1
|
Wang Y, Sun C, Cao Y, Jiao T, Wang K, Li J, Zhang M, Jiang J, Zhong X, Yu S, Xu H, Wang J, Yi T, Tian X, Zhu H, Zhou H, Huang C, Wu T, Guo X, Xie C. Glycyrrhizic acid and patchouli alcohol in Huoxiang Zhengqi attenuate intestinal inflammation and barrier injury via regulating endogenous corticosterone metabolism mediated by 11β-HSD1. JOURNAL OF ETHNOPHARMACOLOGY 2024; 338:119025. [PMID: 39489360 DOI: 10.1016/j.jep.2024.119025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC), a chronic inflammatory bowel disease, has become a significant public health challenge due to the limited effectiveness of available therapies. Huoxiang Zhengqi (HXZQ), a well-established traditional Chinese formula, shows potential in managing UC, as suggested by clinical and pharmacological studies. However, the active components and mechanisms responsible for its effects remain unclear. AIM OF STUDY This study aimed to identify the bioactive components of HXZQ responsible for its therapeutic effects on UC and to elucidate their underlying mechanisms. MATERIALS AND METHODS The effect of HXZQ against dextran sodium sulfate (DSS)-induced colitis was investigated. Ingredients in HXZQ were characterized and analyzed in colitic mice using liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). In vitro, biological activity of compounds was assessed using lipopolysaccharide (LPS)-induced Ana-1 cells and bone marrow-derived macrophages (BMDMs), tumor necrosis factor-alpha (TNF-α)-induced Caco-2 cells, and isolated intestinal crypts from colitic mice. These results were confirmed in vivo. The targets of the components were identified through bioinformatics analysis and validated via molecular docking, enzyme inhibition assays, and in vivo experiments. Hematoxylin and eosin (HE) staining, periodic acid-Schiff (PAS) staining, immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), western blotting, and quantitative real-time polymerase chain reaction (qPCR) were employed to confirm the pharmaceutical effects. RESULTS A clinical equivalent dose of HXZQ (2.5 mL/kg) effectively treated DSS-induced colitis. A total of 113 compounds were identified in HXZQ, with 35 compounds detected in colitic mice. Glycyrrhizic acid (GA) and patchouli alcohol (PA) emerged as key contributors to the anti-colitic effects of HXZQ. Further investigation revealed that HXZQ and its active components decreased the levels of pro-inflammatory cytokines TNF-α, interleukin-1β (IL-1β), and interleukin-6 (IL-6) in colon, likely by inhibiting nuclear factor kappa-B (NF-κB) signaling pathway. This inhibition indirectly activated the intestinal farnesoid X receptor (FXR) signaling pathway, correcting bile acid imbalances caused by colitis. Additionally, these components significantly enhanced the expression of tight junction proteins ZO-1 and Occludin, as well as the adhesion protein E-cadherin, and reduced goblet cell loss, thereby repairing intestinal barrier injury. Mechanistically, GA and PA were found to inhibit 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activity, leading to increased local active corticosterone levels in the intestine to exert anti-inflammatory effects. Notably, the inhibition of 11β-HSD1 with the selective inhibitor BVT2733 (BVT) ameliorated colitis in mice. CONCLUSIONS HXZQ exhibits therapeutic effects on UC, primarily through GA and PA inhibiting 11β-HSD1. This suggests new natural therapy approaches for UC and positions 11β-HSD1 as a potential target for colitis treatment.
Collapse
Affiliation(s)
- Yangyang Wang
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chuying Sun
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yutang Cao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tingying Jiao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200032, China
| | - Kanglong Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jiaqi Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengjiao Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jie Jiang
- Division of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xianchun Zhong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shuwu Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hualing Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiawen Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tong Yi
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 200032, China
| | - Xiaoting Tian
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haiyan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 200032, China
| | - Haifeng Zhou
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Chenggang Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Tong Wu
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China.
| | - Xiaozhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Han H, Gao M, Wang F, Luo Z, Jiang X, Qiu Y, Su J, Duan X, Luo S, Tang S, Khan A, Zou Z, Chen C, Yin Q, Qiu J, Zhang H. Protective effects of patchouli alcohol against DSS-induced ulcerative colitis. Sci Rep 2024; 14:16745. [PMID: 39033185 PMCID: PMC11271309 DOI: 10.1038/s41598-024-66259-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024] Open
Abstract
Patchouli alcohol (PA) is a widely used pharmaceutical ingredient in various Chinese traditional herbal medicine (THM) formulations, known for its modulatory effects on the gut microbiota. The present study investigated PA's anti-inflammatory and regulatory effects on gut microbiota and its mode of action (MOA). Based on the assessments of ulcerative colitis (UC) symptoms, PA exhibited promising preventions against inflammatory response. In accordance, the expressions of pro-inflammatory factors, including interleukin (IL)-1β, IL-6, tumor necrosis factor-α, and chemokine ligand 5 were significantly attenuated under PA treatment. Furthermore, PA enhanced the intestinal barrier damage caused by dextran sodium sulfate (DSS). Interestingly, PA exhibited negligible inventions on DSS-induced gut microbiota dysbiosis. PA did not affect the diversity of the DSS gut microbiota, it did alter the composition, as evidenced by a significant increase in the Firmicutes-Bacteroidetes (F/B) ratio. Finally, the MOA of PA against inflammation in DSS-treated mice was addressed by suppressing the expressions of heme oxygenase-1 (HO-1) and inducible nitric oxide synthase (iNOS). In conclusion, PA prevented inflammatory response in the DSS-induced UC mice model via directly suppressing HO-1 and iNOS-associated antioxidant signal pathways, independent of its effects on gut microbiota composition.
Collapse
Affiliation(s)
- Huifang Han
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Min Gao
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Fanghong Wang
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zheng Luo
- Jiulongpo District Center for Disease Control and Prevention, Chongqing Municipality, Chongqing, 400039, People's Republic of China
| | - Xuejun Jiang
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yu Qiu
- Department of Neurology, The Affiliated University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People's Republic of China
| | - Junhao Su
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Xinhao Duan
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Shiyue Luo
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Shixin Tang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Ahmad Khan
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qi Yin
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China.
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Jingfu Qiu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China.
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Hongyang Zhang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China.
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
3
|
Han P, Tian X, Wang H, Ju Y, Sheng M, Wang Y, Cheng D. Purslane (Portulacae oleracea L.) polysaccharide relieves cadmium-induced colonic impairments by restricting Cd accumulation and inhibiting inflammatory responses. Int J Biol Macromol 2024; 257:128500. [PMID: 38040149 DOI: 10.1016/j.ijbiomac.2023.128500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
This study aimed to assess the protective effects of purslane polysaccharide (PP) on colonic impairments in mice exposed to cadmium (Cd). C57BL/6 mice were administered with PP (200-800 mg/kg/day) by gavage for 4 weeks after treatment with 100 mg·L-1 CdCl2. PP significantly reduced Cd accumulation in the colon tissue and promoted the excretion of Cd in the feces. PP could reduce the expression levels of inflammatory factors (tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6) and inhibit the activation of the TLR4/MyD88/NF-κB signaling pathway. In addition, the results of 16S rRNA analysis revealed that PP significantly increased the abundance of probiotics (Lactobacillus), while decreased the abundance of pathogenic bacteria (Lachnospiraceae_NK4A136_group). Following the augmentation of beneficial intestinal bacteria, the treatment with PP led to an increase in the levels of intestinal microbial metabolites, specifically short-chain fatty acids (SCFAs). The SCFAs are known for their anti-inflammatory properties, immune-regulatory effects, and promotion of intestinal barrier function. Additionally, the results suggested that PP effectively impeded the enterohepatic circulation by inhibiting the FXR-FGF15 axis in the intestines of Cd-exposed mice. In summary, PP mitigated the toxic effects of Cd by limiting its accumulation and suppressing inflammatory responses in colon.
Collapse
Affiliation(s)
- Pengyun Han
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xuena Tian
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Haozhe Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yaojun Ju
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Mian Sheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yingjie Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Dai Cheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
4
|
Luo S, Zhou L, Jiang X, Xia Y, Huang L, Ling R, Tang S, Zou Z, Chen C, Qiu J. Asparagus cochinchinensis alleviates disturbances of lipid metabolism and gut microbiota in high-fat diet-induced obesity mice. Front Pharmacol 2022; 13:1015005. [PMID: 36313282 PMCID: PMC9616603 DOI: 10.3389/fphar.2022.1015005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Asparagus cochinchinensis is a valuable traditional Chinese medicine that has anti-inflammatory ability and effectively regulates the dysbiosis within the body. Obesity is usually characterized by chronic low-grade inflammation with aberrant gut microbiota. However, the role of Asparagus cochinchinensis against obesity remains unknown. Therefore, a high-fat diet (HFD)-induced obese mouse model with or without aqueous extract from Asparagus cochinchinensis root (ACE) treatment was established herein to determine whether ACE alleviated obesity and its involved mechanisms. Our results showed that ACE administration significantly decreased the weight gain and relieved dyslipidemia induced by HFD Treatment of ACE also improved glucose tolerance and insulin resistance in obese animal model, and remarkably decreased inflammation and lipogenesis in the liver and adipose. Moreover, administration of ACE significantly reshaped the gut microbiota of obese mice. These findings together suggest that ACE has beneficial effect against HFD-induced obesity and will provide valuable insights for the therapeutic potential of ACE against obesity and may aid in strategy-making for weight loss.
Collapse
Affiliation(s)
- Shiyue Luo
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Lixiao Zhou
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Yinyin Xia
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Lishuang Huang
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Run Ling
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Shixin Tang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Zhen Zou
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, China
- Molecular Biology Laboratory of Respiratory Diseases, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Chengzhi Chen
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Jingfu Qiu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Ma H, Xiao L, Xu D, Geng Y, Liu X, Chen Y, Wu Y. Non-Invasive Detection of Anti-Inflammatory Bioactivity and Key Chemical Indicators of the Commercial Lanqin Oral Solution by Near Infrared Spectroscopy. Molecules 2022; 27:molecules27092955. [PMID: 35566303 PMCID: PMC9099839 DOI: 10.3390/molecules27092955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 12/03/2022] Open
Abstract
Quality control methods of current traditional Chinese medicine (TCM) preparation is time-consuming and difficult to assess in terms of overall efficiency of the drug. A non-destructive rapid near-infrared spectroscopy detection system for key chemical components and biological activity of Lanqin oral solution (LOS), one of the best-selling TCM formulations, was established for comprehensive quality evaluation. Near infrared spectral scanning was carried out on 101 batches of commercial LOS under the penetrated vial state and traditional state. RAW 264.7 cells were cultured to detect the anti-inflammatory ability of LOS, and the reference concentrations of epigoitrin, geniposide, and baicalin were obtained by HPLC. The quantitative models were optimized by three kinds of variable selection methods. The correlation coefficients of prediction value of the models were greater than 0.94. The system also passed the external validation. The performance of the non-invasive models was similar to the traditional models. The established non-destructive system can be applied to the rapid quality inspection of LOS to avoid unqualified drugs from entering the market and ensure drug effectiveness. The biological activity index of LOS was introduced and predicted by NIRs for the first time, which provides a new idea about the quality control of TCM formulations.
Collapse
|
6
|
Yi C, Gu T, Li Y, Zhang Q. Depression of long non-coding RNA SOX2 overlapping transcript attenuates lipopolysaccharide-induced injury in bronchial epithelial cells via miR-455-3p/phosphatase and tensin homolog axis and phosphatidylinositol 3-kinase/protein kinase B pathway. Bioengineered 2022; 13:13643-13653. [PMID: 35674016 PMCID: PMC9275861 DOI: 10.1080/21655979.2022.2083820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Airway inflammation is associated with various respiratory diseases, and previous research has confirmed that long non-coding RNAs (lncRNAs) play imperative roles in inflammatory responses. However, the function of lncRNA SOX2 overlapping transcript (SOX2-OT) in airway inflammation remains enigmatic. This study aimed to investigate the effects of SOX2-OT on lipopolysaccharide (LPS)–induced cell injury in human bronchial epithelial cells, BEAS-2B, and its potential mechanisms. The results showed increased cell apoptotic ratio, production of inflammatory cytokines, higher expression of adhesion molecules and activation of NF-κB in LPS–stimulated BEAS-2B cells. In LPS–stimulated BEAS-2B cells, SOX2-OT up-regulation and miR-455-3p down-regulation emerged simultaneously. SOX2-OT knockdown or miR-455-3p over-expression restrained LPS–induced inflammation and injury. SOX2-OT sponged to miR-455-3p and functioned as a ceRNA. In addition, phosphatase and tensin homolog (PTEN) served as an endogenous target of miR-455-3p to modulate the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway and disturb the alleviated consequence of miR-455-3p over-expression on LPS–induced BEAS-2B cell inflammation and cell injury. Our data demonstrated that SOX2-OT plays a pivotal role in LPS–induced inflammation and injury in BEAS-2B cells and exerts its function through the miR-455-3p/PTEN axis and modulation of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Chunhua Yi
- Department of Emergency, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Tijun Gu
- Department of Emergency, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yongchang Li
- Department of Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Qian Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|