1
|
Liu M, Shen J, Chen X, Dawuti T, Xiao H. Evaluating renal injury characteristics in different rat models of hyperuricemia and elucidating pathological molecular mechanisms via serum metabolomics. Front Pharmacol 2024; 15:1433991. [PMID: 39286632 PMCID: PMC11403331 DOI: 10.3389/fphar.2024.1433991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Hyperuricemia has emerged as a significant global health concern, closely associated with various metabolic disorders. The adverse effects frequently observed with current pharmacological treatments for hyperuricemia highlight the urgent need for reliable animal models to elucidate the disease's pathophysiological mechanisms, thereby facilitating the development of safer and more effective therapies. In this study, we established three rat models of hyperuricemia using potassium oxonate, either alone or in combination with fructose and adenine. Each model exhibited distinct pathological changes, with the combination of potassium oxonate, fructose, and adenine causing significantly more severe damage to liver and kidney functions than potassium oxonate alone. Serum metabolomics analyses revealed profound dysregulation in the metabolic pathways of purine, pyrimidines, and glutathione, underscoring the pivotal role of oxidative stress in the progression of hyperuricemia. We identified key biomarkers such as orotidine, ureidosuccinic acid, uracil, and pseudouridine, which are associated with uric acid-induced damage to hepatic and renal systems. MetOrigin tracing analysis further revealed that differential metabolites related to hyperuricemia are primarily involved in host-microbiome co-metabolic pathways, particularly in purine metabolism, with bacterial phyla such as Pseudomonadota, Actinomycetota, and Ascomycota being closely linked to the critical metabolic processes of uric acid production. These findings not only enhance our understanding of the pathogenic mechanisms underlying hyperuricemia but also provide a robust experimental model foundation for the development of innovative treatment strategies.
Collapse
Affiliation(s)
- Mengwen Liu
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Jing Shen
- School of Public Health, Xinjiang Medical University, Urumqi, China
- Key Laboratory of Environmental Exposome, Xinjiang Medical University, Urumqi, China
| | - Xuanshi Chen
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | | | - Hui Xiao
- School of Public Health, Xinjiang Medical University, Urumqi, China
- Key Laboratory of Environmental Exposome, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
2
|
Han QQ, Ren QD, Guo X, Farag MA, Zhang YH, Zhang MQ, Chen YY, Sun ST, Sun JY, Li NY, Liu C. Punicalagin attenuates hyperuricemia via restoring hyperuricemia-induced renal and intestinal dysfunctions. J Adv Res 2024:S2090-1232(24)00129-2. [PMID: 38609050 DOI: 10.1016/j.jare.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
INTRODUCTION It is estimated that 90% of hyperuricemia cases are attributed to the inability to excrete uric acid (UA). The two main organs in charge of excreting UA are the kidney (70%) and intestine (30%). Previous studies have reported that punicalagin (PU) could protect against kidney and intestinal damages, which makes it a potential candidate for alleviating hyperuricemia. However, the effects and deeper action mechanisms of PU for managing hyperuricemia are still unknown. OBJECTIVE To investigate the effect and action mechanisms of PU for ameliorating hyperuricemia. METHODS The effects and action mechanisms of PU on hyperuricemia were assessed using a hyperuricemia mice model. Phenotypic parameters, metabolomics analysis, and 16S rRNA sequencing were applied to explore the effect and fundamental action mechanisms inside the kidney and intestine of PU for improving hyperuricemia. RESULTS PU administration significantly decreased elevated serum uric acid (SUA) levels in hyperuricemia mice, and effectively alleviated the kidney and intestinal damage caused by hyperuricemia. In the kidney, PU down-regulated the expression of UA resorption protein URAT1 and GLUT9, while up-regulating the expression of UA excretion protein ABCG2 and OAT1 as mediated via the activation of MAKP/NF-κB in hyperuricemia mice. Additionally, PU attenuated renal glycometabolism disorder, which contributed to improving kidney dysfunction and inflammation. Similarly, PU increased UA excretion protein expression via inhibiting MAKP/NF-κB activation in the intestine of hyperuricemia mice. Furthermore, PU restored gut microbiota dysbiosis in hyperuricemia mice. CONCLUSION This research revealed the ameliorating impacts of PU on hyperuricemia by restoring kidney and intestine damage in hyperuricemia mice, and to be considered for the development of nutraceuticals used as UA-lowering agent.
Collapse
Affiliation(s)
- Qing-Qing Han
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150000, China
| | - Qi-Dong Ren
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Xu Guo
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
| | - Yu-Hong Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150000, China
| | - Meng-Qi Zhang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ying-Ying Chen
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shu-Tao Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jin-Yue Sun
- School of Public Health, Shandong Second Medical University, Weifang 261053, China.
| | - Ning-Yang Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P.R. China.
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
3
|
Peng X, Liu K, Hu X, Gong D, Zhang G. Hesperitin-Copper(II) Complex Regulates the NLRP3 Pathway and Attenuates Hyperuricemia and Renal Inflammation. Foods 2024; 13:591. [PMID: 38397567 PMCID: PMC10888018 DOI: 10.3390/foods13040591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Hyperuricaemia (HUA) is a disorder of purine metabolism in the body. We previously synthesized a hesperitin (Hsp)-Cu(II) complex and found that the complex possessed strong uric acid (UA)-reducing activity in vitro. In this study we further explored the complex's UA-lowering and nephroprotective effects in vivo. METHODS A mouse with HUA was used to investigate the complex's hypouricemic and nephroprotective effects via biochemical analysis, RT-PCR, and Western blot. RESULTS Hsp-Cu(II) complex markedly decreased the serum UA level and restored kidney tissue damage to normal in HUA mice. Meanwhile, the complex inhibited liver adenosine deaminase (ADA) and xanthine oxidase (XO) activities to reduce UA synthesis and modulated the protein expression of urate transporters to promote UA excretion. Hsp-Cu(II) treatment significantly suppressed oxidative stress and inflammatory in the kidney, reduced the contents of cytokines and inhibited the activation of the nucleotide-binding oligomerization domain (NOD)-like receptor thermal protein domain associated protein 3 (NLRP3) inflammatory pathway. CONCLUSIONS Hsp-Cu(II) complex reduced serum UA and protected kidneys from renal inflammatory damage and oxidative stress by modulating the NLRP3 pathway. Hsp-Cu(II) complex may be a promising dietary supplement or nutraceutical for the therapy of hyperuricemia.
Collapse
Affiliation(s)
- Xi Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.P.); (K.L.); (X.H.); (D.G.)
- Department of Biological Engineering, Jiangxi Biotech Vocational College, Nanchang 330200, China
| | - Kai Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.P.); (K.L.); (X.H.); (D.G.)
| | - Xing Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.P.); (K.L.); (X.H.); (D.G.)
| | - Deming Gong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.P.); (K.L.); (X.H.); (D.G.)
| | - Guowen Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.P.); (K.L.); (X.H.); (D.G.)
| |
Collapse
|
4
|
Qi X, Ma Y, Guan K, Zhao L, Ma Y, Wang R. Whey Protein Peptide Pro-Glu-Trp Ameliorates Hyperuricemia by Enhancing Intestinal Uric Acid Excretion, Modulating the Gut Microbiota, and Protecting the Intestinal Barrier in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2573-2584. [PMID: 38240209 DOI: 10.1021/acs.jafc.3c00984] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Hyperuricemia (HUA) is a metabolic disorder characterized by an increase in the concentrations of uric acid (UA) in the bloodstream, intricately linked to the onset and progression of numerous chronic diseases. The tripeptide Pro-Glu-Trp (PEW) was identified as a xanthine oxidase (XOD) inhibitory peptide derived from whey protein, which was previously shown to mitigate HUA by suppressing UA synthesis and enhancing renal UA excretion. However, the effects of PEW on the intestinal UA excretion pathway remain unclear. This study investigated the impact of PEW on alleviating HUA in rats from the perspective of intestinal UA transport, gut microbiota, and intestinal barrier. The results indicated that PEW inhibited the XOD activity in the serum, jejunum, and ileum, ameliorated intestinal morphology changes and oxidative stress, and upregulated the expression of ABCG2 and GLUT9 in the small intestine. PEW reversed gut microbiota dysbiosis by decreasing the abundance of harmful bacteria (e.g., Bacteroides, Alloprevotella, and Desulfovibrio) and increasing the abundance of beneficial microbes (e.g., Muribaculaceae, Lactobacillus, and Ruminococcus) and elevated the concentration of short-chain fatty acids. PEW upregulated the expression of occludin and ZO-1 and decreased serum IL-1β, IL-6, and TNF-α levels. Our findings suggested that PEW supplementation ameliorated HUA by enhancing intestinal UA excretion, modulating the gut microbiota, and restoring the intestinal barrier function.
Collapse
Affiliation(s)
- Xiaofen Qi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yanfeng Ma
- Mengniu Hi-tech Dairy (Beijing) Co., Ltd., Beijing 101107, China
| | - Kaifang Guan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Le Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Rongchun Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| |
Collapse
|
5
|
Chen Q, Wang S, Bao R, Wang D, Wu Y, Zhang Y, Liu M, Wang T. Combination of mangiferin and T0901317 targeting autophagy promotes cholesterol efflux from macrophage foam cell in atherosclerosis. Chin Med 2024; 19:5. [PMID: 38183139 PMCID: PMC10770909 DOI: 10.1186/s13020-023-00876-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/25/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND The synthetic liver X receptor ligand (LXR) T0901317 (T0) has been reported to attenuate atherosclerosis (AS) without hyperglyceridemia due to innovative drug combination or nano-sized drug delivery. Given the key roles of mangiferin (MGF) in lipid metabolism and atherogenesis, it is critical to investigate progression of atherosclerotic lesion after combined treatment of MGF and T0. METHODS Atherosclerotic plaque formation and hepatic lipid accumulation were compared in Apoe-/- mice among T0 and/or MGF treatment. The in vitro functions of MGF and T0 were analyzed by Oil-red O staining, cholesterol efflux assay, transmission electron microscopy and western blot analyses with or without acetylated low density lipoprotein. RESULTS The combination therapy are effective regulators for atherosclerotic plaque formation in Apoe-/- mice, due to upregulation of ABCA1 and ABCG1 induced by LXR activation. Subsequently, we identified autophagy promoted by MGF and T0 treatment establishes a positive feedback loop that increases cholesterol efflux, resulted from LXRα activation. Under atherogenic conditions, the autophagy inhibitor CQ abolished the enhancement effect on cholesterol outflow of MGF and T0. Mechanically, MGF and T0 promotes LXRα and mTOR/AMPK signaling cascade in macrophage, and promotes AMPK signaling cascade in hepatocyte, leading to lipid metabolic homeostasis. CONCLUSIONS Altogether, our findings reveal that MGF and T0 engages in AS therapy without side effects by activating AMPK-dependent autophagy to promote macrophage cholesterol efflux, and MGF might serve as a natural compound to assist T0 in AS via targeting autophagy.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Component Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Sijian Wang
- State Key Laboratory of Component Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Ruixia Bao
- State Key Laboratory of Component Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Dan Wang
- State Key Laboratory of Component Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Yuzheng Wu
- State Key Laboratory of Component Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Yi Zhang
- State Key Laboratory of Component Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Mengyang Liu
- State Key Laboratory of Component Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China.
| | - Tao Wang
- State Key Laboratory of Component Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China.
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China.
| |
Collapse
|
6
|
Lin X, Zou X, Hu B, Sheng D, Zhu T, Yin M, Xia H, Hu H, Liu H. Bi Xie Fen Qing Yin decoction alleviates potassium oxonate and adenine induced-hyperuricemic nephropathy in mice by modulating gut microbiota and intestinal metabolites. Biomed Pharmacother 2024; 170:116022. [PMID: 38147734 DOI: 10.1016/j.biopha.2023.116022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 12/28/2023] Open
Abstract
This study aimed to evaluate the preventive effect of Bi Xie Fen Qing Yin (BXFQY) decoction on hyperuricemic nephropathy (HN). Using an HN mouse model induced by oral gavage of potassium oxonate and adenine, we found that BXFQY significantly reduced plasma uric acid levels and improved renal function. Further study shows that BXFQY suppressed the activation of the NLRP3 inflammasome and decreased the mRNA expressions of pro-inflammatory and fibrosis-associated factors in renal tissues of HN mice. Also, BXFQY prevented the damage to intestinal tissues of HN mice, indicative of suppressed colonic inflammation and increased gut barrier integrity. By 16 S rDNA sequencing, BXFQY significantly improved gut microbiota dysbiosis of HN mice. On the one hand, BXFQY down-regulated the abundance of some harmful bacteria, like Desulfovibrionaceae, Enterobacter, Helicobacter, and Desulfovibrio. On the other hand, BXFQY up-regulated the contents of several beneficial microbes, such as Ruminococcaceae, Clostridium sensu stricto 1, and Streptococcus. Using gas or liquid chromatography-mass spectrometry (GC/LC-MS) analysis, BXFQY reversed the changes in intestinal bacterial metabolites of HN mice, including indole and BAs. The depletion of intestinal flora from HN or HN plus BXFQY mice confirmed the significance of gut microbiota in BXFQY-initiated treatment of HN. In conclusion, BXFQY can alleviate renal inflammation and fibrosis of HN mice by modulating gut microbiota and intestinal metabolites. This study provides new insight into the underlying mechanism of BXFQY against HN.
Collapse
Affiliation(s)
- Xianghao Lin
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China; Xianning Medical College, Hubei University of Science and Technology, Xianning Avenue 88, Xianning 437100, PR China
| | - Xiaojuan Zou
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Baifei Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Dongyun Sheng
- Department of Traditional Chinese Medicine, General Hospital of China Resources WISCO, Metallurgy Avenue 29, Wuhan 430080, PR China
| | - Tianxiang Zhu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Mingzhu Yin
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Hui Xia
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Haiming Hu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China.
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China.
| |
Collapse
|
7
|
Karantas ID, Miliotou AN, Siafaka PI. An Updated Review For Hyperuricemia and Gout Management; Special Focus on the Available Drug Delivery Systems and Clinical Trials. Curr Med Chem 2024; 31:5856-5883. [PMID: 37559248 DOI: 10.2174/0929867331666230809143758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Hyperuricemia belongs to metabolic syndromes where increased uric acid levels are identified in the blood serum. Such a syndrome could be responsible for kidney stone formation, gout, hypertension, and chronic kidney diseases. It has been reported that cardiovascular risks have been linked with hyperuricemia. Gout is of the most frequent manifestations due to hyperuricemia; its management involves various pharmacological available options and dietary changes. Throughout the literature, various dosage forms are studied as alternative options to the present drug delivery systems. OBJECTIVE To update and summarize the current information for gout and hyperuricemia management. METHODS Authors have performed a thorough literature research from 2010-2023 using keywords such as hyperuricemia, gout, diagnosis, guidelines, drug delivery and clinical trials. The databases used were PubMed, ScienceDirect. According to our inclusion criteria, all studies which include the previous terms, as well as drugs or other molecules that can be applied for gout and/or hyperuricemia management, were added. RESULTS In this article, authors have summarized the pathogenesis, diagnosis and updated guidelines for gout and hyperuricemia management. Moreover, the authors have reviewed and discussed current drug delivery systems found in the literature, including drugs targeting the above disorders. Finally, the available clinical trials assessing the efficacy of newer drugs or combinations of the past ones, are being discussed. CONCLUSION The available drugs and dosage forms are limited, and therefore, scientific society should focus on the development of more efficient drug delivery systems for hyperuricemia and gout management.
Collapse
Affiliation(s)
| | - Androulla N Miliotou
- Department of Health Sciences, KES College, Nicosia, Cyprus
- Department of Life and Health Sciences, Faculty of Pharmacy, University of Nicosia, Nicosia, Cyprus
| | - Panoraia I Siafaka
- Department of Life Sciences, Faculty of Pharmacy, School of Sciences, European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
8
|
Xie H, Hu N, Pan T, Wu JC, Yu M, Wang DC. Effectiveness and safety of different doses of febuxostat compared with allopurinol in the treatment of hyperuricemia: a meta-analysis of randomized controlled trials. BMC Pharmacol Toxicol 2023; 24:79. [PMID: 38098046 PMCID: PMC10722766 DOI: 10.1186/s40360-023-00723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The prevalence of hyperuricemia has increased steadily with the continuous improvement of living standards. Some studies have reported the clinical effectiveness and safety of different doses of febuxostat in comparison with allopurinol in hyperuricemia treatment, but the sample sizes of the studies have been small, and the results have been inconsistent. We designed this meta-analysis to evaluate the effectiveness and safety of different doses of febuxostat compared with allopurinol in the treatment of hyperuricemia. METHODS The Cochrane Library, Embase, PubMed, Web of Science and ClinicalTrials.gov databases were searched to identify randomized controlled trials (RCTs) comparing the use of febuxostat and allopurinol for the treatment of hyperuricemia. The effectiveness and safety of different doses of febuxostat and allopurinol in treating hyperuricemia were assessed using meta-analysis. RESULTS A total of 11 randomized controlled trials were included in the meta-analysis. The results of the meta-analysis showed that the percentage of patients achieving serum uric acid levels of 6.0 mg/dL or less was higher among patients taking febuxostat (80 mg/d) than among patients taking allopurinol (200-300 mg/d) [RR = 1.79, 95% CI (1.55, 2.08), P < 0.00001]. However, there was no statistically significant difference in the percentage of patients achieving serum uric acid levels of 6.0 mg/dL or less between febuxostat (40 mg/d) and allopurinol (200-300 mg/d) [RR = 1.10, 95% CI (0.93, 1.31), P = 0.25]. There was also no statistically significant difference in the incidence of gout between the febuxostat (40 mg/d) and allopurinol (200-300 mg/d) [RR = 0.97, 95% CI (0.64, 1.49), P = 0.91] or between the febuxostat (80 mg/d) and allopurinol (200-300 mg/d) [RR = 1.13, 95% CI (0.81, 1.58), P = 0.48].No significant difference in the incidence of major adverse reactions as observed between the febuxostat (40 mg/d) and allopurinol (200-300 mg/d) [RR = 1.16; 95% CI (0.43, 3.16), P = 0.77] or between the febuxostat (80 mg/d) and allopurinol (200-300 mg/d) [RR = 1.06; 95% CI (0.79, 1.42), P = 0.70]. The incidence of adverse cardiovascular events did not differ significantly between the febuxostat (40 mg/d) and allopurinol (200-300 mg/d) [RR = 1.30; 95% CI (0.57, 2.95), P = 0.53] or between the febuxostat (80 mg/d) and allopurinol (200-300 mg/d) [RR = 1.79; 95% CI (0.74, 4.32), P = 0.20]. CONCLUSIONS Febuxostat (80 mg/d) was associated with a higher percentage of patients achieving serum uric acid levels of 6.0 mg/dL or less than allopurinol (200-300 mg/d), however, febuxostat (80 mg/d) did not exhibit better efficacy in reducing the incidence of gout. More attention should be devoted to the adverse reactions caused by an increase in febuxostat doses.
Collapse
Affiliation(s)
- Hong Xie
- Department of General Medicine, Zigong Fourth People's Hospital, 643000, Zigong, Sichuan, China
| | - Nan Hu
- Department of General Surgery, Zigong Fourth People's Hospital, 19 Tanmulin Road, 643000, Zigong, Sichuan, China
| | - Ting Pan
- Department of General Medicine, Zigong Fourth People's Hospital, 643000, Zigong, Sichuan, China
| | - Jun-Cai Wu
- Department of General Medicine, Zigong Fourth People's Hospital, 643000, Zigong, Sichuan, China
| | - Miao Yu
- Department of Basic Medicine, Sichuan Vocational College of Health and Rehabilitation, 643000, Zigong, Sichuan, China
| | - Deng-Chao Wang
- Department of General Surgery, Zigong Fourth People's Hospital, 19 Tanmulin Road, 643000, Zigong, Sichuan, China.
| |
Collapse
|
9
|
Hu Q, Ji J, Xu D, Ye Y, Sun J, Sheng L, Zhang Y, Sun X. Isolation and characterization of uric acid-lowering functional components from Polygonum cuspidatum. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|