1
|
Lin LT, Zhang ST, Shang BL, Dai YQ, Cheng XQ, Wu QG, Zhan RT, Liu SJ. The effect and mechanism of patchouli alcohol on cognitive dysfunction in AD mice induced by Aβ 1-42 oligomers through AMPK/mTOR pathway. Brain Res Bull 2024; 215:111030. [PMID: 38996935 DOI: 10.1016/j.brainresbull.2024.111030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative brain disorder that progressively impairs long-term and working memory. The function and mechanism of PA(Patchouli alcohol) in improving AD in the external treatment of encephalopathy remain unclear. This study aimed to investigate the therapeutic effect of PA on AD using an Aβ1-42 induced AD mouse model with LPS(Lipopolysaccharide) stimulation of BV2 microglial cells. Additionally, we aimed to explore the potential mechanism of PA in enhancing autophagy and reducing neuroinflammation through the AMPK (AMP-activated protein kinase)/mTOR (Mammaliam target of rapamycin) signaling pathway. The Morris water maze was used to assess cognitive function, and cortical and hippocampal tissues were collected for further analysis of the corresponding signaling pathways and inflammatory changes through biological experiments. Our research findings demonstrate that PA has a significant positive impact on cognitive and memory impairments in mice that have been induced with Aβ1-42-induced AD. Additionally, PA was also found to revert the activation of microglia induced by LPS. These effects may be attributed to the reduction of neuroinflammation and enhancement of the AMPK/mTOR autophagy pathway. Therefore, PA may serve as an effective therapeutic option to prevent or delay the progression of AD-associated memory dysfunction.
Collapse
Affiliation(s)
- Li-Ting Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Shu-Ting Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Bao-Ling Shang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China
| | - Yu-Qiong Dai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Xiao-Qing Cheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Qing-Guang Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Ruo-Ting Zhan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, PR China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| | - Si-Jun Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| |
Collapse
|
2
|
Shen Y, Liu F, Zhang M. Therapeutic potential of plant-derived natural compounds in Alzheimer's disease: Targeting microglia-mediated neuroinflammation. Biomed Pharmacother 2024; 178:117235. [PMID: 39094545 DOI: 10.1016/j.biopha.2024.117235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
Microglia are resident immune cells of the central nervous system (CNS) with roles in sensing, housekeeping, and defense. Exploring the role of microglia in the occurrence and development of Alzheimer's disease (AD) and the possible therapeutic mechanism of plant-derived natural compounds (PDNCs) that regulate microglia-associated neuroinflammation may potentially help in elucidating the pathogenesis of AD and provide novel insights for its treatment. This review explores the role of abnormal microglial activation and its dominant neuroinflammatory response, as well as the activation of their target receptors and signaling pathways in AD pathogenesis. Additionally, we report an update on the potential pharmacological mechanisms of multiple PDNCs in modulating microglia-associated neuroinflammation in AD treatment. Dysregulated activation of microglial receptors and their downstream pathways impaired immune homeostasis in animal models of AD. Multiple signaling pathways, such as mitogen-activated protein kinase (MAPK), nuclear factor kappa light chain enhancer of activated B cells (NF-κB), and Toll-like receptors, play important roles in microglial activation and can exacerbate microglia-mediated neuroinflammation. PDNCs, such as magnolol, stigmasterol, matrine, naringenin, naringin, and resveratrol, can delay the progression of AD by inhibiting the proinflammatory receptors of microglia, activating its anti-inflammatory receptors, regulating the receptors related to β-amyloid (Aβ) clearance, reversing immune dysregulation, and maintaining the immune homeostasis of microglial downstream pathways. This review summarizes the mechanisms by which microglia cause chronic inflammation in AD and evaluates the beneficial effects of PDNCs on immune regulation in AD by regulating microglial receptors and their downstream pathways.
Collapse
Affiliation(s)
- Yanyan Shen
- Department of Neurosurgery, Shengjing Hospital of China Medical University, China.
| | - Fang Liu
- Department of Neurology, The First Affiliated Hospital of China Medical University, China
| | - Mingjie Zhang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
3
|
Ram K, Kumar K, Singh D, Chopra D, Mani V, Jaggi AS, Singh N. Beneficial effect of lupeol and metformin in mouse model of intracerebroventricular streptozotocin induced dementia. Metab Brain Dis 2024; 39:661-678. [PMID: 38842663 DOI: 10.1007/s11011-024-01364-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
This study examines the effectiveness of lupeol and metformin in a mouse model of dementia generated by intracerebroventricular streptozotocin (i.c.v., STZ). Dementia was induced in Swiss mice with the i.c.v. administration of STZ at a dosage of 3 mg/kg on the first and third day. The assessment of dementia involved an examination of the Morris Water Maze (MWM) performance, as well as a number of biochemical and histological studies. STZ treatment resulted in significant decrease in MWM performance; various biochemical alterations (increase in brain acetyl cholinesterase (AChE) activity, thiobarbituric acid reactive species (TBARS), nitrite/nitrate, and reduction in nuclear factor erythroid 2 related factor-2 (Nrf-2), reduced glutathione (GSH) levels) and neuroinflammation [increased myeloperoxidase (MPO) activity & neutrophil infiltration]. The administration of Lupeol (50 mg/kg & 100 mg/kg; p.o.) and Metformin (150 mg/kg & 300 mg/kg; p.o.) demonstrated a considerable reduction in the behavioral, biochemical, and histological alterations produced by STZ. Low dose combination of lupeol (50 mg/kg; p.o.) and Metformin (150 mg/kg; p.o.) produced more pronounced effect than that of high doses of either agent alone. It is concluded that Lupeol and Metformin has shown efficacy in dementia with possible synergism between the two and can be explored as potential therapeutic agents for managing dementia of Alzheimer's disease (AD) type.
Collapse
Affiliation(s)
- Khagesh Ram
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, 135001, Yamunanagar, HRY, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Dimple Chopra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassin University, 51452, Buraydah, Saudi Arabia
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India.
| |
Collapse
|
4
|
Matysek A, Sun L, Kimmantudawage SP, Feng L, Maier AB. Targeting impaired nutrient sensing via the sirtuin pathway with novel compounds to prevent or treat dementia: A systematic review. Ageing Res Rev 2023; 90:102029. [PMID: 37549873 DOI: 10.1016/j.arr.2023.102029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Dementia is prevalent in aged populations and is associated with disability and distress for those affected. Therapeutic benefits of drugs targeting dementia are small. Impaired nutrient sensing pathways have been implicated in the pathogenesis of dementia and may offer a novel treatment target. AIMS This systematic review collated evidence for novel therapeutic compounds that modify nutrient sensing pathways, particularly the sirtuin pathway, in preventing cognitive decline or improving cognition in normal ageing, mild cognitive impairment (MCI), and dementia. METHODS PubMed, Embase and Web of Science databases were searched using key search terms. Articles were screened using Covidence systematic review software. The risk of bias was assessed using the Systematic Review Center for Laboratory animal Experimentation (SYRCLE)'s risk of bias tool for animal studies and Cochrane Risk of Bias tool v 2.0 for human studies. RESULTS Out of 3841 articles, 68 were included describing 38 different novel therapeutic compounds that modulate the nutrient sensing pathway via the sirtuin pathway. In animal models (58 studies), all investigated novel therapeutic compounds showed cognitive benefits. Ten studies were human intervention trials targeting normal ageing (1 study) and dementia populations (9 studies). Direct sirtuin (silent mating type information regulation 2 homolog) 1 (SIRT1) activators Resveratrol and Nicotinamide derivatives improved cognitive outcomes among human subjects with normal cognition and MCI. CONCLUSION Animal studies support that modulation of the sirtuin pathway has the potential to improve cognitive outcomes. Overall, there is a clear lack of translation from animal models to human populations.
Collapse
Affiliation(s)
- Adrian Matysek
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore
| | - Lina Sun
- School of Anesthesiology, Weifang Medical University, Weifang, China
| | | | - Lei Feng
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore; Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrea B Maier
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore; Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands.
| |
Collapse
|
5
|
He H, Xie X, Zhang J, Mo L, Kang X, Zhang Y, Wang L, Hu N, Xie L, Peng C, You Z. Patchouli alcohol ameliorates depression-like behaviors through inhibiting NLRP3-mediated neuroinflammation in male stress-exposed mice. J Affect Disord 2023; 326:120-131. [PMID: 36682696 DOI: 10.1016/j.jad.2023.01.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
BACKGROUND Microglia-mediated neuroinflammation contributes to major depressive disorder (MDD). Targeting microglia is a promising strategy for treating MDD. Patchouli alcohol (PA), an active component of Pogostemon cablin, has anti-inflammatory and neuroprotective effects. PURPOSE In this study, we investigate the microglia-mediated neurogenesis pathway in which PA ameliorates depressive-like behaviors in stress-induced animal model of depression. METHODS C57BL/6J male mice were exposed to chronic mild stress (CMS) for 4 weeks, then administered PA intraperitoneally at 10, 20 or 40 mg/kg once per day for 3 weeks. The antidepressant effects of PA were evaluated in the sucrose preference test, forced swimming test, and tail suspension test. Microglial phenotypes and activation of the NLRP3 inflammation were analyzed using RT-PCR, western blotting and immunofluorescence staining. Effects of PA on neurogenesis were analyzed in vitro and in vivo using immunofluorescence staining. RESULTS Behavioral assessments showed that PA alleviated depressive-like behaviors in CMS-exposed mice. CMS induced microglial activation and pro-inflammatory profiles, which were blocked by PA treatment. PA attenuated the activation of NLRP3 inflammasome, leading to decreases in the levels of caspase-1, ASC, IL-1β, and IL-18 in the hippocampus of CMS-exposed mice. In primary microglia cultures, PA inhibited LPS-induced NLRP3 inflammasome activation. PA rescued inflammation-inhibited neurogenesis in vivo and in vitro. CONCLUSIONS Our results suggest that PA inhibits the NLRP3 inflammasome and ameliorates microglia-mediated neurogenesis impairment, contributing to antidepressant effects. Thus, PA may be a novel treatment for inflammation-driven mental disorders.
Collapse
Affiliation(s)
- Hui He
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinqiang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Li Mo
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xixi Kang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yue Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lu Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; The Fourth People's Hospital of Chengdu, Mental Health Center of Chengdu, Chengdu 610036, China
| | - Nan Hu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lei Xie
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Zili You
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; The Fourth People's Hospital of Chengdu, Mental Health Center of Chengdu, Chengdu 610036, China.
| |
Collapse
|
6
|
Therapeutic potential of natural molecules against Alzheimer's disease via SIRT1 modulation. Biomed Pharmacother 2023; 161:114474. [PMID: 36878051 DOI: 10.1016/j.biopha.2023.114474] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease mainly characterized by progressive cognitive dysfunction and memory impairment. Recent studies have shown that regulating silent information regulator 1 (SIRT1) expression has a significant neuroprotective effect, and SIRT1 may become a new therapeutic target for AD. Natural molecules are an important source of drug development for use in AD therapy and may regulate a wide range of biological events by regulating SIRT1 as well as other SIRT1-mediated signaling pathways. This review aims to summarize the correlation between SIRT1 and AD and to identify in vivo and in vitro studies investigating the anti-AD properties of natural molecules as modulators of SIRT1 and SIRT1-mediated signaling pathways. A literature search was conducted for studies published between January 2000 and October 2022 using various literature databases, including Web of Science, PubMed, Google Scholar, Science Direct, and EMBASE. Natural molecules, such as resveratrol, quercetin, icariin, bisdemethoxycurcumin, dihydromyricetin, salidroside, patchouli, sesamin, rhein, ligustilide, tetramethoxyflavanone, 1-theanine, schisandrin, curcumin, betaine, pterostilbene, ampelopsin, schisanhenol, and eriodictyol, have the potential to modulate SIRT1 and SIRT1 signaling pathways, thereby combating AD. The natural molecules modulating SIRT1 discussed in this review provide a potentially novel multi-mechanistic therapeutic strategy for AD. However, future clinical trials need to be conducted to further investigate their beneficial properties and to determine the safety and efficacy of SIRT1 natural activators against AD.
Collapse
|
7
|
Xu QQ, Su ZR, Yang W, Zhong M, Xian YF, Lin ZX. Patchouli alcohol attenuates the cognitive deficits in a transgenic mouse model of Alzheimer's disease via modulating neuropathology and gut microbiota through suppressing C/EBPβ/AEP pathway. J Neuroinflammation 2023; 20:19. [PMID: 36717922 PMCID: PMC9887791 DOI: 10.1186/s12974-023-02704-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/22/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by progressive cognitive dysfunctions and behavioral impairments. Patchouli alcohol (PA), isolated from Pogostemonis Herba, exhibits multiple pharmacological properties, including neuroprotective effects. This study aimed to investigate the therapeutic effects of PA against AD using the TgCRND8 transgenic AD mouse model, and to explore the underlying mechanisms targeting CCAAT/enhancer-binding protein β/asparagine endopeptidase (C/EBPβ/AEP) signaling pathway. METHODS After genotyping to confirm the transgenicity, drug treatments were administered intragastrically once daily to 3-month-old TgCRND8 mice for 4 consecutive months. Several behavioral tests were applied to assess different aspects of neurological functions. Then the brain and colon tissues were harvested for in-depth mechanistic studies. To further verify whether PA exerts anti-AD effects via modulating C/EBPβ/AEP signaling pathway in TgCRND8 mice, adeno-associated virus (AAV) vectors encoding CEBP/β were bilaterally injected into the hippocampal CA1 region in TgCRND8 mice to overexpress C/EBPβ. Additionally, the fecal microbiota transplantation (FMT) experiment was performed to verify the potential role of gut microbiota on the anti-AD effects of PA. RESULTS Our results showed that PA treatment significantly improved activities of daily living (ADL), ameliorated the anxiety-related behavioral deficits and cognitive impairments in TgCRND8 mice. PA modulated the amyloid precursor protein (APP) processing. PA also markedly reduced the levels of beta-amyloid (Aβ) 40 and Aβ42, suppressed Aβ plaque burdens, inhibited tau protein hyperphosphorylation at several sites and relieved neuroinflammation in the brains of TgCRND8 mice. Moreover, PA restored gut dysbiosis and inhibited the activation of the C/EBPβ/AEP signaling pathway in the brain and colon tissues of TgCRND8 mice. Interestingly, PA strikingly alleviated the AD-like pathologies induced by the overexpression of C/EBPβ in TgCRND8 mice. Additionally, the FMT of fecal microbiota from the PA-treated TgCRND8 mice significantly alleviated the cognitive impairments and AD-like pathologies in the germ-free TgCRND8 mice. CONCLUSION All these findings amply demonstrated that PA could ameliorate the cognitive deficits in TgCRND8 mice via suppressing Aβ plaques deposition, hyperphosphorylation of tau protein, neuroinflammation and gut dysbiosis through inhibiting the activation of C/EBPβ/AEP pathway, suggesting that PA is a promising naturally occurring chemical worthy of further development into the pharmaceutical treatment of AD.
Collapse
Affiliation(s)
- Qing-Qing Xu
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China
| | - Zi-Ren Su
- grid.411866.c0000 0000 8848 7685Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Wen Yang
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China
| | - Mei Zhong
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China
| | - Yan-Fang Xian
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China
| | - Zhi-Xiu Lin
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China ,grid.10784.3a0000 0004 1937 0482Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China ,grid.10784.3a0000 0004 1937 0482Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China
| |
Collapse
|