1
|
Mao X, Du Y, Sui R, Yu X, Zhu Y, Huang M. Quercetin conjugated PSC-derived exosomes to inhibit intimal hyperplasia via modulating the ERK, Akt, and NF-κB signaling pathways in the rat carotid artery post balloon injury. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 61:102763. [PMID: 38897395 DOI: 10.1016/j.nano.2024.102763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/24/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
The primary challenge in percutaneous coronary interventions for vascular restenosis is the occurrence of restenosis, which is defined by the excessive proliferation of neointimal tissue. Herein, our research team suggests that exosomes obtained from PSC, when paired with quercetin (Q@PSC-E), successfully reduce neointimal hyperplasia in a Sprague-Dawley rat model. Furthermore, the physical properties of the synthesized Q@PSC-E were examined using UV-vis, DLS, and FT-IR characterization techniques. The rats were subjected to balloon injury (BI) utilizing a 2-Fr Fogarty arterial embolectomy balloon catheter. Intimal hyperplasia and the degree of VSMC proliferation were evaluated using histological analysis in the rat groups that received a dosage of Q@PSC-E at 30 mg/kg/d. Significantly, Q@PSC-E inhibited cell proliferation through a pathway that does not include lipoxygenase, as demonstrated by [3H] thymidine incorporation, MTT, and flow cytometry studies. Additionally, the data indicate that Q@PSC-E hinders cell proliferation by targeting particular events that promote cell growth, including the activation of Akt and NF-κB, disruption of cell-cycle progression and also obstructs the ERK signaling pathway.
Collapse
Affiliation(s)
- Xin Mao
- Department of Vascular surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China
| | - Yaming Du
- Department of Vascular surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China
| | - Rubo Sui
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China
| | - Xiaodong Yu
- Department of Vascular surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China
| | - Yue Zhu
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China
| | - Meiyi Huang
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China.
| |
Collapse
|
2
|
Lu J, Xu YT, Qian XL, Zhu DX, Lu JY, Ma H, Liu J. Preparation, pharmacokinetics and anti-obesity effects on dogs of nuciferine liposomes. Vet Med Sci 2024; 10:e70017. [PMID: 39239721 PMCID: PMC11377956 DOI: 10.1002/vms3.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Nuciferine (NUC), a natural compound extracted from lotus leaves, has been proven to have anti-obesity effects. However, the development and application of NUC as an anti-obesity drug in dogs are hindered due to its poor water solubility and low bioavailability. OBJECTIVE To promote the development of NUC-related products for anti-obesity in dogs, this study prepared NUC into a liposome formulation and evaluated its characteristics, pharmacokinetics in dogs, and anti-obesity effects on high-fat diet dogs. METHODS NUC liposomes were prepared by the ethanol injection method, using NUC, egg lecithin, and β-sitosterol as raw materials. The characteristics and release rate in vitro of liposomes were evaluated by particle size analyser and dialysis method, respectively. The pharmacokinetics in dogs after oral administration of NUC-liposomes was carried out by the high-performance liquid chromatography (HPLC) method. Moreover, we investigated the anti-obesity effect of NUC-liposomes on obese dogs fed with a high-fat diet. RESULTS NUC-liposome was successfully prepared, with an EE of (79.31 ± 1.06)%, a particle size of (81.25 ± 3.14) nm, a zeta potential of (-18.75 ± 0.23) mV, and a PDI of 0.175 ± 0.031. The cumulative release rate in vitro of NUC from NUC-liposomes was slower than that of NUC. The T1/2 and relative bioavailability of NUC-liposomes in dogs increased, and CL reduced compared with NUC. In addition, the preventive effect of NUC-liposomes on obesity in high-fat diet dogs is stronger than that of NUC. CONCLUSIONS The liposome formulation of NUC was conducive to improve its relative bioavailability and anti-obesity effect in dogs.
Collapse
Affiliation(s)
- Jiang Lu
- Department of Pet Science and Technology, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Yi-Tian Xu
- Department of Pet Science and Technology, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Xiao-Liang Qian
- Department of Canine Disease Outpatient, Wuxi Paideshi Pet Hospital, Wuxi, China
| | - Dao-Xian Zhu
- Department of Animal Medicine, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Jin-Ye Lu
- Department of Pet Science and Technology, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Hui Ma
- Department of Pet Science and Technology, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Jing Liu
- Department of Pet Science and Technology, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| |
Collapse
|
3
|
Chen Y, Li X, Wang Z, Yuan S, Shen X, Xie X, Xing K, Zhu Q. Iron deficiency affects oxygen transport and activates HIF1 signaling pathway to regulate phenotypic transformation of VSMC in aortic dissection. Mol Med 2024; 30:90. [PMID: 38886644 PMCID: PMC11184844 DOI: 10.1186/s10020-024-00859-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Aortic dissection (AD) is a macrovascular disease which is pathologically characterized by aortic media degeneration.This experiment aims to explore how iron deficiency (ID) affects the function of vascular smooth muscle cell (VSMC) and participates in the occurrence and development of AD by regulating gene expression. METHODS The relationship between iron and AD was proved by Western-blot (WB) and immunostaining experiments in human and animals. Transcriptomic sequencing explored the transcription factors that were altered downstream. WB, flow cytometry and immunofluorescence were used to demonstrate whether ID affected HIF1 expression through oxygen transport. HIF1 signaling pathway and phenotypic transformation indexes were detected in cell experiments. The use of the specific HIF1 inhibitor PX478 further demonstrated that ID worked by regulating HIF1. RESULTS The survival period of ID mice was significantly shortened and the pathological staining results were the worst. Transcriptomic sequencing indicated that HIF1 was closely related to ID and the experimental results indicated that ID might regulate HIF1 expression by affecting oxygen balance. HIF1 activation regulates the phenotypic transformation of VSMC and participates in the occurrence and development of AD in vivo and in vitro.PX478, the inhibition of HIF1, can improve ID-induced AD exacerbation.
Collapse
Affiliation(s)
- Yuanyang Chen
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan, 430000, Hubei, People's Republic of China
| | - Xu Li
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan, 430000, Hubei, People's Republic of China
| | - Zhiwei Wang
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China.
- Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan, 430000, Hubei, People's Republic of China.
| | - Shun Yuan
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan, 430000, Hubei, People's Republic of China
| | - Xiaoyan Shen
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan, 430000, Hubei, People's Republic of China
| | - Xiaoping Xie
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan, 430000, Hubei, People's Republic of China
| | - Kai Xing
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan, 430000, Hubei, People's Republic of China
| | - Qingyi Zhu
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuhan, 430000, Hubei, People's Republic of China
| |
Collapse
|
4
|
Wei H, Yin Y, Yang W, Zhu J, Chen L, Guo R, Yang Z, Li S. Nuciferine induces autophagy to relieve vascular cell adhesion molecule 1 activation via repressing the Akt/mTOR/AP1 signal pathway in the vascular endothelium. Front Pharmacol 2023; 14:1264324. [PMID: 37841916 PMCID: PMC10569124 DOI: 10.3389/fphar.2023.1264324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Pro-inflammatory factor-associated vascular cell adhesion molecule 1 (VCAM1) activation initiates cardiovascular events. This study aimed to explore the protective role of nuciferine on TNFα-induced VCAM1 activation. Nuciferine was administrated to both high-fat diet (HFD)-fed mice and the TNFα-exposed human vascular endothelial cell line. VCAM1 expression and further potential mechanism(s) were explored. Our data revealed that nuciferine intervention alleviated VCAM1 activation in response to both high-fat diet and TNFα exposure, and this protective effect was closely associated with autophagy activation since inhibiting autophagy by either genetic or pharmaceutical approaches blocked the beneficial role of nuciferine. Mechanistical studies revealed that Akt/mTOR inhibition, rather than AMPK, SIRT1, and p38 signal pathways, contributed to nuciferine-activated autophagy, which further ameliorated TNFα-induced VCAM1 via repressing AP1 activation, independent of transcriptional regulation by IRF1, p65, SP1, and GATA6. Collectively, our data uncovered a novel biological function for nuciferine in protecting VCAM1 activation, implying its potential application in improving cardiovascular events.
Collapse
Affiliation(s)
- Haibin Wei
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Biobank, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yujie Yin
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wenwen Yang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinyan Zhu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rui Guo
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhen Yang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Clinical Nutrition, Affiliated Zhejiang Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Wang YF, Zheng Y, Cha YY, Feng Y, Dai SX, Zhao S, Chen H, Xu M. Essential oil of lemon myrtle (Backhousia citriodora) induces S-phase cell cycle arrest and apoptosis in HepG2 cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116493. [PMID: 37054823 DOI: 10.1016/j.jep.2023.116493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lemon myrtle (Backhousia citriodora F.Muell.) leaves, whether fresh or dried, are used traditionally in folk medicine to treat wounds, cancers, skin infections, and other infectious conditions. However, the targets and mechanisms related to anti-cancer effect of lemon myrtle are unavailable. In our study, we found that the essential oil of lemon myrtle (LMEO) showed anti-cancer activity in vitro, and we initially explored its mechanism of action. MATERIALS AND METHODS We analyzed the chemical compositions of LMEO by GC-MS. We tested the cytotoxicity of LMEO on various cancer cell lines using the MTT assay. Network pharmacology was used also to analyze the targets of LMEO. Moreover, the mechanisms of LMEO were investigated through scratch assay, flow cytometry analysis, and western blot in the HepG2 liver cancer cell line. RESULTS LMEO showed cytotoxicity on various cancer cell lines with values of IC50 40.90 ± 2.23 (liver cancer HepG2 cell line), 58.60 ± 6.76 (human neuroblastoma SH-SY5Y cell line), 68.91 ± 4.62 (human colon cancer HT-29 cell line) and 57.57 ± 7.61 μg/mL (human non-small cell lung cancer A549 cell line), respectively. The major cytotoxic chemical constituent in LMEO was identified as citrals, which accounted for 74.9% of the content. Network pharmacological analysis suggested that apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1), androgen receptor (AR), cyclin-dependent kinases 1 (CDK1), nuclear factor erythroid 2-related factor 2 (Nrf-2), fatty acid synthase (FASN), epithelial growth factor receptor (EGFR), estrogen receptor 1 (ERα) and cyclin-dependent kinases 4 (CDK4) are potential cytotoxic targets of LMEO. These targets are closely related to cell migration, cycle and apoptosis. Notley, the p53 protein had the highest confidence to co-associate with the eight common targets, which was further confirmed by scratch assay, flow cytometry analysis, and western blot in the HepG2 liver cancer cell line. LMEO significantly inhibited the migration of HepG2 cells in time-dependent and dose-dependent manner. Moreover, LMEO caused a S-phase blocking on HepG2 cells and promoted apoptosis in the meanwhile. Western blot results indicated that p53 protein, Cyclin A2 and Bax proteins were up-regulated, while Cyclin E1 and Bcl-2 proteins were down-regulated. CONCLUSION LMEO showed cytotoxicity in various cancer cell lines in vitro. Pharmacological networks showed LMEO to have multi-component and multi-targeting effects that are related to inhibit migration of HepG2 cells, and affect cell cycle S-phase arrest and apoptosis through modulation of p53 protein.
Collapse
Affiliation(s)
- Yun-Fen Wang
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, China
| | - Yang Zheng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yin-Yue Cha
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, China
| | - Yang Feng
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, China
| | - Shao-Xing Dai
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Sanjun Zhao
- School of Life Sciences, Yunnan Normal University, Chenggong, Kunming, 650500, China.
| | - Hao Chen
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, China.
| | - Min Xu
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, China.
| |
Collapse
|
6
|
Feng X, Xie B, Han Y, Li Z, Cheng Y, Tian LW. Bisbenzylisoquinoline alkaloids from Plumula Nelumbinis inhibit vascular smooth muscle cells migration and proliferation by regulating the ORAI2/Akt pathway. PHYTOCHEMISTRY 2023; 211:113700. [PMID: 37119920 DOI: 10.1016/j.phytochem.2023.113700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Plumula Nelumbinis, the embryo of the seed of Nelumbo nucifera Gaertn, is commonly used to make tea and nutritional supplements in East Asian countries. A bioassay-guided isolation of Plumula Nelumbinis afforded six previously undescribed bisbenzylisoquinoline alkaloids, as well as seven known alkaloids. Their structures were elucidated by extensive analysis of HRESIMS, NMR, and CD data. Pycnarrhine, neferine-2α,2'β-N,N-dioxides, neferine, linsinine, isolinsinine, and nelumboferine, at 2 μM significantly suppressed the migration of MOVAS cells with inhibition ratio above 50%, more active than that of the positive control cinnamaldehyde (inhibition ratio 26.9 ± 4.92%). Additionally, neferine, linsinine, isolinsinine, and nelumboferine, were also active against the proliferation of MOVAS cells with inhibition ratio greater than 45%. The preliminary structure-activity relationships were discussed. Mechanism studies revealed that nelumboferine inhibited the migration and proliferation of MOVAS cells by regulating ORAI2/Akt signaling pathway.
Collapse
Affiliation(s)
- Xiao Feng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Baoping Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, People's Republic of China
| | - Yuantao Han
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Zhiying Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yuanyuan Cheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| | - Li-Wen Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
7
|
Zhao T, Zhu Y, Zhao R, Xiong S, Sun J, Zhang J, Fan D, Deng J, Yang H. Structure-activity relationship, bioactivities, molecular mechanisms, and clinical application of nuciferine on inflammation-related diseases. Pharmacol Res 2023; 193:106820. [PMID: 37315822 DOI: 10.1016/j.phrs.2023.106820] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/23/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
Nuciferine aporphine alkaloid mainly exists in Nelumbo nucifera Gaertn and is a beneficial to human health, such as anti-obesity, lowering blood lipid, prevention of diabetes and cancer, closely associated with inflammation. Importantly, nuciferine may contribute to its bioactivities by exerting intense anti-inflammatory activities in multiple models. However, no review has summarized the anti-inflammatory effect of nuciferine. This review critically summarized the information regarding the structure-activity relationships of dietary nuciferine. Moreover, biological activities and clinical application on inflammation-related diseases, such as obesity, diabetes, liver, cardiovascular diseases, and cancer, as well as their potential mechanisms, involving oxidative stress, metabolic signaling, and gut microbiota has been reviewed. The current work provides a better understanding of the anti-inflammation properties of nuciferine against multiple diseases, thereby improving the utilization and application of nuciferine-containing plants across functional food and medicine.
Collapse
Affiliation(s)
- Tong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuchen Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Rui Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shiyi Xiong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jing Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Juntao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China.
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|