1
|
Shi M, Xue Q, Xie J, Yang Q, Tong J, Zhu J, Gao Y, Ma X, Wu D, Li Z. Protective effect of Shenqi Wenfei Formula against lipopolysaccharide/cigarette smoke-induced COPD in Rat based on gut microbiota and network pharmacology analysis. Front Microbiol 2024; 15:1441015. [PMID: 39629210 PMCID: PMC11611827 DOI: 10.3389/fmicb.2024.1441015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction The incidence of chronic obstructive pulmonary disease (COPD) appears to be increasing and evidence suggests that the intestinal flora may play a causative role in its development. Previous studies found that the Shenqi Wenfei Formula (SQWF) can regulate pyroptosis via the NLRP3/GSDMD pathway, thereby reducing the inflammatory response in the lungs of COPD model rats. However, there is no information on whether the drug's effects are associated with intestinal flora. Therefore, this study investigates whether the effects of SQWF are mediated through the regulation of intestinal flora, aiming to elucidate the underlying mechanisms of its therapeutic impact on COPD. Methods COPD was induced in rats using lipopolysaccharide and cigarette smoke, followed by intragastric administration of SQWF or physiological saline The targets of SQWF, associated signaling pathways, and key bacterial groups were investigated using 16S rRNA sequencing, network pharmacology, and bioinformatics techniques. The prediction results were validated using quantitative reverse transcription PCR, western blotting, and immunofluorescence, among other methods. Results SQWF treatment was found to alleviate COPD in model rats. Treatment was also observed to restore the balance of the intestinal flora in the rats, especially by reducing the abundance of g_Parabacteroides. Bioinformatics predictions identified g_Parabacteroides metabolites, RelA, HDAC1, and enriched neutrophil extracellular trap formation pathways as core targets of SQWF in COPD. qRT-PCR and Western blotting results showed that SQWF treatment reduced ReLA and HDAC1 mRNA and protein expression, along with decreased myeloperoxidase and neutrophil elastase levels in the nucleus. Conclusion Treatment with SQWF was found to restore the imbalance of intestinal g_Parabacteroides in COPD and also regulate the expression of the ReLA and HDAC1 genes, thereby reducing pulmonary neutrophil extracellular traps and alleviating lung inflammation.
Collapse
Affiliation(s)
- Mengyao Shi
- Anhui University of Chinese Medicine, Hefei, China
| | - Qian Xue
- Anhui University of Chinese Medicine, Hefei, China
| | - Jinghui Xie
- Anhui University of Chinese Medicine, Hefei, China
| | - Qinjun Yang
- Anhui University of Chinese Medicine, Hefei, China
- Chinese Medicine Respiratory Disease Prevention Institute, Hefei, China
- Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei, China
| | - Jiabing Tong
- Anhui University of Chinese Medicine, Hefei, China
- Chinese Medicine Respiratory Disease Prevention Institute, Hefei, China
- Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei, China
| | - Jie Zhu
- Anhui University of Chinese Medicine, Hefei, China
- Chinese Medicine Respiratory Disease Prevention Institute, Hefei, China
- Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei, China
| | - Yating Gao
- Chinese Medicine Respiratory Disease Prevention Institute, Hefei, China
- Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei, China
- First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Xiao Ma
- Anhui University of Chinese Medicine, Hefei, China
| | - Di Wu
- Anhui University of Chinese Medicine, Hefei, China
- First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Zegeng Li
- Anhui University of Chinese Medicine, Hefei, China
- Chinese Medicine Respiratory Disease Prevention Institute, Hefei, China
- Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei, China
- First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
2
|
Pang L, Zhao Y, Xu Y, Gao C, Wang C, Yu X, Wang F, He K. Mechanisms Underlying the Therapeutic Effects of JianPiYiFei II Granules in Treating COPD Based on GEO Datasets, Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulations. BIOLOGY 2024; 13:711. [PMID: 39336138 PMCID: PMC11428342 DOI: 10.3390/biology13090711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND JianPiYiFei (JPYF) II granules are a Chinese medicine for the treatment of chronic obstructive pulmonary disease (COPD). However, the main components and underlying mechanisms of JPYF II granules are not well understood. This study aimed to elucidate the potential mechanism of JPYF II granules in the treatment of COPD using network pharmacology, molecular docking, and molecular dynamics simulation techniques. METHODS The active compounds and corresponding protein targets of the JPYF II granules were found using the TCMSP, ETCM, and Uniport databases, and a compound-target network was constructed using Cytoscape3.9.1. The COPD targets were searched for in GEO datasets and the OMIM and GeneCards databases. The intersection between the effective compound-related targets and disease-related targets was obtained, PPI networks were constructed, and GO and KEGG enrichment analyses were performed. Then, molecular docking analysis verified the results obtained using network pharmacology. Finally, the protein-compound complexes obtained from the molecular docking analysis were simulated using molecular dynamics (MD) simulations. RESULTS The network pharmacological results showed that quercetin, kaempferol, and stigmasterol are the main active compounds in JPYF II granules, and AKT1, IL-6, and TNF are key target proteins. The PI3K/AKT signaling pathway is a potential pathway through which the JPYF II granules affect COPD. The results of the molecular docking analysis suggested that quercetin, kaempferol, and stigmasterol have a good binding affinity with AKT1, IL-6, and TNF. The MD simulation results showed that TNF has a good binding affinity with the compounds. CONCLUSIONS This study identified the effective compounds, targets, and related underlying molecular mechanisms of JPYF II granules in the treatment of COPD through network pharmacology, molecular docking, and MD simulation techniques, which provides a reference for subsequent research on the treatment of COPD.
Collapse
Affiliation(s)
- Liyuan Pang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yongjuan Zhao
- Department of Pulmonary and Critical Care Medicine, China-Japan Union Hospital of Jilin University, Changchun 130021, China
| | - Yang Xu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Chencheng Gao
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Chao Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xiao Yu
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Kan He
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
3
|
Feng Y, Qin P, Wang R, Mi Y, Li Y, Feng J, Shen W, Dong H, Duo J, Ma L, Yao X, Hu X, Xiong F, Shi X, Wang H. Effects of Tibetan medicine Longdan zhike tablet on chronic obstructive pulmonary disease through MAPK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118082. [PMID: 38522625 DOI: 10.1016/j.jep.2024.118082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Longdan zhike tablet (LDZK) is a Tibetan medicine formula commonly used in the highland region of Tibet, China, to ameliorate respiratory diseases, such as acute bronchitis and asthma. In Chinese traditional medicine, some herbal formulas with anti-inflammatory properties targeting the respiratory system are clinically adopted as supplementary therapies for chronic obstructive pulmonary disease (COPD). However, the specific anti-COPD effects of LDZK remain to be evaluated. AIM OF THE STUDY The aim of this study is to identify the principal bioactive compounds in LDZK, and elucidate the effects and mechanisms of the LDZK on COPD. METHODS High-resolution mass spectrometry was utilized for a comprehensive characterization of the chemical composition of LDZK. The therapeutic effects of LDZK were assessed on the LPS-papain-induced COPD mouse model, and LPS-induced activation model of A549 cells. The safety of LDZK was evaluated by orally administering a single dose of 30 g/kg to rats and monitoring physiological and biochemical indicators after a 14-day period. Network pharmacology and Western blot analysis were employed for mechanism prediction of LDZK. RESULTS A comprehensive analysis identified a total of 45 compounds as the major constituents of LDZK. Oral administration of LDZK resulted in notable ameliorative effects in respiratory function, accompanied by reduced inflammatory cell counts and cytokine levels in the lungs of COPD mice. Acute toxicity tests demonstrated a favorable safety profile at a dose equivalent to 292 times the clinically prescribed dose. In vitro studies revealed that LDZK exhibited protective effects on A549 cells by mitigating LPS-induced cellular damage, reducing the release of NO, and downregulating the expression of iNOS, COX2, IL-1β, IL-6, and TNF-α. Network pharmacology and Western blot analysis indicated that LDZK primarily modulated the MAPK signaling pathway and inhibited the phosphorylation of p38/ERK/JNK. CONCLUSIONS LDZK exerts significant therapeutic effects on COPD through the regulation of the MAPK pathway, suggesting its potential as a promising adjunctive therapy for the treatment of chronic inflammation in COPD.
Collapse
Affiliation(s)
- Yulin Feng
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Pengfei Qin
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Rong Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Yahui Mi
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - You Li
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Jiahao Feng
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Wenbin Shen
- Instrumental Analysis Center, China Pharmaceutical University, Nanjing, China.
| | - Haijuan Dong
- Instrumental Analysis Center, China Pharmaceutical University, Nanjing, China.
| | - Jietai Duo
- Diqing Tibetan Autonomous Prefecture Tibetan Hospital, Xianggelila, China.
| | - Liming Ma
- Diqing Tibetan Autonomous Prefecture Tibetan Hospital, Xianggelila, China.
| | - Xiaowu Yao
- Diqing Tibetan Autonomous Prefecture Tibetan Hospital, Xianggelila, China.
| | - Xiaolong Hu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Fei Xiong
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, Southeast University, Nanjing, China.
| | - Xinhong Shi
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Hao Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
4
|
Xie D, Quan J, Yu X, Liang Z, Chen Y, Wu L, Lin L, Fan L. Molecular mechanism of Jianpiyifei II granules in the treatment of chronic obstructive pulmonary disease: Network pharmacology analysis, molecular docking, and experimental assessment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155273. [PMID: 38342020 DOI: 10.1016/j.phymed.2023.155273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 10/24/2023] [Accepted: 12/10/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is defined by persistent airway and lung inflammation, excessive mucus production, remodeling of the airways, and damage to the alveolar tissue. Based on clinical experience, it has been observed that Jianpiyifei II (JPYF II) granules exhibit a significant therapeutic impact on individuals suffering from stable COPD. Nevertheless, the complete understanding of JPYF II's potential mode of action against COPD remains to be further clarified. PURPOSE To further investigate the underlying mechanism of JPYF II for treating COPD and clarify the role of the IL-17 pathway in the treatment. METHODS A variety of databases were utilized to acquire JPYF II's bioactive components, as well as related targets of JPYF II and COPD. Cytoscape was utilized to establish multiple interaction networks for the purpose of topological analyses and core-target screening. The Metascape was utilized to identify the function of target genes and crucial signaling pathways. To evaluate the interactions between bioactive ingredients and central target proteins, molecular docking simulations were conducted. Following that, a sequence of experiments was conducted both in the laboratory and in living organisms, which included analyzing the cell counts in bronchoalveolar lavage fluid (BALF), examining lung tissue for histopathological changes, conducting immunohistochemistry, RT‒qPCR, ELISA, and Western blotting. RESULTS In JPYF II, 88 bioactive ingredients were predicted to have a total of 342 targets. After conducting Venn analysis, it was discovered that 284 potential targets of JPYF II were linked to the provision of defensive benefits against COPD. The PPI network yielded a total of twenty-four core targets. The findings from the analysis of enrichment and gene‒pathway network suggested that JPYF II targeted Hsp90, MAPKs, ERK, AP-1, TNF-α, IL-6, COX-2, CXCL8, and MMP-9 as crucial elements for COPD treatment through the IL-17 pathway. Additionally, JPYF II might modulate MAPK signaling pathways and the downstream transcription factor AP-1 via IL-17 regulation. According to the findings from molecular docking, it was observed that the 24 core target proteins exhibited robust binding affinities towards the top 10 bioactive compounds. Furthermore, the treatment of COPD through the regulation of MAPKs in the IL-17 pathway was significantly influenced by flavonoids and sterols found in JPYF II. In vitro, these observations were further confirmed. In vivo results demonstrated that JPYF II reduced inflammatory cell infiltration in pulmonary tissues and the quantity of inflammatory cells in BALF obtained from LPS- and CS-stimulated mice. Moreover, the administration of JPYF II resulted in the inhibition of IL-17 mRNA and protein levels, phosphorylation levels of MAPK proteins, and expression of phosphorylated AP-1 proteins. It also suppressed the expression of downstream effector genes and proteins associated with the IL-17/MAPK/AP-1 signaling axis in lung tissues and BALF. CONCLUSION This research reveals that JPYF II improves COPD by controlling the IL-17/MAPK/AP-1 signaling axis within the IL-17 pathway for the first time. These findings offer potential approaches for the creation of novel medications that specifically target IL-17 and proteins involved in the IL-17 pathway to address COPD.
Collapse
Affiliation(s)
- Dan Xie
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong‒Hong Kong‒Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Jingyu Quan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong‒Hong Kong‒Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Xuhua Yu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong‒Hong Kong‒Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Ziyao Liang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong‒Hong Kong‒Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Yuanbin Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong‒Hong Kong‒Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Lei Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong‒Hong Kong‒Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China.
| | - Lin Lin
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong‒Hong Kong‒Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China.
| | - Long Fan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong‒Hong Kong‒Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China.
| |
Collapse
|
5
|
Zhang S, Wang J, Li X, Zhang H. Comparative effectiveness and safety of triple therapy and non-triple therapy interventions for COPD: an overview of systematic reviews. Ther Adv Respir Dis 2024; 18:17534666241259634. [PMID: 38877687 PMCID: PMC11179455 DOI: 10.1177/17534666241259634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/07/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Some systematic reviews (SRs) on triple therapy (consisting of long-acting β2-agonist, long-acting muscarinic antagonist, and inhaled corticosteroid, LABA/LAMA/ICS) for chronic obstructive pulmonary disease (COPD) have reported conflicting results. As the number of syntheses increases, the task of identifying and interpreting evidence becomes increasingly complex and demanding. OBJECTIVES To provide a comprehensive overview of the efficacy and safety of triple therapy for COPD. DESIGN Overview of SRs. METHODS Two independent reviewers conducted comprehensive searches in PubMed, Embase, Web of Science, and the Cochrane Library to identify relevant SRs that compared triple therapy with any non-triple therapy for COPD, from the inception of these databases until 1 June 2023. The AMSTAR 2 and GRADE tools were utilized to assess the quality of the included studies and the evidence for each outcome. RESULTS Eighteen SRs encompassing 30 original studies and involving 47,340 participants were analyzed. The overall AMSTAR 2 rating revealed that 3 SRs were of low quality, 13 SRs were of critically low quality, and 2 SRs were of high quality. No high-certainty evidence revealed a significant advantage of triple therapy in improving lung function or reducing acute exacerbations. However, all evidence, including one high certainty, supported the benefits of improving quality of life. Regarding all-cause mortality, no significant difference was found when compared to LAMA or ICS/LABA; however, high-certainty evidence confirmed its effectiveness when compared with LABA/LAMA. Notably, high-certainty evidence indicated that triple therapy was associated with a significant increase in the risk of pneumonia compared to LABA/LAMA. CONCLUSION Triple therapy demonstrated notable benefits in improving lung function, reducing exacerbations, improving quality of life, and reducing all-cause mortality. However, it is important to note that it may also significantly increase the risk of pneumonia. TRIAL REGISTRATION This overview protocol was prospectively registered with PROSPERO (No. CRD42023431548).
Collapse
Affiliation(s)
- Shujuan Zhang
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Jinshui District, Zhengzhou, Henan, People’s Republic of China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Jun Wang
- Department of Respiratory Diseases, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Xuanlin Li
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Hailong Zhang
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Road, Jinshui District, Zhengzhou, Henan 450046, People’s Republic of China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| |
Collapse
|