1
|
Sheng K, Ran Y, Feng X, Wang Y, Zhou S, Guan Y, Tan P, Qian S, Zhao Z, Zhang B, Ji W, Niu C, Guo X. PTN secreted by cardiac fibroblasts promotes myocardial fibrosis and inflammation of pressure overload-induced hypertrophic cardiomyopathy through the PTN-SDC4 pathway. Life Sci 2025; 363:123356. [PMID: 39765325 DOI: 10.1016/j.lfs.2024.123356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025]
Abstract
AIMS Hypertrophic cardiomyopathy (HCM) is characterized by unexplained left ventricular hypertrophy (LVH) with key pathologic processes including myocardial necrosis, fibrosis, inflammation, and hypertrophy, which are involved in heart failure (HF), stroke, and even sudden death. Our aim was to explore the communication network among various cells in the heart of transverse aortic constriction (TAC) surgery induced HCM mice. MATERIALS AND METHODS Single-cell RNA-seq data of GSE137167 was downloaded from the Gene Expression Omnibus (GEO) database. Seurat was used to perform the standard workflow. CellChat was utilized to compute the cell-cell interaction network and analyze the ligand-receptor pairs. Weighted gene co-expression network analysis (WGCNA) was conducted to identify gene co-expression modules. In vitro and in vivo studies were performed to verify bioinformatic analysis findings through real-time quantitative PCR (RT-qPCR), Edu staining, transwell assay, western blot, immunofluorescence assay, CCK-8, hematoxylin and eosin (H&E) staining, and echocardiography based on TAC mouse model. KEY FINDINGS Our results showed that after TAC surgery, the interaction between cardiac fibroblasts and macrophages was very common, and the increasing pleiotrophin (PTN) ligand secreted by cardiac fibroblasts could promote the self-proliferation or invasion for myocardial fibrosis as well as stimulate the inflammatory response of macrophages to contribute TAC surgery induced HCM through acting on Syndecan 4 (SDC4) receptor. SIGNIFICANCE Our study demonstrates that PTN derived from cardiac fibroblasts may play potential role in pressure overload-induced HCM through activating the PTN-SDC4 pathway in cardiac fibroblasts and macrophages, which may be a potential therapeutic target for pressure overload-induced HCM patients.
Collapse
Affiliation(s)
- Ke Sheng
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuqing Ran
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xing Feng
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yijia Wang
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Size Zhou
- Department of General Surgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuting Guan
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Pingping Tan
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Songwei Qian
- Department of General Surgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiguang Zhao
- Department of Pathology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bing Zhang
- Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, , Institute of Developmental and Regenerative Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weiping Ji
- Department of General Surgery, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, China; Department of General Surgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Chao Niu
- Pediatric Research Institute, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China.
| | - Xiaoling Guo
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Zhang J, Li Y, Chang M, Lei Y, Xu H, Zhang Y, Xu J, Zhang J, Tang S. Naoxintong capsule attenuates heart damage after ischemic stroke via Nuclear factor-κB / Pyrin domain-containing protein 3 / Caspase-1 signaling. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119240. [PMID: 39733802 DOI: 10.1016/j.jep.2024.119240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/31/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemic stroke (IS) is a major cause of mortality. Inflammation exerts an essential part of brain-heart communication after IS. Naoxintong capsule (NXT), derived from the classical Traditional Chinese Medicine (TCM) formulation Bu-Yang-Huan-Wu-Tang, are extensively employed in China to manage IS, myocardial infarction (MI), and atherosclerosis. Previous clinical studies have demonstrated the protective effects of NXT in anti-atherosclerosis, cerebral infarction, angina, and acute coronary syndrome. However, the potential therapeutic mechanism of NXT for IS remains unknown. AIM OF THE STUDY This study aims to investigate a potential mechanism for enhancing brain-heart interaction following an ischemic stroke. MATERIALS AND METHODS C57BL/6J mice underwent permanent middle cerebral artery occlusion (MCAO) for durations of 6, 12, and 24 h. The effects of NXT on the brain were observed via TTC, Nissl and TUNEL staining, immunofluorescence staining, and Zea-Longa scores. Simultaneously, the effects of NXT on the heart were evaluated via H&E staining and echocardiography. Inflammatory factors in heart and serum were determined via ELISA or luminex liquid suspension chip detection. Network pharmacology predicted the targets and signaling pathways of NXT. The binding affinity between potential targets and active compounds of NXT was assessed through molecular docking. The expression levels of IκBα, IKKβ, NF-κB, NLRP3, and caspase-1 were evaluated via Western blotting. RESULTS The Zea-Longa scores, infarct rate, and the rate of apoptosis in the brain at 6, 12, and 24 h of MCAO mice were markedly decreased by NXT. Additionally, they clearly enhanced the NeuN positive rate and prevented microglia from activating at 24 h. NXT significantly reduced the level of myocardial injury biomarkers (Lactate dehydrogenase (LDH) and Creatine kinase isoenzyme MB (CK-MB) at 24 h, N-terminal pro-brain natriuretic peptide (NT-pro BNP) at 6, 12, and 24 h), improved ejection fraction, fractional shortening, stroke volume, and cardiac output at 24 h. The levels of MIP-1α in cardiac tissue and IL-1β in serum were both markedly lowered by NXT. Furthermore, the NF-κB/NLRP3/caspase-1 signaling pathways may be potential mechanisms of NXT. Molecular docking indicated that IKKβ, IκBα, NF-κB, NLRP3, and caspase-1 may serve as potential targets for the action of representative active ingredients in NXT. NXT could reduce the expression levels of IKKβ, NF-κB, NLRP3, and caspase-1 in brain and heart tissues while increasing the expression of IκBα. CONCLUSIONS Our study illustrates that NXT efficiently attenuated inflammation in the brain and heart by blocking the NF-κB/NLRP3/caspase-1 signaling pathway. These findings provide appealing insights into the multi-organ perspective on human health via identifying shared inflammatory impacts and heart-brain linkages.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Yu Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Mengli Chang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Yuxin Lei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - He Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Jing Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Jingjing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Shihuan Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China; State Key Laboratory for Quality Assurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| |
Collapse
|
3
|
An W, Tian Q, Guo P, Chen M, Zhang T, Yang P, Zhang S. Danggui Buxue Decoction and its components dilate coronary artery through activating the inward rectification K + channels pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119064. [PMID: 39521101 DOI: 10.1016/j.jep.2024.119064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danggui Buxue Decoction (DBD), a classic representative prescription of invigorating Qi and producing blood, is used to treat coronary heart disease angina pectoris and vascular injury diseases. Abnormal coronary artery is an important cause of cardiovascular disease. However, the mechanism of DBD dilates coronary arteries is still unclear. AIM OF THE STUDY This study aimed to elucidate the impacts and distinctions among DBD, Astragalus, Angelica sinensis, and identified active components on pre-constricted coronary arteries, as well as to delve deeper into their respective mechanisms. MATERIALS AND METHODS After the preconstriction of a rat isolated coronary artery ring with either 30 mM KCl or 200 nM U46619, the vascular tension was observed following the addition of DBD, and other components. Subsequently, the impact of these active components on coronary blood flow (CBF) was confirmed through in vivo testing. Further investigation into the underlying mechanism was carried out using a combination of blockers, molecular docking, surface plasmon resonance (SPR), cell heat transfer analysis (CETSA), and patch-clamp techniques. RESULTS In vitro experiments showed that DBD and its components butylidenephthalide, ligustilide, calycosin, and quercetin could dilate coronary artery preconstricted with either 30 mM KCl or 200 nM U46619. In addition, the active ingredient was found to significantly increase CBF. Mechanistically, BaCl2 was found to reduce the relaxation effect of the drug by adding a blocker. Molecular docking, SPR and CETSA results showed that the active ingredients had a strong binding potential with inward rectification K+ channels (KIR) channel protein. Patch clamp studies demonstrate that quercetin can increase KIR current, and BaCl2 can significantly reduce its current. CONCLUSIONS The active components of DBD, butylidenephthalide, ligustilide, calycosin, and quercetin, activate KIR channels to relax coronary artery and increase CBF.
Collapse
Affiliation(s)
- Wenqiao An
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611100, China; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611100, China
| | - Qianqian Tian
- Faculty of Social Sciences, The University of Hong Kong, 999077, China
| | - Pengmei Guo
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611100, China
| | - Mingzhu Chen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611100, China
| | - Ting Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611100, China
| | - Peng Yang
- Chengdu Fifth People's Hospital, Chengdu, 611100, China.
| | - Sanyin Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611100, China.
| |
Collapse
|
4
|
Xu Z, Yang J, Hu Y, Wan Q, Wang X, Lu C, Liu Y. Qifu yixin prescription ameliorates cardiac fibrosis by activating soluble guanylate cyclase (sGC) in heart failure. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119229. [PMID: 39653101 DOI: 10.1016/j.jep.2024.119229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qifu yixin prescription (QYP), an effective traditional Chinese medicine formula, has been utilized in the clinical treatment of cardiovascular diseases for over two decades and has been granted a national invention patent in China. It has demonstrated the ability to improve clinical symptoms in patients with heart failure. However, its precise effects and underlying molecular mechanisms remain unclear. AIM OF THE STUDY To evaluate the efficacy of QYP in treating HF and the underlying mechanisms. MATERIALS AND METHODS The heart failure (HF) model in mice was established using transverse aortic constriction (TAC), while neonatal rat cardiac fibroblasts (CFs) were utilized for in vitro experiments. The bioactive compounds in QYP were identified through high-performance liquid chromatography (HPLC). Cardiac hypertrophy, function, and fibrosis were assessed using morphological observations, echocardiography, and histomorphometric analyses. To investigate the underlying mechanisms by which QYP alleviates HF, transcriptomic analysis was conducted, and network pharmacology was employed to explore its potential mechanisms of action. Mechanistically, the expression levels of sGC, PKG, ERK, and p-ERK were analyzed using western blotting, immunohistochemistry, and immunofluorescence. Molecular docking was conducted to assess the binding affinity of the compounds of QYP to sGC. Additionally, the effects of QYP on CFs were investigated through cell-based assays. RESULTS We identified 33 bioactive compounds in QYP. Histomorphometric and transcriptomic analyses indicated that QYP alleviates cardiac fibrosis in HF. Network pharmacological analysis suggested that the sGC/cGMP/PKG and MAPK pathways are key mechanisms underlying the effects of QYP on cardiac fibrosis. The findings confirmed that QYP activates sGC, leading to the inhibition of ERK phosphorylation. Molecular docking revealed that the compounds of QYP exhibit strong binding affinity to sGC. Additionally, cell-based experiments demonstrated that QYP effectively suppresses CFs activation by stimulating sGC. CONCLUSIONS These results indicate QYP improves cardiac fibrosis in HF by activating sGC to inhibit ERK phosphorylation. We propose that QYP is a potential treatment for HF with anti-fibrotic properties.
Collapse
Affiliation(s)
- Zhaohui Xu
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jiahui Yang
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yinqin Hu
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Qiqi Wan
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xinting Wang
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Cheng Lu
- Department of Cardiology, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China.
| | - Yongming Liu
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Cardiology, Anhui Hospital of Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Hefei Anhui, 230011, China.
| |
Collapse
|
5
|
Zhou P, Xu HJ, Wang L. Cardiovascular protective effects of natural flavonoids on intestinal barrier injury. Mol Cell Biochem 2025:10.1007/s11010-025-05213-2. [PMID: 39820766 DOI: 10.1007/s11010-025-05213-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
Natural flavonoids may be utilized as an important therapy for cardiovascular diseases (CVDs) caused by intestinal barrier damage. More research is being conducted on the protective properties of natural flavonoids against intestinal barrier injury, although the underlying processes remain unknown. Thus, the purpose of this article is to present current research on natural flavonoids to reduce the incidence of CVDs by protecting intestinal barrier injury, with a particular emphasis on intestinal epithelial barrier integrity (inhibiting oxidative stress, regulating inflammatory cytokine expression, and increasing tight junction protein expression). Furthermore, the mechanisms driving intestinal barrier injury development are briefly explored, as well as natural flavonoids having CVD-protective actions on the intestinal barrier. In addition, natural flavonoids with myocardial protective effects were docked with ZO-1 targets to find natural products with higher activity. These natural flavonoids can improve intestinal mechanical barrier function through anti-oxidant or anti-inflammatory mechanism, and then prevent the occurrence and development of CVDs.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Hui-Juan Xu
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Liang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China.
| |
Collapse
|
6
|
Wang W, Li Y, Zhang C, Zhou H, Li C, Cheng R, Chen X, Pu Y, Chen Y. Small Extracellular Vesicles from Young Healthy Human Plasma Inhibit Cardiac Fibrosis After Myocardial Infarction via miR-664a-3p Targeting SMAD4. Int J Nanomedicine 2025; 20:557-579. [PMID: 39830157 PMCID: PMC11740580 DOI: 10.2147/ijn.s488368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/05/2025] [Indexed: 01/22/2025] Open
Abstract
Purpose Cardiac fibrosis, a key contributor to ventricular pathologic remodeling and heart failure, currently lacks effective therapeutic approaches. Patients and Methods Small extracellular vesicles from young healthy human plasma (Young-sEVs) were characterized via protein marker, transmission electron microscopy, and nanoparticle tracking analysis, then applied in cellular models and mouse models of cardiac fibrosis. Western blotting and qRT-PCR were used to identify protective signaling pathways in cardiac fibroblasts (CFs). Results Young-sEVs significantly inhibited cardiac fibrosis and subsequent cardiac dysfunction post-myocardial infarction (MI) in mice. The main findings included that echocardiographic assessments four weeks post-MI indicated that Young-sEVs improved left ventricular ejection fraction (LVEF) and fractional shortening (LVFS), and reduced left ventricular internal diameter in diastole (LVIDd) and systole (LVIDs). Treatment with Young-sEVs also decreased Masson-positive fibroblast areas and collagen synthesis in cardiac tissue. However, sEVs from the old control group did not achieve the above effect. Consistent with in vivo results, Young-sEVs could also inhibit the proliferation, migration, and collagen synthesis of CFs in the TGF-β1-induced cellular fibrosis model. High-throughput microRNA (miRNA) sequencing and qRT-PCR analysis revealed that miR-664a-3p was abundant in Young-sEVs. The high expression of miR-664a-3p significantly inhibited the proliferation, migration, and collagen synthesis of TGF-β1-induced CFs. However, suppressing the expression of miR-664a-3p in Young-sEVs eliminated their therapeutic effect on cardiac fibrosis in mice. Further studies confirmed SMAD4 as a direct downstream target of miR-664a-3p, whose overexpression could reverse the anti-fibrotic effects of miR-664a-3p. Conclusion In summary, these findings firstly revealed that Young-sEVs could directly bind to the 3'-untranslated region of SMAD4 mRNA through miR-664a-3p, thereby inhibiting the TGF-β/SMAD4 signaling pathway to protect heart from fibrosis and improve cardiac function. Considering the ease of obtaining plasma-derived sEVs, our study offers a promising therapeutic strategy for heart failure, with the potential for rapid clinical translation in the near future.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Ying Li
- Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Cheng Zhang
- Long Jiang Central Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Haoyang Zhou
- Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Chunyu Li
- Long Jiang Intensive Care Unit, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Rong Cheng
- Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Xufeng Chen
- Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Yanan Pu
- Department of Clinical Laboratory, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Yan Chen
- Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Department of Emergency and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215000, People’s Republic of China
- Department of Emergency Management, School of Health Policy & Management, Nanjing Medical University, Nanjing, 211166, People’s Republic of China
| |
Collapse
|
7
|
Liang C, Jiang J, Li J, Lin X, Huang W, Lai KP, Chen J. The anti-melanoma roles and mechanisms of tricholoma isoflavone derivative CA028. NPJ Sci Food 2025; 9:4. [PMID: 39788977 PMCID: PMC11718060 DOI: 10.1038/s41538-025-00370-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025] Open
Abstract
As a form of skin cancer, melanoma's incidence rate is continuing to rise globally. Therefore, there is an urgent need to find new agents to improve survival in melanoma patients. Isoflavones, a class of phytoestrogens, are primarily found in soy and other legumes. Cumulating evidence demonstrates that isoflavones exhibits significant anti-tumor properties and is beneficial for the prevention and treatment of melanoma. In the present study, we aim to investigate the anti-melanoma role of tricholoma isoflavone derivative CA028. By using in vitro melanoma cell line models, A375 and A2058 and in vivo xenograft mouse model, our results indicate that melanoma proliferation, migration, and invasion are attenuated following CA028 treatment. In addition, the treatment of CA028 induced cell apoptosis of melanoma. Finally, we addressed the mechanism of CA028 against melanoma by comparative transcriptomic analysis. The results of gene ontology highlighted the involvement of CA028's targets in the cell proliferation, cell apoptosis, and migration ability of melanoma cells. Furthermore, Ingenuity Pathway Analysis constructed the network involved in the apoptotic roles of CA028 through targeting p53 signaling and death receptor signaling. For the first time, our data suggested the possible use of modified isoflavone for therapeutic applications against melanoma.
Collapse
Affiliation(s)
- Cheng Liang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, PR China
| | - Jianfu Jiang
- Department of Digestive Oncology, Yongfu County People's Hospital, Guilin City, Guangxi Province, PR China
| | - Jinkai Li
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, PR China
| | - Xiao Lin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Wenjun Huang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, PR China
| | - Keng Po Lai
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, PR China.
- Department of Applied Science, Hong Kong Metropolitan University, Hong Kong SAR, PR China.
| | - Jian Chen
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, PR China.
| |
Collapse
|
8
|
Zhang B, Hou J, Liu J, He J, Gao Y, Li G, Ma T, Lv X, Dong L, Yang W. Hydrogen decreases susceptibility to AngII-induced atrial fibrillation and atrial fibrosis via the NOX4/ROS/NLRP3 and TGF-β1/Smad2/3 signaling pathways. PLoS One 2025; 20:e0310852. [PMID: 39775356 PMCID: PMC11709313 DOI: 10.1371/journal.pone.0310852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/07/2024] [Indexed: 01/11/2025] Open
Abstract
Atrial fibrillation (AF) represents the commonly occurring cardiac arrhythmia and the main factor leading to stroke and heart failure. Hydrogen (H2) is a gaseous signaling molecule that has the effects of anti-inflammation and antioxidation. Our study provides evidence that hydrogen decreases susceptibility to AngII-mediated AF together with atrial fibrosis. Following continuous AngII administration for a 28-day period, AngII+H2 treated rats showed decreased susceptibility to AF, a decrease in atrial fibrosis, a decrease in ROS in atrial myocytes, an inhibition of NLRP3 inflammasome activation, an improvement in electrical remodeling, and an inhibition of proliferation and migration of cardiac fibroblasts. We further found that hydrogen regulates the activation of inflammasome and thus improves Ca2+ handling and IKAch and IKur by inhibiting the activity of NOX4 in vivo. In addition, hydrogen was involved in AngII-mediated atrial fibrosis through inhibiting TGF-β1/Smad2/3 pathway through suppressing TGF-β1 activation and secretion in vivo. Our findings suggest that hydrogen is important for preventing and treating AngII-mediated AF and atrial fibrosis, suggesting that hydrogen could be used as the candidate way to prevent and treat AF.
Collapse
Affiliation(s)
- Binmei Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jingxiu Hou
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaren Liu
- Department of Clinical Lab, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Junhui He
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yunan Gao
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Guangnan Li
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Tianjiao Ma
- Department of Cardiology, Nangang Branch of Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Xin Lv
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Li Dong
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Yang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
9
|
Chen Y, Wang Y, Lu Q, Zhao Y, Cruz J, Ma J, Ding G, Qiao X, Cheng X. Demyelination in cuprizone mice is ameliorated by calycosin mediated through astrocyte Nrf2 signaling pathway. Eur J Pharmacol 2024; 985:177090. [PMID: 39489278 DOI: 10.1016/j.ejphar.2024.177090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/27/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Oxidative stress plays a pivotal role in multiple sclerosis (MS), triggering demyelination predominantly through excessive peroxide production and the depletion of antioxidants. The accumulation of oxidative damage can be caused by dysregulation of astrocytes, which are the brain's main regulators of oxidative homeostasis. Calycosin, an essential bioactive component extracted from Astragalus, is recognized for its neuroprotective properties. Although recent research has highlighted calycosin's neuroprotective capabilities, its role in demyelinating conditions like MS remains unclear. In this work, we examined the possible molecular mechanism of calycosin's neuroprotective effect on cuprizone (CPZ)-induced demylination in mice. According to our research, calycosin successfully reduced demyelination and behavioral dysfuction in CPZ mice. Calycosin also decreased the production of oxidative stress and enhanced the expression of antioxidants in CPZ mice and in astrocytes induced by hydrogen peroxide (H2O2). Furthermore, both in vivo and in vitro experiments demonstrated that calycosin promoted the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) along with the upregulation of heme oxygenase 1 (HO-1), NAD(P)H quinone dehydrogenase 1 (NQO1), and superoxide dismutase (SOD). Importantly, the application of all-trans retinoic acid (ATRA), a specific inhibitor of Nrf2, effectively reversed the myelin-protective and antioxidant effects conferred by calycosin. This study suggested that calycosin might exert neuroprotection by inhibiting oxidative stress and reducing demyelination via the activation of astrocyte Nrf2 signaling. These findings indicated that calycosin might be a potential candidate for treating MS.
Collapse
Affiliation(s)
- Yuxin Chen
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yuanhua Wang
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Qijin Lu
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yan Zhao
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jennifer Cruz
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Doctoral Program of Acupuncture & Oriental Medicine, The Atlantic Institute of Oriental Medicine, Fort Lauderdale, FL, USA
| | - Jinyun Ma
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Guiqing Ding
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xi Qiao
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiaodong Cheng
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
10
|
Wu W, Yu N, Chen W, Zhu Y. ANRIL upregulates TGFBR1 to promote idiopathic pulmonary fibrosis in TGF-β1-treated lung fibroblasts via sequestering let-7d-5p. Epigenetics 2024; 19:2435682. [PMID: 39612365 DOI: 10.1080/15592294.2024.2435682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/20/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and life-threatening respiratory disease characterized by worsening lung function due to excessive scarring. The objective of this study was to investigate the role of the long non-coding RNA ANRIL (antisense non-coding RNA in the INK4 locus) in the development of IPF. Our research revealed a significant increase in ANRIL expression in pulmonary fibrosis, consistent with prior studies indicating elevated ANRIL levels in fibrotic tissues. In vitro experiments demonstrated that elevated ANRIL expression promoted fibroblast activation, as evidenced by the upregulation of fibrosis-related markers. Mechanistically, we found that ANRIL interacts with let-7d-5p, a microRNA involved in gene regulation, acting as a sponge for let-7d-5p. Functional experiments confirmed a potential influence of let-7d-5p on fibroblast activation through direct interaction with ANRIL. Furthermore, our investigation identified TGFBR1 as a potential mediator of ANRIL's fibrogenic effects. Silence of TGFBR1 mitigated the fibrotic phenotype induced by ANRIL overexpression. Collectively, these results suggest that ANRIL promotes fibroblast activation and fibrosis development, possibly through the let-7d-5p/TGFBR1 axis, indicating that ANRIL could be a potential therapeutic target for pulmonary fibrosis.
Collapse
Affiliation(s)
- Weidong Wu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou, Fujian, China
| | - Nanding Yu
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Department of Geriatric Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Weiming Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou, Fujian, China
| | - Yong Zhu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
11
|
Meng YQ, Cui X, Li S, Jin CH. Application of Compounds with Anti-Cardiac Fibrosis Activity: A Review. Chem Biodivers 2024; 21:e202401078. [PMID: 39223082 DOI: 10.1002/cbdv.202401078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Coronary heart disease, hypertension, myocarditis, and valvular disease cause myocardial fibrosis, leading to heart enlargement, heart failure, heart rate failure, arrhythmia, and premature ventricular beat, even defibrillation can increase the risk of sudden death. Although cardiac fibrosis is common and widespread, there are still no effective drugs to provide adequate clinical intervention for cardiac fibrosis. In this review article, we classify the compounds for treating cardiac fibrosis into natural products, synthetic compounds, and patent drugs according to their sources. Additionally, the structures, activities and signaling pathways of these compounds are discussed. This review provides insight and could provide a reference for the design of new anti-cardiac fibrosis compounds and the new use of older drugs.
Collapse
Affiliation(s)
- Yu-Qing Meng
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Xun Cui
- Department of Physiology, School of Medicinal Sciences, Yanbian University, Yanji, Jilin, 133002, China
| | - Siqi Li
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| |
Collapse
|
12
|
Han Q, Shi J, Yu Y, Yuan H, Guo Y, Liu X, Xue Y, Li Y. Calycosin alleviates ferroptosis and attenuates doxorubicin-induced myocardial injury via the Nrf2/SLC7A11/GPX4 signaling pathway. Front Pharmacol 2024; 15:1497733. [PMID: 39600362 PMCID: PMC11589554 DOI: 10.3389/fphar.2024.1497733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Background Heart failure is primarily characterized by damage to the structure and function of the heart. Ferroptosis represents a form of programmed cell death, and studies indicate that it constitutes one of the primary mechanisms underlying cardiomyocyte death in heart failure. Calycosin, a natural compound derived from astragalus, exhibits various pharmacological properties, including anti-ferroptosis, antioxidant effects, and cardiovascular protection. Nonetheless, the specific role of Calycosin in the treatment of ferroptosis in heart failure remains poorly understood. Objective This study aims to elucidate the regulatory effect of Calycosin on ferroptosis and its influence on the treatment mechanisms of heart failure through in vivo and in vitro experiments. Methods A rat model of heart failure was induced using doxorubicin, and the cardiac function was evaluated through cardiac ultrasound examination and NT-Pro BNP detection. Myocardial injury was assessed using H&E staining and Masson staining. The extent of mitochondrial damage was evaluated through transmission electron microscopy. Concurrently, the level of ferroptosis was analyzed by measuring ferroptosis markers, including MDA, ferrous ions, the GSH/GSSG ratio, and GPX4 activity. Subsequently, the molecular mechanism by which Calycosin exerts its therapeutic effects in heart failure was investigated through immunofluorescence and Western blotting. Finally, H9c2 cardiomyocytes were treated with doxorubicin to simulate myocardial injury, and the mechanism by which Calycosin mediates its effects in the treatment of heart failure was further verified through Nrf2 gene silencing. Results Calycosin significantly improves cardiac function in rats, reduces serum NT-Pro BNP levels, and alleviates myocardial cell damage. Additionally, it significantly decreases the levels of ferroptosis in myocardial tissue, as confirmed through transmission electron microscopy and the assessment of ferroptosis markers, including MDA, ferrous ions, GSH, and GPX4 activity. At the molecular level, Calycosin exerts its effects by activating the Nrf2/SLC7A11/GPX4 signaling pathway, evidenced by the upregulation of Nrf2, SLC7A11, GPX4, GSS, and GCL protein expression. This process substantially enhances the antioxidant capacity of rat myocardial tissue and effectively suppresses ferroptosis in myocardial cells. The results obtained from both in vivo and in vitro experiments are consistent. Notably, when Nrf2 is silenced, the protective effect of Calycosin on the myocardium is markedly diminished. Conclusion Calycosin effectively treats doxorubicin-induced cardiac injury, and its therapeutic effect is likely closely associated with the activation of the Nrf2/SLC7A11/GPX4 signaling pathway and the inhibition of ferroptosis in myocardial cells. Consequently, Calycosin, as a promising compound against doxorubicin-induced cardiotoxicity, warrants further investigation.
Collapse
Affiliation(s)
- Quancheng Han
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingle Shi
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiding Yu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huajing Yuan
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yonghong Guo
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiujuan Liu
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitao Xue
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Li
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
13
|
Cheng-Mei W, Luo G, Liu P, Ren W, Yang S. Potential Biomarkers in Myocardial Fibrosis: A Bioinformatic Analysis. Arq Bras Cardiol 2024; 121:e20230674. [PMID: 39699450 DOI: 10.36660/abc.20230674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 08/26/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Myocardial fibrosis (MF) occurs throughout the onset and progression of cardiovascular disease, and early diagnosis of MF is beneficial for improving cardiac function, but there is a lack of research on early biomarkers of MF. OBJECTIVES Utilizing bioinformatics techniques, we identified potential biomarkers for MF. METHODS Datasets related to MF were sourced from the GEO database. After processing the data, differentially expressed genes were screened. Differentially expressed genes were enriched, and subsequently, protein-protein interaction (PPI) was performed to analyze the differential genes. The associated miRNAs and transcription factors were predicted for these core genes. Finally, ROC validation was performed on the core genes to determine their specificity and sensitivity as potential biomarkers. The level of significance adopted was 5% (p < 0.05). RESULTS A total of 91 differentially expressed genes were identified, and PPI analysis yielded 31 central genes. Enrichment analysis showed that apoptosis, collagen, extracellular matrix, cell adhesion, and inflammation were involved in MF. One hundred and forty-two potential miRNAs were identified. the transcription factors JUN, NF-κB1, SP1, RELA, serum response factor (SRF), and STAT3 were enriched in most of the core targets. Ultimately, IL11, GADD45B, GDF5, NOX4, IGFBP3, ACTC1, MYOZ2, and ITGB8 had higher diagnostic accuracy and sensitivity in predicting MF based on ROC curve analysis. CONCLUSION Eight genes, IL11, GADD45B, GDF5, NOX4, IGFBP3, ACTC1, MYOZ2, and ITGB8, can serve as candidate biomarkers for MF. Processes such as cellular apoptosis, collagen protein synthesis, extracellular matrix formation, cellular adhesion, and inflammation are implicated in the development of MF.
Collapse
Affiliation(s)
- Wang Cheng-Mei
- Beibei Traditional Chinese Medicine Hospital, Chongqing - China
| | - Gang Luo
- The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan - China
| | - Ping Liu
- The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan - China
| | - Wei Ren
- The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan - China
| | - Sijin Yang
- The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan - China
| |
Collapse
|
14
|
Wu X, Liu A, Lv X, Zhi X, Zeng X, Liu K, Zhao X, Jiang B, Jiang H, Li Y. Network pharmacology and experimental study of Angelica sinensis and Astragalus membranaceus capsules in treating heart failure. Heliyon 2024; 10:e38851. [PMID: 39640819 PMCID: PMC11620105 DOI: 10.1016/j.heliyon.2024.e38851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 12/07/2024] Open
Abstract
Objective This study explores the mechanism of AAC in intervening heart failure (HF) using network pharmacology, molecular docking, and in vitro experimental validation. Methods The "active component-target" network and the "drug-disease target" protein interaction network were constructed using Cytoscape 3.9.0 and STRING Database. GO and KEGG enrichment analysis was performed using DAVID database. Then, the molecular docking of major compounds and target proteins was carried out using Autodock 1.5.7, and visualized with PyMOL 2.4.0 software. Finally, in vitro experimental validation was performed to explore the potential targets of AAC in treating HF. Results The study revealed significant targets implicated in a variety of GO bioprocess programs and KEGG signaling networks. The primary chemicals to have strong binding ability with target proteins in molecular docking, with quercetin having the best binding energy with MAPK at -6.72 Kcal/Mol.Validation of cellular experiments showed that AAC might reduce the apoptosis that doxorubicin causes in AC16 cells by controlling the levels of PIK3CA, AKT1, and MAPK1. Conclusion This study preliminarily reveals that AAC can treat HF through multiple components and multiple targets by using network pharmacology, molecular docking, and experimental validation.
Collapse
Affiliation(s)
- Xue Wu
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Department of Cardiology, The Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Ai Liu
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xinfang Lv
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaodong Zhi
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiangting Zeng
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of General Surgery,The Second Hospital of Lanzhou University, Lanzhou, China
| | - Kai Liu
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xinke Zhao
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Bing Jiang
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - HuGang Jiang
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Yingdong Li
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
15
|
Li J, Chen G, Xie Z, Lin J, Luo S, Xu S. Association Between Dietary Flavonoid Intake and Cardiovascular Health in Cancer Survivors: A Cross-Sectional Study. J Multidiscip Healthc 2024; 17:4815-4827. [PMID: 39449752 PMCID: PMC11499616 DOI: 10.2147/jmdh.s482310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Purpose Flavonoids are naturally occurring compounds with diverse health-promoting properties. The purpose of this study was to explore the associations between dietary flavonoid intake and cardiovascular health in cancer survivors. Patients and Methods We obtained data from the National Health and Nutrition Examination Survey (NHANES) 2007-2008, 2009-2010, and 2017-2018 cycles. Weighted linear regression and restricted cubic spline (RCS) were used to explore the correlation between dietary flavonoid intake and cardiovascular health (Life's Essential 8 (LE8) score) in cancer survivors. Then, weighted quantile sum (WQS) regression and quantile-based g-computation (qgcomp) models were performed to assess the mixed effects of the six flavonoid subclasses and to determine the major flavonoid types. Additionally, the protective effect of high flavonoid intake on cardiovascular health was further evaluated in different subgroups, and mediation analysis was used to explore mediating factors. Results After adjusting for all covariates, compared to those in the first quartile, participants in the fourth quartile of total flavonoids, anthocyanidins, flavonols, flavanones, and flavones intake exhibited increases in LE8 scores of 3.24% (95% CI: 0.45-6.03, P for trend=0.030), 6.25% (95% CI: 3.14-9.36, P for trend<0.001), 3.01% (95% CI: 1.33-4.69, P for trend= 0.003), 3.23% (95% CI: 0.18-6.27, P for trend=0.030), and 5.01% (95% CI: 2.42-7.61, P for trend<0.001), respectively. Meanwhile, significant non-linear relationships were supported by the RCS models. However, the weighted linear regression and RCS models did not reveal any clear correlations between isoflavone or flavan-3-ol intake and the LE8 score. Regarding mixed effects, anthocyanidin, flavonol, flavanone, and flavone intake were positively related to the LE8 score according to both the WQS and qgcomp models, and anthocyanidin intake was the major contributor. Conclusion Our study indicated that dietary flavonoid intake is positively associated with cardiovascular health in cancer survivors, among which anthocyanidin intake might provide the most benefit.
Collapse
Affiliation(s)
- Jing Li
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, Fujian, People’s Republic of China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Ganxiao Chen
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, Fujian, People’s Republic of China
| | - Zhanxiong Xie
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, Fujian, People’s Republic of China
| | - Jiayi Lin
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, Fujian, People’s Republic of China
| | - Shunxiang Luo
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, Fujian, People’s Republic of China
| | - Shanghua Xu
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, Fujian, People’s Republic of China
| |
Collapse
|
16
|
Guo S, Gong Z, Sun X, Gao F, Li X, Zu X, Qu C, Zhang H, Gao H. Consensus Clustering Analysis Identifies Ferroptosis-Related Patient Clusters and Predictive Signature Construction Based on Ferroptosis-Related Genes in Ischemic Cardiomyopathy. J Inflamm Res 2024; 17:6797-6814. [PMID: 39372582 PMCID: PMC11451430 DOI: 10.2147/jir.s475645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024] Open
Abstract
Background Ischemic cardiomyopathy (ICM) significantly contributes to global disease burden, while the role of ferroptosis in ICM remains underexplored. Methods We identified differentially expressed ferroptosis-related genes (DEFRGs) by analyzing the GSE57338 dataset and cross-referencing with FerrDb. Consensus clustering was then used to identify ferroptosis-associated clusters within the ICM samples. A ferroptosis-specific predictive signature was developed using the least absolute shrinkage and selection operator (LASSO) method and validated with the GSE5406 dataset. Additionally, quantitative real-time PCR (qRT-PCR) experiments were performed to validate the 11 feature genes in a rat ICM model. Results We identified 15 DEFRGs in GSE57338, which distinguished two patient clusters with distinct ferroptosis gene expression, pathway enrichment profiles, and metabolic characteristics. All DEFRGs were upregulated in cluster 2. Potential therapeutic targets were also identified for different ICM patient clusters. The 11-gene predictive signature (TXNRD1, STEAP3, STAT3, SCL2A1, PLIN2, NQO1, NNMT, IL33, ENPP2, ARRDC3, ALOX5) showed robust predictive power in both training and validation sets. High-risk patients exhibited increased infiltration of CD8+ T cells, CD4+ naïve T cells, M0/M1 macrophages, and resting mast cells, along with significant enrichment in epithelial mesenchymal transition and interferon responses. Low-risk patients had higher infiltration of regulatory T cells and monocytes. Results of qPCR analysis confirmed the bioinformatic analysis, validating the expression of the 11 feature genes in the rat ICM model. Conclusion We identified two ferroptosis-related clusters in ICM patients and developed a predictive signature based on ferroptosis-related genes. Our findings highlight the importance of ferroptosis in ICM and offer new insights for its diagnosis and treatment.
Collapse
Affiliation(s)
- Shuai Guo
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zhaoting Gong
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xiaona Sun
- Department of Cardiology, Laizhou City People’s Hospital, Laizhou, People’s Republic of China
| | - Fei Gao
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xiang Li
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xiaolin Zu
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Chao Qu
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Hongliang Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Hai Gao
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
17
|
Wang X, Chen K, Yao Y, Lin Y, Yang J, Zhu Y, Zhou B. TGFβ1-Induced Fibrotic Responses of Conjunctival Fibroblasts through the Wnt/β-Catenin/CRYAB Signaling Pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1764-1779. [PMID: 38879081 DOI: 10.1016/j.ajpath.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/29/2024]
Abstract
Conjunctival fibrosis is a common postoperative complication of glaucoma filtration surgery, resulting in uncontrolled intraocular pressure and surgery failure. Therefore, there is an urgent need to understand the molecular mechanisms underlying conjunctival fibrosis and to explore novel pharmacologic anti-fibrosis therapies for glaucoma filtration surgery. Herein, the 4-dimensional data-independent acquisition (4D-DIA) quantitative proteomic results, coupled with experimental data, revealed the activation of the Wnt/β-catenin pathway in transforming growth factor (TGF)-β1-induced human conjunctival fibroblasts (HConFs). Treatment with ICG-001, a Wnt/β-catenin inhibitor, effectively inhibited cell proliferation and migration in TGFβ1-treated HConFs. ICG-001 treatment alleviated the increased generation of extracellular matrix proteins induced by TGFβ1. In addition, ICG-001 reduced the expression level of α smooth muscle actin (α-SMA) and inhibited cell contractility in TGFβ1-treated HConFs. Proteomics data further suggested that αB-crystallin (CRYAB) was a downstream target of Wnt/β-catenin, which was up-regulated by TGFβ1 and down-regulated by ICG-001. Immunoblotting assay also indicated that ICG-001 reduced the expressions of ubiquitin and β-catenin in TGFβ1-treated HConFs, implying that CRYAB stabilized β-catenin by inhibiting its ubiquitination degradation. Exogenous CRYAB promoted cell viability, increased extracellular matrix protein levels, and up-regulated α-SMA expression of HConFs under TGFβ1 stimulation. CRYAB rescued TGFβ1-induced fibrotic responses that were suppressed by ICG-001. In conclusion, this study elucidates the regulatory mechanism of the Wnt/β-catenin/CRYAB pathway in conjunctival fibrosis, offering promising therapeutic targets for mitigating bleb scarring after glaucoma filtration surgery.
Collapse
Affiliation(s)
- Xiaohui Wang
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; the Department of Ophthalmology
| | - Kaiping Chen
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; the Department of Ophthalmology
| | - Yihua Yao
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; the Department of Ophthalmology
| | - Yijun Lin
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; and the Department of Bioengineering and Biopharmaceutics
| | - Juhua Yang
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yihua Zhu
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; the Department of Ophthalmology.
| | - Biting Zhou
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; the Department of Ophthalmology.
| |
Collapse
|
18
|
Wang M, Mo D, Zhang N, Yu H. Ferroptosis in diabetic cardiomyopathy: Advances in cardiac fibroblast-cardiomyocyte interactions. Heliyon 2024; 10:e35219. [PMID: 39165946 PMCID: PMC11334834 DOI: 10.1016/j.heliyon.2024.e35219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a common complication of diabetes, and its pathogenesis remains elusive. Ferroptosis, a process dependent on iron-mediated cell death, plays a crucial role in DCM via disrupted iron metabolism, lipid peroxidation, and weakened antioxidant defenses. Hyperglycemia, oxidative stress, and inflammation may exacerbate ferroptosis in diabetes. This review emphasizes the interaction between cardiac fibroblasts and cardiomyocytes in DCM, influencing ferroptosis occurrence. By exploring ferroptosis modulation for potential therapeutic targets, this article offers a fresh perspective on DCM treatment. The study systematically covers the interplay, mechanisms, and targeted drugs linked to ferroptosis in DCM development.
Collapse
Affiliation(s)
| | | | - Ning Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Haichu Yu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| |
Collapse
|
19
|
Wu YT, Zhang GY, Li L, Liu B, Wang RY, Song RQ, Hua Y, Bi YM, Han X, Zhang F, Wang D, Xie LP, Zhou YC. Salvia miltiorrhiza suppresses cardiomyocyte ferroptosis after myocardial infarction by activating Nrf2 signaling. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118214. [PMID: 38641076 DOI: 10.1016/j.jep.2024.118214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ferroptosis, a recently identified non-apoptotic form of cell death reliant on iron, is distinguished by an escalation in lipid reactive oxygen species (ROS) that are iron-dependent. This phenomenon has a strong correlation with irregularities in iron metabolism and lipid peroxidation. Salvia miltiorrhiza Bunge (DS), a medicinal herb frequently utilized in China, is highly esteemed for its therapeutic effectiveness in enhancing blood circulation and ameliorating blood stasis, particularly during the treatment of cardiovascular diseases (CVDs). Numerous pharmacological studies have identified that DS manifests antioxidative stress effects as well as inhibits lipid peroxidation. However, ambiguity persists regarding the potential of DS to impede ferroptosis in cardiomyocytes and subsequently improve myocardial damage post-myocardial infarction (MI). AIM OF THE STUDY The present work focused on investigating whether DS could be used to prevent the ferroptosis of cardiomyocytes and improve post-MI myocardial damage. MATERIALS AND METHODS In vivo experiments: Through ligation of the left anterior descending coronary artery, we constructed both a wild-type (WT) and NF-E2 p45-related factor 2 knockout (Nrf2-/-) mouse model of MI. Effects of DS and ferrostatin-1 (Fer-1) on post-MI cardiomyocyte ferroptosis were examined through detecting ferroptosis and myocardial damage-related indicators as well as Nrf2 signaling-associated protein levels. In vitro experiments: Erastin was used for stimulating H9C2 cardiomyocytes to construct an in vitro ferroptosis cardiomyocyte model. Effects of DS and Fer-1 on cardiomyocyte ferroptosis were determined based on ferroptosis-related indicators and Nrf2 signaling-associated protein levels. Additionally, inhibitor and activator of Nrf2 were used for confirming the impact of Nrf2 signaling on DS's effect on cardiomyocyte ferroptosis. RESULTS In vivo: In comparison to the model group, DS suppressed ferroptosis in cardiomyocytes post-MI and ameliorated myocardial damage by inducing Nrf2 signaling-related proteins (Nrf2, xCT, GPX4), diminishing tissue ferrous iron and malondialdehyde (MDA) content. Additionally, it enhanced glutathione (GSH) levels and total superoxide dismutase (SOD) activity, effects that are aligned with those of Fer-1. Moreover, the effect of DS on alleviating cardiomyocyte ferroptosis after MI could be partly inhibited through Nrf2 knockdown. In vitro: Compared with the erastin group, DS inhibited cardiomyocyte ferroptosis by promoting the expression of Nrf2 signaling-related proteins, reducing ferrous iron, ROS, and MDA levels, but increasing GSH content and SOD activity, consistent with the effect of Fer-1. Additionally, Nrf2 inhibition increased erastin-mediated ferroptosis of cardiomyocytes through decreasing Nrf2 signaling-related protein expressions. Co-treatment with DS and Nrf2 activator failed to further enhance the anti-ferroptosis effect of DS. CONCLUSION MI is accompanied by cardiomyocyte ferroptosis, whose underlying mechanism is probably associated with Nrf2 signaling inhibition. DS possibly suppresses ferroptosis of cardiomyocytes and improves myocardial damage after MI through activating Nrf2 signaling.
Collapse
Affiliation(s)
- Yu-Ting Wu
- Binzhou Medical University Hospital, Binzhou, 256603, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Guo-Yong Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Lei Li
- Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Bin Liu
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Ru-Yu Wang
- School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | | | - Yue Hua
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yi-Ming Bi
- The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University, Guangzhou, 510000, China
| | - Xin Han
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Feng Zhang
- Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Dong Wang
- Binzhou Medical University Hospital, Binzhou, 256603, China.
| | - Ling-Peng Xie
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, China.
| | - Ying-Chun Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
20
|
Jiang W, Deng B, Xie M, Feng Y, Jiang X, Yang B, Tan Z, Ou H, Tan Y, Liu S, Zhang S, Zhang J, Zhou Y, Wu W, Liu B. Caffeic acid mitigates myocardial fibrosis and improves heart function in post-myocardial infarction by inhibiting transforming growth factor-β receptor 1 signaling pathways. Biomed Pharmacother 2024; 177:117012. [PMID: 38906025 DOI: 10.1016/j.biopha.2024.117012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024] Open
Abstract
Myocardial fibrosis is a pathological, physiological change that results from alterations, such as inflammation and metabolic dysfunction, after myocardial infarction (MI). Excessive fibrosis can cause cardiac dysfunction, ventricular remodeling, and heart failure. Caffeic acid (CA), a natural polyphenolic acid in various foods, has cardioprotective effects. This study aimed to explore whether CA exerts a cardioprotective effect to inhibit myocardial fibrosis post-MI and elucidate the underlying mechanisms. Histological observations indicated that CA ameliorated ventricular remodeling induced by left anterior descending coronary artery ligation in MI mice and partially restored cardiac function. CA selectively targeted transforming growth factor-β receptor 1 (TGFBR1) and inhibited TGFBR1-Smad2/3 signaling, reducing collagen deposition in the infarcted area of MI mice hearts. Furthermore, cell counting (CCK-8) assay, 5-ethynyl-2'-deoxyuridine assay, and western blotting revealed that CA dose-dependently decreased the proliferation, collagen synthesis, and activation of the TGFBR1-Smad2/3 pathway in primary cardiac fibroblasts (CFs) stimulated by TGF-β1 in vitro. Notably, TGFBR1 overexpression in CFs partially counteracted the inhibitory effects of CA. These findings suggest that CA effectively mitigates myocardial fibrosis and enhances cardiac function following MI and that this effect may be associated with the direct targeting of TGFBR1 by CA.
Collapse
Affiliation(s)
- Weihao Jiang
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgangdong Road, Guangzhou 510260, China
| | - Bo Deng
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgangdong Road, Guangzhou 510260, China
| | - Mengting Xie
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgangdong Road, Guangzhou 510260, China
| | - Yunting Feng
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgangdong Road, Guangzhou 510260, China
| | - Xiaoli Jiang
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgangdong Road, Guangzhou 510260, China
| | - Bo Yang
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgangdong Road, Guangzhou 510260, China
| | - Zhangbin Tan
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgangdong Road, Guangzhou 510260, China
| | - Hongbin Ou
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgangdong Road, Guangzhou 510260, China
| | - Yongzhen Tan
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgangdong Road, Guangzhou 510260, China
| | - Shaojun Liu
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Shuangwei Zhang
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgangdong Road, Guangzhou 510260, China
| | - Jingzhi Zhang
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgangdong Road, Guangzhou 510260, China
| | - Yingchun Zhou
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China.
| | - Weiwei Wu
- Department of Rehabilitation, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| | - Bin Liu
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgangdong Road, Guangzhou 510260, China.
| |
Collapse
|
21
|
Yoshida Y, Fukuoka K, Sakugawa M, Kurogi M, Hamamura K, Hamasaki K, Tsurusaki F, Sotono K, Nishi T, Fukuda T, Kumamoto T, Oyama K, Ogino T, Tsuruta A, Mayanagi K, Yamashita T, Fuchino H, Kawahara N, Yoshimatsu K, Kawakami H, Koyanagi S, Matsunaga N, Ohdo S. Inhibition of G protein-coupled receptor 68 using homoharringtonine attenuates chronic kidney disease-associated cardiac impairment. Transl Res 2024; 269:31-46. [PMID: 38401836 DOI: 10.1016/j.trsl.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/22/2023] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Chronic kidney disease (CKD) induces cardiac inflammation and fibrosis and reduces survival. We previously demonstrated that G protein-coupled receptor 68 (GPR68) promotes cardiac inflammation and fibrosis in mice with 5/6 nephrectomy (5/6Nx) and patients with CKD. However, no method of GPR68 inhibition has been found that has potential for therapeutic application. Here, we report that Cephalotaxus harringtonia var. nana extract and homoharringtonine ameliorate cardiac inflammation and fibrosis under CKD by suppressing GPR68 function. Reagents that inhibit the function of GPR68 were explored by high-throughput screening using a medicinal plant extract library (8,008 species), and we identified an extract from Cephalotaxus harringtonia var. nana as a GPR68 inhibitor that suppresses inflammatory cytokine production in a GPR68 expression-dependent manner. Consumption of the extract inhibited inflammatory cytokine expression and cardiac fibrosis and improved the decreased survival attributable to 5/6Nx. Additionally, homoharringtonine, a cephalotaxane compound characteristic of C. harringtonia, inhibited inflammatory cytokine production. Homoharringtonine administration in drinking water alleviated cardiac fibrosis and improved heart failure and survival in 5/6Nx mice. A previously unknown effect of C. harringtonia extract and homoharringtonine was revealed in which GPR68-dependent inflammation and cardiac dysfunction were suppressed. Utilizing these compounds could represent a new strategy for treating GPR68-associated diseases, including CKD.
Collapse
Affiliation(s)
- Yuya Yoshida
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Kohei Fukuoka
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Miyu Sakugawa
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Masayuki Kurogi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Kengo Hamamura
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Keika Hamasaki
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Fumiaki Tsurusaki
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Kurumi Sotono
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Takumi Nishi
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Taiki Fukuda
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Taisei Kumamoto
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Kosuke Oyama
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Takashi Ogino
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Akito Tsuruta
- Department of Glocal Healthcare Science, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Kouta Mayanagi
- Department of Drug Discovery Structural Biology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomohiro Yamashita
- Department of Drug Discovery Structural Biology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroyuki Fuchino
- Tsukuba Division, Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| | - Nobuo Kawahara
- Tsukuba Division, Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan; The Kochi Prefectural Makino Botanical Garden, 4200-6, Godaisan, Kochi 781-8125, Japan
| | - Kayo Yoshimatsu
- Tsukuba Division, Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| | - Hitomi Kawakami
- Tsukuba Division, Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| | - Satoru Koyanagi
- Department of Glocal Healthcare Science, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Naoya Matsunaga
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
| | - Shigehiro Ohdo
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
22
|
Wang Z, Liu C, Wei J, Yuan H, Shi M, Zhang F, Zeng Q, Huang A, Du L, Li Y, Guo Z. Network and Experimental Pharmacology on Mechanism of Yixintai Regulates the TMAO/PKC/NF-κB Signaling Pathway in Treating Heart Failure. Drug Des Devel Ther 2024; 18:1415-1438. [PMID: 38707614 PMCID: PMC11069381 DOI: 10.2147/dddt.s448140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Objective This study aims to explore the mechanism of action of Yixintai in treating chronic ischemic heart failure by combining bioinformatics and experimental validation. Materials and Methods Five potential drugs for treating heart failure were obtained from Yixintai (YXT) through early mass spectrometry detection. The targets of YXT for treating heart failure were obtained by a search of online databases. Gene ontology (GO) functional enrichment analysis and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses were conducted on the common targets using the DAVID database. A rat heart failure model was established by ligating the anterior descending branch of the left coronary artery. A small animal color Doppler ultrasound imaging system detected cardiac function indicators. Hematoxylin-eosin (HE), Masson's, and electron microscopy were used to observe the pathological morphology of the myocardium in rats with heart failure. The network pharmacology analysis results were validated by ELISA, qPCR, and Western blotting. Results A total of 107 effective targets were obtained by combining compound targets and eliminating duplicate values. PPI analysis showed that inflammation-related proteins (TNF and IL1B) were key targets for treating heart failure, and KEGG enrichment suggested that NF-κB signaling pathway was a key pathway for YXT treatment of heart failure. Animal model validation results indicated the following: YXT can significantly reduce the content of intestinal microbiota metabolites such as trimethylamine oxide (TMAO) and improve heart failure by improving the EF and FS values of heart ultrasound in rats and reducing the levels of serum NT-proBNP, ANP, and BNP to improve heart failure. Together, YXT can inhibit cardiac muscle hypertrophy and fibrosis in rats and improve myocardial ultrastructure and serum IL-1β, IL-6, and TNF-α levels. These effects are achieved by inhibiting the expressions of NF-κB and PKC. Conclusion YXT regulates the TMAO/PKC/NF-κB signaling pathway in heart failure.
Collapse
Affiliation(s)
- Ziyan Wang
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Chengxin Liu
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Jiaming Wei
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Hui Yuan
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Min Shi
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Fei Zhang
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Qinghua Zeng
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Aisi Huang
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Lixin Du
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Ya Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Zhihua Guo
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| |
Collapse
|
23
|
Yao J, Peng T, Shao C, Liu Y, Lin H, Liu Y. The Antioxidant Action of Astragali radix: Its Active Components and Molecular Basis. Molecules 2024; 29:1691. [PMID: 38675511 PMCID: PMC11052376 DOI: 10.3390/molecules29081691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Astragali radix is a traditional medicinal herb with a long history and wide application. It is frequently used in prescriptions with other medicinal materials to replenish Qi. According to the classics of traditional Chinese medicine, Astragali radix is attributed with properties such as Qi replenishing and surface solidifying, sore healing and muscle generating, and inducing diuresis to reduce edema. Modern pharmacological studies have demonstrated that some extracts and active ingredients in Astragali radix function as antioxidants. The polysaccharides, saponins, and flavonoids in Astragali radix offer beneficial effects in preventing and controlling diseases caused by oxidative stress. However, there is still a lack of comprehensive research on the effective components and molecular mechanisms through which Astragali radix exerts antioxidant activity. In this paper, we review the active components with antioxidant effects in Astragali radix; summarize the content, bioavailability, and antioxidant mechanisms; and offer a reference for the clinical application of Astragalus and the future development of novel antioxidants.
Collapse
Affiliation(s)
- Juan Yao
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, China; (T.P.); (C.S.); (H.L.)
| | - Ting Peng
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, China; (T.P.); (C.S.); (H.L.)
| | - Changxin Shao
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, China; (T.P.); (C.S.); (H.L.)
| | - Yuanyuan Liu
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730013, China;
| | - Huanhuan Lin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, China; (T.P.); (C.S.); (H.L.)
| | - Yongqi Liu
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730013, China;
| |
Collapse
|
24
|
Xu H, Yu S, Lin C, Dong D, Xiao J, Ye Y, Wang M. Roles of flavonoids in ischemic heart disease: Cardioprotective effects and mechanisms against myocardial ischemia and reperfusion injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155409. [PMID: 38342018 DOI: 10.1016/j.phymed.2024.155409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/30/2023] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Flavonoids are extensively present in fruits, vegetables, grains, and medicinal plants. Myocardial ischemia and reperfusion (MI/R) comprise a sequence of detrimental incidents following myocardial ischemia. Research indicates that flavonoids have the potential to act as cardioprotective agents against MI/R injuries. Several specific flavonoids, e.g., luteolin, hesperidin, quercetin, kaempferol, and puerarin, have demonstrated cardioprotective activities in animal models. PURPOSE The objective of this review is to identify the cardioprotective flavonoids, investigate their mechanisms of action, and explore their application in myocardial ischemia. METHODS A search of PubMed database and Google Scholar was conducted using keywords "myocardial ischemia" and "flavonoids". Studies published within the last 10 years reporting on the cardioprotective effects of natural flavonoids on animal models were analyzed. RESULTS A total of 55 natural flavonoids were identified and discussed within this review. It can be summarized that flavonoids regulate the following main strategies: antioxidation, anti-inflammation, calcium modulation, mitochondrial protection, ER stress inhibition, anti-apoptosis, ferroptosis inhibition, autophagy modulation, and inhibition of adverse cardiac remodeling. Additionally, the number and position of OH, 3'4'-catechol, C2=C3, and C4=O may play a significant role in the cardioprotective activity of flavonoids. CONCLUSION This review serves as a reference for designing a daily diet to prevent or reduce damages following ischemia and screening of flavonoids for clinical application.
Collapse
Affiliation(s)
- Hui Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 508060, PR China
| | - Shenglong Yu
- Department of Cardiovascular, Panyu Central Hospital, Guangzhou, 511400, PR China
| | - Chunxi Lin
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Dingjun Dong
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, PR China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense, Campus, E-32004 Ourense, Spain
| | - Yanbin Ye
- Department of Clinical Nutrition, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, PR China.
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 508060, PR China.
| |
Collapse
|
25
|
Xu C, Chang W, Jiang H, Liu X, Liu S, Wang D, Xiao Y. Calycosin Induces Ferroptosis by SLC7A11 Through the PI3K/Akt Pathway in Acute Myelocytic Leukemia. REVISTA BRASILEIRA DE FARMACOGNOSIA 2024; 34:776-784. [DOI: 10.1007/s43450-023-00502-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2025]
|
26
|
Zhang G, Han X, Xu T, Liu M, Chen G, Xie L, Xu H, Hua Y, Pang M, Hu C, Wu Y, Liu B, Zhou Y. Buyang Huanwu Decoction suppresses cardiac inflammation and fibrosis in mice after myocardial infarction through inhibition of the TLR4 signalling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117388. [PMID: 37949329 DOI: 10.1016/j.jep.2023.117388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE It has been reported that cardiac inflammation and fibrosis participate in the development of heart failure (HF) following myocardial infarction (MI). Anti-inflammatory and anti-fibrotic treatments exhibit therapeutic efficacy in MI. Buyang Huanwu Decoction (BYHWD) has cardioprotective properties. However, whether BYHWD regulates cardiac inflammation and fibrosis in HF after MI, and the underlying mechanisms, are still unknown. AIM OF THE STUDY This study aimed to explore the effects and potential mechanisms of BYHWD on cardiac inflammation and fibrosis after MI. MATERIALS AND METHODS An MI model was constructed through ligation of the left anterior descending coronary artery (LAD) in mice. The cardioprotective effects of BYHWD were determined by echocardiography, Masson trichrome staining, wheat germ agglutinin (WGA) staining and haematoxylin and eosin (HE) staining. The effects of BYHWD on inflammation and fibrosis, and on the TLR4 signalling pathway, were explored through immunohistochemistry (IHC), Western blot (WB), enzyme-linked immunosorbent assay (ELISA) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) in vivo. Next, the effects of BYHWD on primary cardiac fibroblasts (CFs) inflammation and collagen synthesis, and on the TLR4 signalling pathway, were detected using WB, immunofluorescence (IF) and qRT-PCR in vitro. In addition, the suppression and overexpression of TLR4 in CFs were further explored. RESULTS BYHWD dose-dependently reduced cardiac inflammation, fibrosis and ventricular dysfunction. The expression levels of collagen Ⅰ/Ⅲ, IL-1β and IL-18, as well as critical proteins in the TLR4 signalling pathway and the NLRP3 inflammasome, were suppressed by BYHWD in the in vivo experiment. BYHWD inhibited CFs inflammation and collagen synthesis, as well as critical proteins in the TLR4 signalling pathway and the NLRP3 inflammasome, in the in vitro experiment. TLR4 suppression mitigated these inhibitory effects of BYHWD while overexpression of TLR4 markedly reversed these inhibitory effects of BYHWD. CONCLUSION BYHWD exerts anti-inflammatory and anti-fibrotic effects in mice after MI, and suppresses CFs inflammation and collagen synthesis through suppression of the TLR4 signalling pathway.
Collapse
Affiliation(s)
- Guoyong Zhang
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xin Han
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Tong Xu
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Min Liu
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Guanghong Chen
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Lingpeng Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Hepatology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Honglin Xu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Department of geratology, Affliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
| | - Yue Hua
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Mingjie Pang
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Changlei Hu
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yuting Wu
- Binzhou Medical University Hospital, Binzhou, 256603, China.
| | - Bin Liu
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Yingchun Zhou
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
27
|
Lu P, Zhang M, Chen Z, Xu Q, Liu M, Zhao F, Liu X, Wang X. Salvianolic Acid B Inhibits Myocardial Fibrosis during Diabetic Cardiomyopathy via Suppressing TRPC6 and TGF‐ β/Smad3 Pathway. J Food Biochem 2024; 2024. [DOI: 10.1155/2024/5525825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 07/18/2024] [Indexed: 01/05/2025]
Abstract
Salvianolic acid B (Sal B), the main water‐soluble polyphenolic constituent of Danshen, is noted for its anti‐inflammatory, antioxidant, and antiapoptotic properties, particularly in cardiovascular protection. However, the mechanisms by which Sal B affects myocardial fibrosis require further investigation. In vivo, we established a diabetic mouse model using a high‐fat diet and intraperitoneal streptozotocin (STZ) administration. Mice were then treated with Sal B, the transient receptor potential channel 6 (TRPC6) inducers, or their combination. Upregulation of TRPC6 worsened myocardial pathology, leading to cardiac hypertrophy and collagen fiber deposition. In vitro, transforming growth factor (TGF)‐β1 induced transdifferentiation of cardiac fibroblasts into myofibroblasts, creating a myofibroblast cell model. Sal B, TRPC6 inducers, or their combination were administered. TRPC6 upregulation increased procollagen type I C‐terminal propeptide (PICP) and procollagen type III N‐terminal propeptide (PIIINP) secretion, promoting myofibroblast proliferation and migration. Our study indicates that TRPC6 expression is upregulated in myocardial fibrosis, enhancing TGF‐β/Smad3 signaling and promoting collagen I (COL‐1) synthesis. Sal B inhibited abnormal TRPC6 expression and TGF‐β/Smad3 activation, mitigating these effects. Thus, Sal B alleviates myocardial fibrosis in diabetes by modulating TRPC6 expression and TGF‐β/Smad3 signaling pathway.
Collapse
|
28
|
Zeng KF, Wang HJ, Deng B, Chen TF, Chen JB, Ding WJ, Chen S, Xie JD, Lu SM, Chen GH, Zhang Y, Tan ZB, Ou HB, Tan YZ, Zhang SW, Zhou YC, Zhang JZ, Liu B. Ethyl ferulate suppresses post-myocardial infarction myocardial fibrosis by inhibiting transforming growth factor receptor 1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155118. [PMID: 37801895 DOI: 10.1016/j.phymed.2023.155118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND With an increasing number of myocardial infarction (MI) patients, myocardial fibrosis is becoming a widespread health concern. It's becoming more and more urgent to conduct additional research and investigations into efficient treatments. Ethyl ferulate (EF) is a naturally occurring substance with cardioprotective properties. However, the extent of its impact and the underlying mechanism of its treatment for myocardial fibrosis after MI remain unknown. PURPOSE The goal of this study was to look into how EF affected the signaling of the TGF-receptor 1 (TGFBR1) in myocardial fibrosis after MI. METHODS Echocardiography, hematoxylin-eosin (HE) and Masson trichrome staining were employed to assess the impact of EF on heart structure and function in MI-affected mice in vivo. Cell proliferation assay (MTS), 5-Ethynyl-2'-deoxyuridine (EdU), and western blot techniques were employed to examine the influence of EF on native cardiac fibroblast (CFs) proliferation and collagen deposition. Molecular simulation and surface plasmon resonance imaging (SPRi) were utilized to explore TGFBR1 and EF interaction. Cardiac-specific Tgfbr1 knockout mice (Tgfbr1ΔMCK) were utilized to testify to the impact of EF. RESULTS In vivo experiments revealed that EF alleviated myocardial fibrosis, improved cardiac dysfunction after MI and downregulated the TGFBR1 signaling in a dose-dependent manner. Moreover, in vitro experiments revealed that EF significantly inhibited CFs proliferation, collagen deposition and TGFBR1 signaling followed by TGF-β1 stimulation. More specifically, molecular simulation, molecular dynamics, and SPRi collectively showed that EF directly targeted TGFBR1. Lastly, knocking down of Tgfbr1 partially reversed the inhibitory activity of EF on myocardial fibrosis in MI mice. CONCLUSION EF attenuated myocardial fibrosis post-MI by directly suppressing TGFBR1 and its downstream signaling pathway.
Collapse
Affiliation(s)
- Ke-Feng Zeng
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, 250 Changgangdong Road, Guangzhou 510260, China
| | - Hui-Juan Wang
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, 250 Changgangdong Road, Guangzhou 510260, China
| | - Bo Deng
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, 250 Changgangdong Road, Guangzhou 510260, China
| | - Ting-Fang Chen
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, 250 Changgangdong Road, Guangzhou 510260, China
| | - Jun-Bang Chen
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, 250 Changgangdong Road, Guangzhou 510260, China
| | - Wen-Jun Ding
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, 250 Changgangdong Road, Guangzhou 510260, China
| | - Si Chen
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, 250 Changgangdong Road, Guangzhou 510260, China
| | - Jun-di Xie
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, 250 Changgangdong Road, Guangzhou 510260, China
| | - Si-Min Lu
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, 250 Changgangdong Road, Guangzhou 510260, China
| | - Guang-Hong Chen
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China
| | - Ying Zhang
- The Second Clinical School of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, China
| | - Zhang-Bin Tan
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, 250 Changgangdong Road, Guangzhou 510260, China
| | - Hong-Bin Ou
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, 250 Changgangdong Road, Guangzhou 510260, China
| | - Yong-Zhen Tan
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, 250 Changgangdong Road, Guangzhou 510260, China
| | - Shuang-Wei Zhang
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, 250 Changgangdong Road, Guangzhou 510260, China
| | - Ying-Chun Zhou
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China.
| | - Jing-Zhi Zhang
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, 250 Changgangdong Road, Guangzhou 510260, China.
| | - Bin Liu
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, 250 Changgangdong Road, Guangzhou 510260, China.
| |
Collapse
|
29
|
Carvalho A, Ji Z, Zhang R, Zuo W, Qu Y, Chen X, Tao Z, Ji J, Yao Y, Ma G. Inhibition of miR-195-3p protects against cardiac dysfunction and fibrosis after myocardial infarction. Int J Cardiol 2023; 387:131128. [PMID: 37356730 DOI: 10.1016/j.ijcard.2023.131128] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
Cardiac fibrosis following myocardial infarction is a major risk factor for heart failure. Recent evidence suggests that miR-195-3p is up-regulated in fibrotic diseases, including kidney and liver fibrosis. However, its function and underlying mechanisms in cardiac fibrosis after MI remain unknown. To investigate the role of miR-195-3p in MI-induced cardiac fibrosis, we established acute MI models by ligating adult C57B/L6 mice LAD coronary artery while sham-operated mice were used as controls. In vivo inhibition of miR-195-3p was conducted by intramyocardial injection of AAV9-anti-miR-195-3p. In vitro overexpression and inhibition of miR-195-3p were performed by transfecting cultured Cardiac Fibroblasts (CFs) with synthetic miRNA mimic and inhibitor. Our results showed that MI induced the expression of miR-195-3p and that inhibition of miR-195-3p reduced myofibroblast differentiation and collagen deposition and protected cardiac function. In vitro stimulation of CFs with TGF-β1 resulted in a significant increase in miR-195-3p expression. Inhibition of miR-195-3p attenuated the TGF-β1-induced expression of ECM proteins, migration, and proliferation. PTEN expression was significantly reduced in the hearts of MI mice, in activated CFs, and in CFs transfected with miR-195-3p mimic. Inhibition of miR-195-3p markedly restored PTEN expression in MI mice and TGF-β1-treated CFs. In conclusion, this study highlights the crucial role of miR-195-3p in promoting cardiac fibrosis and dysfunction after MI. Inhibiting miR-195-3p could be a promising therapeutic strategy for preventing cardiac fibrosis and preserving cardiac function after MI. Additionally, the study sheds light on the mechanisms underlying the effects of miR-195-3p on fibrosis, including its regulation of PTEN/AKT pathway.
Collapse
Affiliation(s)
- Abdlay Carvalho
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Rui Zhang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Wenjie Zuo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Yangyang Qu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Xi Chen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Zaixiao Tao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Jingjing Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Yuyu Yao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
30
|
Ren Z, Zhang Z, Ling L, Liu X, Wang X. Drugs for treating myocardial fibrosis. Front Pharmacol 2023; 14:1221881. [PMID: 37771726 PMCID: PMC10523299 DOI: 10.3389/fphar.2023.1221881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Myocardial fibrosis, which is a common pathological manifestation of many cardiovascular diseases, is characterized by excessive proliferation, collagen deposition and abnormal distribution of extracellular matrix fibroblasts. In clinical practice, modern medicines, such as diuretic and β receptor blockers, and traditional Chinese medicines, such as salvia miltiorrhiza and safflower extract, have certain therapeutic effects on myocardial fibrosis. We reviewed some representative modern medicines and traditional Chinese medicines (TCMs) and their related molecular mechanisms for the treatment of myocardial fibrosis. These drugs alleviate myocardial fibrosis by affecting related signaling pathways and inhibiting myocardial fibrosis-related protein synthesis. This review will provide more references and help for the research and treatment of myocardial fibrosis.
Collapse
Affiliation(s)
- Zhanhong Ren
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zixuan Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Li Ling
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xiufen Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xin Wang
- School of Mathematics and Statistics, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
31
|
Han J, Zhang Y, Peng H. Fucoxanthin inhibits cardiac fibroblast transdifferentiation by alleviating oxidative stress through downregulation of BRD4. PLoS One 2023; 18:e0291469. [PMID: 37699016 PMCID: PMC10497131 DOI: 10.1371/journal.pone.0291469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Myocardial fibrosis can lead to ischemic damage of the myocardium, which can be life-threatening in severe cases. Cardiac fibroblast (CF) transdifferentiation is an important process in myocardial fibrosis. Fucoxanthin (FX) plays a key role in ameliorating myocardial fibrosis; however, its mechanism of action is not fully understood. This study investigated the role of FX in the angiotensin II (Ang II)-induced transdifferentiation of CFs and its potential mechanisms of action. We found that FX inhibited Ang II-induced transdifferentiation of CFs. Simultaneously, FX downregulated bromodomain-containing protein 4 (BRD4) expression in CFs and increased nuclear expression of nuclear factorerythroid 2-related factor 2 (Nrf2). FX reverses AngII-induced inhibition of the Keap1/Nrf2/HO-1 pathway and elevates the level of reactive oxygen species (ROS). FX failed to reverse Ang II-induced changes in fibrosis-associated proteins and ROS levels after Nrf2 silencing. BRD4 silencing reversed the inhibitory effect of Ang II on the Keap1/Nrf2/HO-1 antioxidant signalling pathway. In conclusion, we demonstrated that FX inhibited Ang II-induced transdifferentiation of CFs and that this effect may be related to the activation of the Keap1/Nrf2/HO-1 pathway by reducing BRD4 expression and, ultimately, oxidative stress.
Collapse
Affiliation(s)
- Jinxia Han
- Shaoxing Seventh People’s Hospital, Shaoxing, China
| | | | - Haisheng Peng
- Department of pharmacology, Medical college, Shaoxing University, Shaoxing, China
| |
Collapse
|
32
|
Yu Y, Sun P. Calycosin Alleviates Lupus Nephritis by Activating the Nrf2/HO-1 Signaling Pathway. REVISTA BRASILEIRA DE FARMACOGNOSIA 2023; 33:1052-1059. [DOI: 10.1007/s43450-023-00435-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/18/2023] [Indexed: 01/03/2025]
Abstract
AbstractLupus nephritis is a serious condition, for which treatments are limited; hence, there is a need for new cure approaches. The aim of this study was to evaluate the therapeutic effects of calycosin against lupus nephritis induced by lipopolysaccharide (LPS) in human renal cortex proximal convoluted tubule epithelial cells (HK-2). HK-2 cells were stimulated with 1 μg/ml LPS to create a lupus nephritis cell model; the cells were pretreated with calycosin. Cell viability and apoptosis rate were determined using the cell counting kit-8 assay and flow cytometry, respectively. A caspase-3 activity detection kit was used to determine caspase-3 activity. Interleukin (IL)-6, IL-1β, and tumor necrosis factor alpha (TNF-α) levels were determined using enzyme-linked immunosorbent assay kits. Lactate dehydrogenase (LDH) level was determined using an LDH assay kit. Finally, western blotting and reverse transcription-quantitative polymerase chain reaction were performed to determine apoptosis-related protein levels and nuclear factor erythroid 2–related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling. Calycosin had no cytotoxic effects on HK-2 cells. Lipopolysaccharide stimulation significantly inhibited cell viability; increased the IL-6, IL-1β, and TNF-α levels; and elevated apoptosis rate, caspase3 activity, and LDH level in HK-2 cells. The protein level of cleaved caspase3 was also increased in LPS-treated HK-2 cells. In addition, the pattern of Nrf2/HO-1 signaling was disturbed by LPS. These effects were reversed by calycosin treatment. Calycosin could alleviate LPS-induced lupus nephritis and may thus be a novel agent for its treatment.
Graphical Abstract
Collapse
|
33
|
Yin X, Yin X, Pan X, Zhang J, Fan X, Li J, Zhai X, Jiang L, Hao P, Wang J, Chen Y. Post-myocardial infarction fibrosis: Pathophysiology, examination, and intervention. Front Pharmacol 2023; 14:1070973. [PMID: 37056987 PMCID: PMC10086160 DOI: 10.3389/fphar.2023.1070973] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Cardiac fibrosis plays an indispensable role in cardiac tissue homeostasis and repair after myocardial infarction (MI). The cardiac fibroblast-to-myofibroblast differentiation and extracellular matrix collagen deposition are the hallmarks of cardiac fibrosis, which are modulated by multiple signaling pathways and various types of cells in time-dependent manners. Our understanding of the development of cardiac fibrosis after MI has evolved in basic and clinical researches, and the regulation of fibrotic remodeling may facilitate novel diagnostic and therapeutic strategies, and finally improve outcomes. Here, we aim to elaborate pathophysiology, examination and intervention of cardiac fibrosis after MI.
Collapse
Affiliation(s)
- Xiaoying Yin
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinxin Yin
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Pan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jingyu Zhang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinhui Fan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiaxin Li
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoxuan Zhai
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Lijun Jiang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Panpan Hao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiali Wang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yuguo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
34
|
Li C, Meng X, Wang L, Dai X. Mechanism of action of non-coding RNAs and traditional Chinese medicine in myocardial fibrosis: Focus on the TGF-β/Smad signaling pathway. Front Pharmacol 2023; 14:1092148. [PMID: 36843918 PMCID: PMC9947662 DOI: 10.3389/fphar.2023.1092148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Cardiac fibrosis is a serious public health problem worldwide that is closely linked to progression of many cardiovascular diseases (CVDs) and adversely affects both the disease process and clinical prognosis. Numerous studies have shown that the TGF-β/Smad signaling pathway plays a key role in the progression of cardiac fibrosis. Therefore, targeted inhibition of the TGF-β/Smad signaling pathway may be a therapeutic measure for cardiac fibrosis. Currently, as the investigation on non-coding RNAs (ncRNAs) move forward, a variety of ncRNAs targeting TGF-β and its downstream Smad proteins have attracted high attention. Besides, Traditional Chinese Medicine (TCM) has been widely used in treating the cardiac fibrosis. As more and more molecular mechanisms of natural products, herbal formulas, and proprietary Chinese medicines are revealed, TCM has been proven to act on cardiac fibrosis by modulating multiple targets and signaling pathways, especially the TGF-β/Smad. Therefore, this work summarizes the roles of TGF-β/Smad classical and non-classical signaling pathways in the cardiac fibrosis, and discusses the recent research advances in ncRNAs targeting the TGF-β/Smad signaling pathway and TCM against cardiac fibrosis. It is hoped, in this way, to give new insights into the prevention and treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Chunjun Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangxiang Meng
- College of Marxism, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lina Wang
- First College of Clinical Medical, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xia Dai
- College of Health, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Xia Dai,
| |
Collapse
|
35
|
Zhu Y, Chai Y, Xiao G, Liu Y, Xie X, Xiao W, Zhou P, Ma W, Zhang C, Li L. Astragalus and its formulas as a therapeutic option for fibrotic diseases: Pharmacology and mechanisms. Front Pharmacol 2022; 13:1040350. [PMID: 36408254 PMCID: PMC9669388 DOI: 10.3389/fphar.2022.1040350] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/18/2022] [Indexed: 09/14/2023] Open
Abstract
Fibrosis is the abnormal deposition of extracellular matrix, characterized by accumulation of collagen and other extracellular matrix components, which causes organ dysfunction and even death. Despite advances in understanding fibrosis pathology and clinical management, there is no treatment for fibrosis that can prevent or reverse it, existing treatment options may lead to diarrhea, nausea, bleeding, anorexia, and liver toxicity. Thus, effective drugs are needed for fibrotic diseases. Traditional Chinese medicine has played a vital role in fibrotic diseases, accumulating evidence has demonstrated that Astragalus (Astragalus mongholicus Bunge) can attenuate multiple fibrotic diseases, which include liver fibrosis, pulmonary fibrosis, peritoneal fibrosis, renal fibrosis, cardiac fibrosis, and so on, mechanisms may be related to inhibition of epithelial-mesenchymal transition (EMT), reactive oxygen species (ROS), transforming growth factor beta 1 (TGF-β1)/Smads, apoptosis, inflammation pathways. The purpose of this review was to summarize the pharmacology and mechanisms of Astragalus in treating fibrotic diseases, the data reviewed demonstrates that Astragalus is a promising anti-fibrotic drug, its main anti-fibrotic components are Calycosin, Astragaloside IV, Astragalus polysaccharides and formononetin. We also review formulas that contain Astragalus with anti-fibrotic effects, in which Astragalus and Salvia miltiorrhiza Bunge, Astragalus and Angelica sinensis (Oliv.) Diels are the most commonly used combinations. We propose that combining active components into new formulations may be a promising way to develop new drugs for fibrosis. Besides, we expect Astragalus to be accepted as a clinically effective method of treating fibrosis.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yilu Chai
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guojin Xiao
- Nursing Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yufei Liu
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohong Xie
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Xiao
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pengcheng Zhou
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Ma
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuying Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Heart Disease of Traditional Chinese Medicine, Zigong First People’s Hospital, Zigong, China
| |
Collapse
|