1
|
Duan H, Wang W, Shi Y, Wang L, Khan GJ, Luo M, Zhou J, Yang J, He C, Li F, Hu H, Zhai K. Anti-colorectal cancer actions of Glycyrrhiza uralensis Fisch. and its underlying mechanism via HPLC integration and network pharmacological approaches. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156370. [PMID: 39823802 DOI: 10.1016/j.phymed.2025.156370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025]
Abstract
BACKGROUND The therapeutic and prognostic outcomes for colorectal cancer (CRC) remain unsatisfactory. Among multiple reported bioactive functionalities of Glycyrrhiza uralensis Fisch. one vital recently reported activity is its therapeutic role against numerous cancers but limited information is available related to its underlying key mechanisms and therapeutically active ingredients, especially against CRC treatment. OBJECTIVE The aim of current study aims is to reconnoiter G. uralensis pharmacological basis and primary molecular mode of action in treating CRC. METHODS For examining the G. uralensis active ingredients and underlying mechanism investigation against CRC including, potential anti-CRC phytochemicals, targets, and related signaling pathways, HPLC and Network-pharmacology analysis techniques was employed, respectively. Whereas, for binding capabilities of active components to their targets, molecular-docking, molecular dynamic simulation technique employed and cell proliferation assays screened the best anti-CRC components, followed by biological function experiments on SW480 cells for verification. Finally, the SW480-xenograft model and subsequent related experiments further confirmed the effect of Liquiritin on CRC. RESULTS Seven compounds were identified from G. uralensis through HPLC. Network pharmacology and molecular docking results indicated that G. uralensis components exhibited significant anti-cancer effects. These effects were mediated through cancer and MAPK-related signaling pathways, targeting TP53, SRC, STAT3, and PIK3CA proteins. In-vitro experiments showed that liquiritin had better anti-CRC effects compared to other components as it significantly repressed the SW480 propagation, development of colony, relocation, and invasion. Additionally, liquiritin has been shown to significantly reduce tumor size in tumor-bearing mice by targeting p53 and inhibiting the p38 MAPK pathway. CONCLUSION In G. uralensis, main API is liquiritin that target CRC tumorigeneses via inhibition of p53 and p38 MAPK, thus can be used for CRC therapy. The findings provide a solid pharmacological basis and potential therapeutic targets for G. uralensis in the treatment of CRC.
Collapse
Affiliation(s)
- Hong Duan
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830000, China; School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China
| | - Wei Wang
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China; Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E-32004, Spain
| | - Ying Shi
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China
| | - Li Wang
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830000, China; School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China
| | - Ghulam Jilany Khan
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Mengmeng Luo
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China
| | - Jing Zhou
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China
| | - Jianhua Yang
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830000, China
| | - Chenghui He
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830000, China
| | - Fei Li
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830000, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| | - Henggui Hu
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou 234000, China.
| | - Kefeng Zhai
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830000, China; School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China; Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E-32004, Spain.
| |
Collapse
|
2
|
Zhang S, Li Y, Chen G, Wang X, Wu B. Sarcandra glabra (Thunb.) Nakai alleviates DSS-induced ulcerative colitis by promoting restitution, restoring barrier function, and modulating IL-17/Notch1/FoxP3 pathway in intestinal cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118131. [PMID: 38565408 DOI: 10.1016/j.jep.2024.118131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sarcandra glabra is officially named Zhong Jie Feng as a traditional medicine. In the nationality of Yao and Zhuang, it has been used to treat digestive diseases like stomachache and dysentery. Similarly, in Dai nationality, it has been used to treat intestinal diseases like gastric ulcers. However, the effect and mechanism of S. glabra on experimental ulcerative colitis (UC) are known. AIM OF STUDY The main objective of this study was to investigate the effect and mechanism of S. glabra on experimental UC. MATERIALS AND METHODS The chemical components in the water extract of S. glabra (ZJF) were analyzed by UPLC-MS/MS method. The HCoEpiC cell line was used to assess the promotive effect on intestinal proliferation and restitution. RAW264.7 cells were used to assess the in vitro anti-inflammatory effect of ZJF. The 3% DSS-induced colitis model was used to evaluate the in vivo effect of ZJF (4.5 g/kg and 9.0 g/kg). Mesalazine (0.5 g/kg) was used as the positive drug. ELISA, RT-qPCR, Western blot, and multiplex immunohistochemical experiments were used to test gene levels in the colon tissue. The H&E staining method was used to monitor the pathological changes of colon tissue. TUNEL assay kit was used to detect apoptosis of epithelial colonic cells. RESULTS ZJF could alleviate the DSS-caused colitis in colon tissues, showing a comparative effect to that of the positive drug mesalazine. Mechanism study indicated that ZJF could promote normal colonic HCoEpiC cell proliferation and restitution, inhibit overexpression of pro-inflammatory cytokines, restore the M1/M2 ratio, decrease epithelial colonic cell apoptosis, rescue tight junction protein levels, and modulate IL-17/Notch1/FoxP3 pathway to treat experimental UC. CONCLUSION Our results indicated that S. glabra can promote intestinal cell restitution, balance immune response, and modulate IL-17/Notch1/FoxP3 pathway to treat experimental UC.
Collapse
Affiliation(s)
- Shuling Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Yanwu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Xu Wang
- Department of Gastroenterological Endoscopy, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Bin Wu
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
3
|
Wang Y, Zhou D, Zhang X, Qing M, Li X, Chou Y, Chen G, Li N. Curcumin promotes renewal of intestinal epithelium by miR-195-3p. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117413. [PMID: 37972911 DOI: 10.1016/j.jep.2023.117413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/26/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Turmeric (Curcuma longa) has been used to treat gastrointestinal disorders in the Indian Ayurvedic medical system. According to the theory behind traditional Chinese medicine, turmeric can be distributed in the spleen meridian, for which it has been used as a digestive aid. Curcumin (Cur), a natural polyphenol compound originally derived from turmeric, has anti-inflammatory activity and can assist in treating inflammatory bowel disease. AIMS OF THE STUDY To investigate curcumin's protective effects on intestinal epithelium and explore the underlying miR-195-3p-related mechanisms. MATERIALS AND METHODS The miR-195-3p mimics were used to over-express miR-195-3p. The in vitro effects of Cur and miR-195-3p on the intestine were shown utilizing intestinal cryptlike epithelial cell line-6 (IEC-6) cells. By fasting for 48 h, an intestinal mucosal atrophy model of SD rats was created in vivo. Cur (25 or 50 mg/kg) was assessed for its protective effect on intestinal epithelium. Glycyrrhetinic acid (GA) with an intestinal protective effect reported in our previous research was adopted as a positive drug for the in vivo and in vitro bioactivity evaluation since there is no universally positive drug for either intestinal mucosal restitution or miR-195-3p modulation. RESULTS Cur protects the intestinal epithelium and promotes its repair after injury via down-regulating miR-195-3p. In vitro experiments showed that Cur inhibited the apoptosis of IEC-6 cells, stimulated their growth, and down-regulated the level of miR-195-3p in cells. When miR-195-3p was overexpressed, the viability of IEC-6 cells decreased while the apoptosis rate increased. All the above detrimental effects were alleviated after curcumin intervention. Moreover, Cur reversed the effect of miR-195-3p on its downstream occludin. In vivo, results showed that 48-h fasting impaired the integrity of the small intestinal mucosa (abnormal crypt structure and reduced goblet cell number), which was ameliorated by Cur treatment. In addition, the Cur treatment reversed both the increased expression level of miR-195-3p and decreased levels of ki-67 and occludin caused by fasting. CONCLUSIONS Cur could promote the proliferation and repair after injury of the intestinal mucosa by down-regulating miR-195-3p.
Collapse
Affiliation(s)
- Yajun Wang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Xueni Zhang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Mengli Qing
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Xiaohong Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Yixian Chou
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
4
|
Wang Y, Li Y, Song C, Ke J, Zheng Y, Chen G, Li N. Licochalcone A promotes renewal of intestinal mucosa through modulating uc.173. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117044. [PMID: 37586439 DOI: 10.1016/j.jep.2023.117044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice can nourish Pi (spleen) and thereby strengthening the digestive system according to the theory of traditional Chinese medicine. Licorice has been generally used in the compound prescription to treat intestinal inflammatory disease. Licochalcone A (Lico A) is one of the characteristic molecules from licorice. T-UCRs, which are transcribed from ultraconserved regions, are a new class of long noncoding RNAs related to the renewal of intestinal epithelial renewal. AIM OF THE STUDY This study aimed to investigate the effect and the uc.173-related mechanism of Lico A on intestinal epithelial renewal. MATERIALS AND METHODS IE-6 and Caco-2 cells were used to evaluate the effect of Lico A on apoptosis, proliferation, and migration of IECs. The intestinal organoid was used to investigate ex vivo effect and mechanism of Lico A promoting intestinal organoid development. C57BL/6J mice (both normal and uc.173-deficient ones) were used to examine the in vivo effect of Lico A on the renewal of intestinal mucosa. RESULTS The expression of three T-UCRs related to the intestinal mucosa renewal was altered in Lico A-treated IECs. Lico A promoted the proliferation and inhibited the apoptosis of IECs through uc.173/miR-195 pathway. The development of intestinal organoids and the renewal of intestinal mucosa of mice subjected to the 48-h FAST were all promoted by the treatment of Lico A. Moreover, the growth arrest of uc.173-deficient intestinal organoids and the atrophy of intestinal mucosa in uc.173-deficient mice could be rescued by the Lico A administration. CONCLUSION Results in this paper suggest that targeting T-UCRs may be the novel therapeutic approach for the promotion of epithelial regeneration, and through stimulating the regeneration of intestinal mucosa, Lico A may become a new therapeutic agent for the maintenance of intestinal epithelial integrity.
Collapse
Affiliation(s)
- Yajun Wang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Yanwu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Chunhui Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Junyu Ke
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yanqiu Zheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
5
|
Recent Advances Regarding the Molecular Mechanisms of Triterpenic Acids: A Review (Part II). Int J Mol Sci 2022; 23:ijms23168896. [PMID: 36012159 PMCID: PMC9408012 DOI: 10.3390/ijms23168896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/18/2022] Open
Abstract
Triterpenic acids are a widespread class of phytocompounds which have been found to possess valuable therapeutic properties such as anticancer, anti-inflammatory, hepatoprotective, cardioprotective, antidiabetic, neuroprotective, lipolytic, antiviral, and antiparasitic effects. They are a subclass of triterpenes bearing a characteristic lipophilic structure that imprints unfavorable in vivo properties which subsequently limit their applications. The early investigation of the mechanism of action (MOA) of a drug candidate can provide valuable information regarding the possible side effects and drug interactions that may occur after administration. The current paper aimed to summarize the most recent (last 5 years) studies regarding the MOA of betulinic acid, boswellic acid, glycyrrhetinic acid, madecassic acid, moronic acid, and pomolic acid in order to provide scientists with updated and accessible material on the topic that could contribute to the development of future studies; the paper stands as the sequel of our previously published paper regarding the MOA of triterpenic acids with therapeutic value. The recent literature published on the topic has highlighted the role of triterpenic acids in several signaling pathways including PI3/AKT/mTOR, TNF-alpha/NF-kappa B, JNK-p38, HIF-α/AMPK, and Grb2/Sos/Ras/MAPK, which trigger their various biological activities.
Collapse
|