1
|
Kuang H, Kong L, Hou A, Yang A, Jiang H. A review of the botany, metabolites, pharmacology, toxicity, industrial applications, and processing of Polygalae Radix: the "key medicine for nourishing life". Front Pharmacol 2024; 15:1450733. [PMID: 39359244 PMCID: PMC11445616 DOI: 10.3389/fphar.2024.1450733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024] Open
Abstract
Polygalae radix (PR) is the dried root of Polygala tenuifolia Willd. and Polygala sibirica L. and enjoys the reputation as the "key medicine for nourishing life." In this study, information about "Polygala tenuifolia Willd.," "Polygala sibirica L.," and "Yuanzhi" was retrieved from scientific databases, including Google Scholar, Baidu Scholar, Web of Science, PubMed, CNKI, and Wan Fang Data. Information from Chinese herbal medicine classics, Yaozhi Data, and the Gaide Chemical Network was also collected. Information related to botany, phytochemistry, pharmacology, toxicity, industrial applications, and processing is summarized in this paper to tap its potentialities and promote its further development and clinical application. More than 320 metabolites have been isolated from PR; saponins, xanthones, and oligosaccharide esters are the main functional metabolites. Pharmacological research shows that its pharmacological action mainly focuses on resisting nervous system diseases, and it also has the functions of anti-oxidation, anti-inflammation, anti-tumor, anti-pathogenic microorganisms and others. The gastrointestinal irritation of its saponins impeded its application, but this irritation can be reduced by controlling the dosage, compatibility with other herbs, or processing. The future progress of PR faces opportunities and challenges. More attention should be paid to the traditional application and processing methods of PR recorded in ancient books. The lack of safety and clinical studies has limited its application and transformation of achievements. Moreover, it is one-sided to take the content of only a few metabolites as the index of processing optimization and quality control, which cannot reflect the full pharmacological and toxicological activities of PR.
Collapse
Affiliation(s)
- Hongtuo Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Lingping Kong
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Ajiao Hou
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Anni Yang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Hai Jiang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| |
Collapse
|
2
|
Li WH, Wang F, Song GY, Yu QH, Du RP, Xu P. PARP-1: a critical regulator in radioprotection and radiotherapy-mechanisms, challenges, and therapeutic opportunities. Front Pharmacol 2023; 14:1198948. [PMID: 37351512 PMCID: PMC10283042 DOI: 10.3389/fphar.2023.1198948] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Background: Since its discovery, poly (ADP-ribose) polymerase 1 (PARP-1) has been extensively studied due to its regulatory role in numerous biologically crucial pathways. PARP inhibitors have opened new therapeutic avenues for cancer patients and have gained approval as standalone treatments for certain types of cancer. With continued advancements in the research of PARP inhibitors, we can fully realize their potential as therapeutic targets for various diseases. Purpose: To assess the current understanding of PARP-1 mechanisms in radioprotection and radiotherapy based on the literature. Methods: We searched the PubMed database and summarized information on PARP inhibitors, the interaction of PARP-1 with DNA, and the relationships between PARP-1 and p53/ROS, NF-κB/DNA-PK, and caspase3/AIF, respectively. Results: The enzyme PARP-1 plays a crucial role in repairing DNA damage and modifying proteins. Cells exposed to radiation can experience DNA damage, such as single-, intra-, or inter-strand damage. This damage, associated with replication fork stagnation, triggers DNA repair mechanisms, including those involving PARP-1. The activity of PARP-1 increases 500-fold on DNA binding. Studies on PARP-1-knockdown mice have shown that the protein regulates the response to radiation. A lack of PARP-1 also increases the organism's sensitivity to radiation injury. PARP-1 has been found positively or negatively regulate the expression of specific genes through its modulation of key transcription factors and other molecules, including NF-κB, p53, Caspase 3, reactive oxygen species (ROS), and apoptosis-inducing factor (AIF). Conclusion: This review provides a comprehensive analysis of the physiological and pathological roles of PARP-1 and examines the impact of PARP-1 inhibitors under conditions of ionizing radiation exposure. The review also emphasizes the challenges and opportunities for developing PARP-1 inhibitors to improve the clinical outcomes of ionizing radiation damage.
Collapse
Affiliation(s)
- Wen-Hao Li
- School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Fei Wang
- School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Gui-Yuan Song
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| | - Qing-Hua Yu
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| | - Rui-Peng Du
- School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Ping Xu
- School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
3
|
Shi X, Li M, Huang Q, Xie L, Huang Z. Monacolin K Induces Apoptosis of Human Glioma U251 Cells by Triggering ROS-Mediated Oxidative Damage and Regulating MAPKs and NF-κB Pathways. ACS Chem Neurosci 2023; 14:1331-1341. [PMID: 36917811 DOI: 10.1021/acschemneuro.3c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Monacolin K (MK), a polyketo secondary metabolic compound of the mold genus Monascus, can promote the apoptosis of malignant cancer cells, possessing potential antitumor properties. However, its mechanism of action on gliomas remains unclear. Here, we explored and investigated the potential of the monacolin K's antitumor effect on human glioma U251 cells and its possible molecular mechanism. Results showed that the application of 10 μM monacolin K inhibited the proliferation of U251 cells, with an inhibitory rate of up to 53.4%. Additionally, monacolin K induced the generation of reactive oxygen species and activated mitochondria-mediated pathways, including decreased MMP, activation of caspase3/caspase9, decreased Na+/K+-ATPase and Ca2+-ATPase activities, and disruption of the antioxidant system, resulting in the disruption of intracellular reduction-oxidation homeostasis. Monacolin K also activated MAPK and NF-κB pathways, upregulating P38 activity and downregulating JNK/ERK/P65/IκBα expression, ultimately leading to apoptosis of U251 cells. Importantly, monacolin K was not cytotoxic to normal human cells, hUC-MSCs. We concluded that monacolin K can induce apoptosis in U251 cells by triggering ROS-mediated oxidative damage and regulating MAPKs and NF-κB pathways.
Collapse
Affiliation(s)
- Xiaoyi Shi
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.,Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Meng Li
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.,Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Qiming Huang
- College of Life Sciences, Nanchang University, No. 999 Xuefu Avenue, Nanchang 330031, China.,The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Liuming Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.,Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.,Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
4
|
Mercantepe F, Tumkaya L, Mercantepe T, Rakici S. Histopathological evaluation of the effects of dexmedetomidine against pituitary damage ınduced by X-ray irradiation. Biomarkers 2023; 28:168-176. [PMID: 36453587 DOI: 10.1080/1354750x.2022.2154385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Background: The present study, aimed to investigate the potential negative effects of x-ray radiation and the effects of the α2-adrenergic receptor agonist dexmedetomidine on the pituitary gland.Methods: Twenty-four Sprague-Dawley rats were divided into three groups: Rats in Group 1 (control group). Group 2 (X-ray irradiation) and group 3 (X-ray irradiation + Dexmedetomidine) were given a total of 10 Gy external beam total body irradiation. Group 3 was given a single intraperitoneal dose of 200 µg/kg dexmedetomidine 30 minutes before RT.Results: In sections obtained from the x-ray irradiation group, we observed many necrotic in adenohypophysis and neurohypophysis. In addition, there were extensive oedematous areas and vascular congestions due to the necrotic cells in both the adenohypophysis and neurohypophysis. In contrast, we observed a reduction in necrotic chromophobic and chromophilic cells in adenohypophyseal tissue and a reduction in necrotic pituicytes in neurohypophyseal tissue in the dexmedetomidine treatment group. In addition, we determined lower caspase-3 and TUNEL expression in the dexmedetomidine treatment group compared with the x-ray irradiation group. Dexmedetomidine reduced x-ray radiation-induced pituitary damage by preventing apoptosis.Conclusions: The present study demonstrated the use of dexmedetomidine in situations related to radiation toxicity and offers the potential for a comprehensive study.
Collapse
Affiliation(s)
- Filiz Mercantepe
- Department of Endocrinology and Metabolism Diseases, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Sema Rakici
- Department of Radiation Oncology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|