 PMCID: PMC10272960 DOI: 10.3892/ol.2023.13893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/04/2023] [Indexed: 06/20/2023] Open
Abstract
The antitumor mechanism of curcumin is unclear, especially in hepatocellular carcinoma (HCC) cells. To clarify the mechanism of action of curcumin in the effective treatment of HCC, the targets of curcumin were screened and validated. Candidate genes of curcumin for HCC were screened using the traditional Chinese medicine systems pharmacology (TCMSP) database and validated using The Cancer Genome Atlas (TCGA) database. The correlation of mRNA expression levels between key candidate genes was identified in the TCGA liver hepatocellular carcinoma (LIHC) dataset. The effects on prognosis were analyzed to identify the target gene of curcumin, which inhibits HCC cell proliferation. Based on the subcutaneous xenograft model of human HCC in nude mice, the expression levels of target proteins were observed using immunohistochemistry. The analysis results of the present study identified the target genes of curcumin, which were obtained by screening the TCSMP database. The protein tyrosine phosphatase non-receptor type 1 (PTPN1) was obtained from TCGA database analysis of the targeted genes. The expression levels of PTPN1 and its homologous sequence genes in TCGA LIHC project was analyzed to identify the potential target gene of curcumin, for use in HCC treatment. Next, xenograft experiments were performed to investigate the therapeutic effects of curcumin in an animal model. Curcumin was demonstrated to inhibit the growth of HCC xenograft tumors in mice. Immunohistochemistry results demonstrated that the protein expression levels of PTPN1 and PTPN11 in the curcumin group were significantly lower compared with those in the control group. In conclusion, these results demonstrated that curcumin inhibits the proliferation of HCC cells by inhibiting the expression of PTPN1 and PTPN11.
Collapse
Affiliation(s)
- Jingru Zhang
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Yang Liu
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xiaojie Wang
- Quality Department, Shandong Runzhong Pharmaceutical Co., Ltd., Yantai, Shandong 264003, P.R. China
| | - Zhiyi Wang
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Enjia Xing
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Jingmin Li
- Department of Human Anatomy, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Dong Wang
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
10
|
Machado IF, Miranda RG, Dorta DJ, Rolo AP, Palmeira CM. Targeting Oxidative Stress with Polyphenols to Fight Liver Diseases. Antioxidants (Basel) 2023; 12:1212. [PMID: 37371941 DOI: 10.3390/antiox12061212] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Reactive oxygen species (ROS) are important second messengers in many metabolic processes and signaling pathways. Disruption of the balance between ROS generation and antioxidant defenses results in the overproduction of ROS and subsequent oxidative damage to biomolecules and cellular components that disturb cellular function. Oxidative stress contributes to the initiation and progression of many liver pathologies such as ischemia-reperfusion injury (LIRI), non-alcoholic fatty liver disease (NAFLD), and hepatocellular carcinoma (HCC). Therefore, controlling ROS production is an attractive therapeutic strategy in relation to their treatment. In recent years, increasing evidence has supported the therapeutic effects of polyphenols on liver injury via the regulation of ROS levels. In the current review, we summarize the effects of polyphenols, such as quercetin, resveratrol, and curcumin, on oxidative damage during conditions that induce liver injury, such as LIRI, NAFLD, and HCC.
Collapse
Affiliation(s)
- Ivo F Machado
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000 Coimbra, Portugal
- IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3000 Coimbra, Portugal
| | - Raul G Miranda
- School of Pharmaceutical Science of Ribeirão Preto, University of São Paulo, São Paulo 14040, Brazil
| | - Daniel J Dorta
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040, Brazil
| | - Anabela P Rolo
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000 Coimbra, Portugal
| | - Carlos M Palmeira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000 Coimbra, Portugal
| |
Collapse
|
11
|
Wang B, Liu Y, Liao Z, Wu H, Zhang B, Zhang L. EZH2 in hepatocellular carcinoma: progression, immunity, and potential targeting therapies. Exp Hematol Oncol 2023; 12:52. [PMID: 37268997 DOI: 10.1186/s40164-023-00405-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/15/2023] [Indexed: 06/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer-related death. The accumulation of genetic and epigenetic changes is closely related to the occurrence and development of HCC. Enhancer of zeste homolog 2 (EZH2, a histone methyltransferase) is suggested to be one of the principal factors that mediates oncogenesis by acting as a driver of epigenetic alternation. Recent studies show that EZH2 is widely involved in proliferation and metastasis of HCC cells. In this review, the functions of EZH2 in HCC progression, the role of EZH2 in tumor immunity and the application of EZH2-related inhibitors in HCC therapy are summarized.
Collapse
Affiliation(s)
- Bohan Wang
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yachong Liu
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhibin Liao
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haofeng Wu
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Lei Zhang
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Hepatobiliary Surgery, Shanxi Tongji Hospital, Tongji Medical College, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University, Huazhong University of Science and Technology, Taiyuan, 030032, China.
- Key Laboratory of Hepatobiliary and Pancreatic Diseases of Shanxi Province (Preparatory), Shanxi Tongji Hospital, Tongji Medical College, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University, Huazhong University of Science and Technology, Taiyuan, 030032, China.
| |
Collapse
|
12
|
Liu Y, Yang Q. The roles of EZH2 in cancer and its inhibitors. Med Oncol 2023; 40:167. [PMID: 37148376 PMCID: PMC10162908 DOI: 10.1007/s12032-023-02025-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/10/2023] [Indexed: 05/08/2023]
Abstract
The enhancer of zeste homolog 2 (EZH2) is encoded by the Enhancer of zeste 2 polycomb repressive complex 2 subunit gene. EZH2 is involved in the cell cycle, DNA damage repair, cell differentiation, autophagy, apoptosis, and immunological modulation. The main function of EZH2 is to catalyze the methylation of H3 histone of H3K27Me3, which inhibits the transcription of target genes, such as tumor suppressor genes. EZH2 also forms complexes with transcriptions factors or directly binds to the promoters of target genes, leading to regulate gene transcriptions. EZH2 has been as a prominent target for cancer therapy and a growing number of potential targeting medicines have been developed. This review summarized the mechanisms that EZH2 regulates gene transcription and the interactions between EZH2 and important intracellular signaling molecules (Wnt, Notch, MEK, Akt) and as well the clinical applications of EZH2-targeted drugs.
Collapse
Affiliation(s)
- Yuankai Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Qiong Yang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China.
| |
Collapse
|
13
|
Qin T, Chen X, Meng J, Guo Q, Xu S, Hou S, Yuan Z, Zhang W. The role of curcumin in the liver-gut system diseases: from mechanisms to clinical therapeutic perspective. Crit Rev Food Sci Nutr 2023; 64:8822-8851. [PMID: 37096460 DOI: 10.1080/10408398.2023.2204349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Natural products have provided abundant sources of lead compounds for new drug discovery and development over the past centuries. Curcumin is a lipophilic polyphenol isolated from turmeric, a plant used in traditional Asian medicine for centuries. Despite the low oral bioavailability, curcumin exhibits profound medicinal value in various diseases, especially liver and gut diseases, bringing an interest in the paradox of its low bioavailability but high bioactivity. Several latest studies suggest that curcumin's health benefits may rely on its positive gastrointestinal effects rather than its poor bioavailability solely. Microbial antigens, metabolites, and bile acids regulate metabolism and immune responses in the intestine and liver, suggesting the possibility that the liver-gut axis bidirectional crosstalk controls gastrointestinal health and diseases. Accordingly, these pieces of evidence have evoked great interest in the curcumin-mediated crosstalk among liver-gut system diseases. The present study discussed the beneficial effects of curcumin against common liver and gut diseases and explored the underlying molecular targets, as well as collected evidence from human clinical studies. Moreover, this study summarized the roles of curcumin in complex metabolic interactions in liver and intestine diseases supporting the application of curcumin in the liver-gut system as a potential therapeutic option, which opens an avenue for clinical use in the future.
Collapse
Affiliation(s)
- Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xiuying Chen
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiahui Meng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Shan Xu
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Shanshan Hou
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Ziqiao Yuan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
14
|
Wang Y, Zeng J, Chen W, Fan J, Hylemon PB, Zhou H. Long Noncoding RNA H19: A Novel Oncogene in Liver Cancer. Noncoding RNA 2023; 9:19. [PMID: 36960964 PMCID: PMC10037657 DOI: 10.3390/ncrna9020019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Liver cancer is the second leading cause of cancer-related death globally, with limited treatment options. Recent studies have demonstrated the critical role of long noncoding RNAs (lncRNAs) in the pathogenesis of liver cancers. Of note, mounting evidence has shown that lncRNA H19, an endogenous noncoding single-stranded RNA, functions as an oncogene in the development and progression of liver cancer, including hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), the two most prevalent primary liver tumors in adults. H19 can affect many critical biological processes, including the cell proliferation, apoptosis, invasion, and metastasis of liver cancer by its function on epigenetic modification, H19/miR-675 axis, miRNAs sponge, drug resistance, and its regulation of downstream pathways. In this review, we will focus on the most relevant molecular mechanisms of action and regulation of H19 in the development and pathophysiology of HCC and CCA. This review aims to provide valuable perspectives and translational applications of H19 as a potential diagnostic marker and therapeutic target for liver cancer disease.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Microbiology and Immunology, Medical College of Virginia, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jing Zeng
- Department of Microbiology and Immunology, Medical College of Virginia, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jiangao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology, Medical College of Virginia, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Medical College of Virginia, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA
| |
Collapse
|
15
|
Wu X, Ni Z, Song T, Lv W, Chen Y, Huang D, Xie Y, Huang W, Niu Y. C-Terminal Truncated HBx Facilitates Oncogenesis by Modulating Cell Cycle and Glucose Metabolism in FXR-Deficient Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:ijms24065174. [PMID: 36982249 PMCID: PMC10048952 DOI: 10.3390/ijms24065174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Farnesoid X receptor (FXR) is a nuclear receptor known to play protective roles in anti-hepatocarcinogenesis and regulation of the basal metabolism of glucose, lipids, and bile acids. FXR expression is low or absent in HBV-associated hepatocarcinogenesis. Full-length HBx and HBx C-terminal truncation are frequently found in clinical HCC samples and play distinct roles in hepatocarcinogenesis by interacting with FXR or FXR signaling. However, the impact of C-terminal truncated HBx on the progression of hepatocarcinogenesis in the absence of FXR is unclear. In this study, we found that one known FXR binding protein, a C-terminal truncated X protein (HBx C40) enhanced obviously and promoted tumor cell proliferation and migration by altering cell cycle distribution and inducing apoptosis in the absence of FXR. HBx C40 enhanced the growth of FXR-deficient tumors in vivo. In addition, RNA-sequencing analysis showed that HBx C40 overexpression could affect energy metabolism. Overexpressed HSPB8 aggravated the metabolic reprogramming induced by down-regulating glucose metabolism-associated hexokinase 2 genes in HBx C40-induced hepatocarcinogenesis. Overall, our study suggests that C-terminal truncated HBx C40 synergizes with FXR deficiency by altering cell cycle distribution as well as disturbing glucose metabolism to promote HCC development.
Collapse
Affiliation(s)
- Xuejun Wu
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Zhengzhong Ni
- School of Public Health, Shantou University, Shantou 515063, China
| | - Tiantian Song
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Wenya Lv
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Yan Chen
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Danmei Huang
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Yangmin Xie
- Department of Experimental Animal Center, Medical College of Shantou University, Shantou 515041, China
| | - Weiyi Huang
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Yongdong Niu
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
- Correspondence: or ; Tel.: +86-0754-88900432
| |
Collapse
|
16
|
Hashemi M, Mirzaei S, Zandieh MA, Rezaei S, Amirabbas Kakavand, Dehghanpour A, Esmaeili N, Ghahremanzade A, Saebfar H, Heidari H, Salimimoghadam S, Taheriazam A, Entezari M, Ahn KS. Long non-coding RNAs (lncRNAs) in hepatocellular carcinoma progression: Biological functions and new therapeutic targets. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:207-228. [PMID: 36584761 DOI: 10.1016/j.pbiomolbio.2022.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/29/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Liver is an important organ in body that performs vital functions such as detoxification. Liver is susceptible to development of cancers, and hepatocellular carcinoma (HCC) is among them. 75-85% of liver cancer cases are related to HCC. Therefore, much attention has been directed towards understanding factors mediating HCC progression. LncRNAs are epigenetic factors with more than 200 nucleotides in length located in both nucleus and cytoplasm and they are promising candidates in cancer therapy. Directing studies towards understanding function of lncRNAs in HCC is of importance. LncRNAs regulate cell cycle progression and growth of HCC cells, and they can also induce/inhibit apoptosis in tumor cells. LncRNAs affect invasion and metastasis in HCC mainly by epithelial-mesenchymal transition (EMT) mechanism. Revealing the association between lncRNAs and downstream signaling pathways in HCC is discussed in the current manuscript. Infectious diseases can affect lncRNA expression in mediating HCC development and then, altered expression level of lncRNA is associated with drug resistance and radio-resistance. Biomarker application of lncRNAs and their role in prognosis and diagnosis of HCC are also discussed to pave the way for treatment of HCC patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sahar Rezaei
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esmaeili
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azin Ghahremanzade
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, University of Milan, Italy
| | - Hajar Heidari
- Department of Biomedical Sciences, School of Public Health University at Albany State University of New York, Albany, NY, 12208, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Curcumin: An epigenetic regulator and its application in cancer. Biomed Pharmacother 2022; 156:113956. [DOI: 10.1016/j.biopha.2022.113956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
|
18
|
Mohapatra P, Chandrasekaran N. Wnt/β-catenin targeting in liver carcinoma through nanotechnology-based drug repurposing: A review. Biomed Pharmacother 2022; 155:113713. [PMID: 36126453 DOI: 10.1016/j.biopha.2022.113713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Liver cancer is the fifth most widespread in the world, with a high fatality rate and poor prognosis.However,surgicalresction,thermal/radiofrequencyablation,chemo/radioembolization and pathway targeting to the cancer cells are all possible options for treating Liver Carcinoma. Unfortunately, once the tumour has developed and spread, diagnosis often occurs too late. The targeted therapy has demonstrated notable, albeit modest, efficacy in some patients with advanced HCC. This demonstrates the necessity of creating additional focused treatments and, in pursuit of this end, the need to find ever-more pathways as prospective targets. Despite the critical need, there are currently no Wnt signalling directed therapy on the research field, only a few methods have progressed beyond the early stage of clinical studies. In the present study, we report that repurposing of drug previously licensed for other diseases is one possible strategy inhibit malignant cell proliferation and renewal by removing individuals protein expression in the Wnt/β-catenin pathway. Particularly β-catenin complex is present in Liver cancer, where tumour necrosis factor is indispensable for the complex formation and β-catenin interactions are disrupted upon drug in nano-carrier through nanotechnology. This study findings not only highlight that repurposing drug could improve liver cancer treatment outcomes but also focused to character traits and functions of the Wnt signalling cascade's molecular targets and how they could be used to get anti-tumour results method to targeting Wnt/β-catenin in liver carcinoma.
Collapse
|
19
|
Pouliquen DL, Boissard A, Henry C, Coqueret O, Guette C. Curcuminoids as Modulators of EMT in Invasive Cancers: A Review of Molecular Targets With the Contribution of Malignant Mesothelioma Studies. Front Pharmacol 2022; 13:934534. [PMID: 35873564 PMCID: PMC9304619 DOI: 10.3389/fphar.2022.934534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Curcuminoids, which include natural acyclic diarylheptanoids and the synthetic analogs of curcumin, have considerable potential for fighting against all the characteristics of invasive cancers. The epithelial-to-mesenchymal transition (EMT) is a fundamental process for embryonic morphogenesis, however, the last decade has confirmed it orchestrates many features of cancer invasiveness, such as tumor cell stemness, metabolic rewiring, and drug resistance. A wealth of studies has revealed EMT in cancer is in fact driven by an increasing number of parameters, and thus understanding its complexity has now become a cornerstone for defining future therapeutic strategies dealing with cancer progression and metastasis. A specificity of curcuminoids is their ability to target multiple molecular targets, modulate several signaling pathways, modify tumor microenvironments and enhance the host’s immune response. Although the effects of curcumin on these various parameters have been the subject of many reviews, the role of curcuminoids against EMT in the context of cancer have never been reviewed so far. This review first provides an updated overview of all EMT drivers, including signaling pathways, transcription factors, non-coding RNAs (ncRNAs) and tumor microenvironment components, with a special focus on the most recent findings. Secondly, for each of these drivers the effects of curcumin/curcuminoids on specific molecular targets are analyzed. Finally, we address some common findings observed between data reported in the literature and the results of investigations we conducted on experimental malignant mesothelioma, a model of invasive cancer representing a useful tool for studies on EMT and cancer.
Collapse
Affiliation(s)
- Daniel L. Pouliquen
- Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
- *Correspondence: Daniel L. Pouliquen,
| | - Alice Boissard
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Cécile Henry
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Olivier Coqueret
- Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Catherine Guette
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| |
Collapse
|
20
|
Xu Y, Yu X, Sun Z, He Y, Guo W. Roles of lncRNAs Mediating Wnt/β-Catenin Signaling in HCC. Front Oncol 2022; 12:831366. [PMID: 35356220 PMCID: PMC8959654 DOI: 10.3389/fonc.2022.831366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is considered the second most deadly cancer worldwide. Due to the absence of early diagnostic markers and effective therapeutic approaches, distant metastasis and increasing recurrence rates are major difficulties in the clinical treatment of HCC. Further understanding of its pathogenesis has become an urgent goal in HCC research. Recently, abnormal expression of long noncoding RNAs (lncRNAs) was identified as a vital regulator involved in the initiation and development of HCC. Activation of the Wnt/β-catenin pathway has been reported to obviously impact cell proliferation, invasion, and migration of HCC. This article reviews specific interactions, significant mechanisms and molecules related to HCC initiation and progression to provide promising strategies for treatment.
Collapse
Affiliation(s)
- Yating Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| | - Zongzong Sun
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| |
Collapse
|
21
|
Deng Z, Jian Y, Cai H. Ropivacaine represses the proliferation, invasion, and migration of glioblastoma via modulating the microRNA-21-5p/KAT8 regulatory NSL complex subunit 2 axis. Bioengineered 2022; 13:5975-5986. [PMID: 35191804 PMCID: PMC8973733 DOI: 10.1080/21655979.2022.2037955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Ropivacaine (Rop) is available to suppress the growth of glioblastoma (GBM), while its mechanism has not been completely elaborated. In this study, we explore the latent mechanism of Rop repressing GBM's growth via mediating the microRNA (miR)-21-5p/KAT8 regulatory NSL complex subunit 2 (KANSL2) axis. MiR-21-5p was declined in GBM, while KANSL2 was elevated. Clinical association studies manifested miR-21-5p was distinctly linked to the tumor size and grade of GBM. Rop constrained GBM cell proliferation, invasion, and migration but boosted apoptosis. Elevated miR-21-5p strengthened Rop's action, while augmented KANSL2 weakened Rop's role. Furthermore, the impact of silencing miR-21-5p on GBM was turned around via declining KANSL2 in Rop-treated GBM cells. KANSL2 was the target gene of miR-21-5p. In short, Rop exerted an anti-tumor impact on GBM via mediating the miR-21-5p/KANSL2 axis, which offered novel viewpoints for the later adoption of Rop as GBM drugs.
Collapse
Affiliation(s)
- Zexiang Deng
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Yanping Jian
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Hongwei Cai
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| |
Collapse
|