1
|
Zhang J, Wang S, Yang M, Ding J, Huang Y, Zhu Y, Zhou M, Yan B. Antiviral activity of a polysaccharide from Sargassum fusiforme against respiratory syncytial virus. Int J Biol Macromol 2024; 279:135267. [PMID: 39233150 DOI: 10.1016/j.ijbiomac.2024.135267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
This experiment examined the antiviral activity of polysaccharides from Sargassum fusiforme against respiratory syncytial virus (RSV) in vitro, including their mechanism of action and preliminary structural analysis. Four polysaccharides (SFP1, SFP2, SFP3, and SFP4) were purified from Sargassum fusiforme using a DEAE-52 cellulose column and an NW Super 150 gel column. CCK-8 and western blot were utilized to study the antiviral activities and mechanisms of the polysaccharides. Preliminary structural analysis was conducted using HPLC and NMR techniques. The findings suggest that SFP4 (120 kD) is an acidic chemical compound composed of 88.8 % total sugars, 0.13 % proteins, 10.8 % glucuronidic acids, and 21.1 % sulfates. It contains at least ten monosaccharides, primarily mannuronic acid and fucose. Among the four polysaccharides, SFP4 had the highest anti-RSV activity, with a therapeutic index (TI) exceeding 139. SFP4 exhibited noteworthy antiviral efficacy in both upper and lower respiratory cells that were infected, especially when administered as a prophylactic treatment 2 h in advance. Furthermore, SFP4 showed a dose-dependent antiviral effect, with the highest therapeutic index (TI > 320) observed at a concentration of 7.81 μg·mL-1 during the prophylactic phase. It was speculated that SFP4's antiviral effect is due to its ability to inhibit the attachment of G-proteins to cells.
Collapse
Affiliation(s)
- Jin Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shangzhi Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Mingrui Yang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jinming Ding
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yizhen Huang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yangdong Zhu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ming Zhou
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Bin Yan
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
2
|
Chwil M, Mihelič R, Matraszek-Gawron R, Terlecka P, Skoczylas MM, Terlecki K. Comprehensive Review of the Latest Investigations of the Health-Enhancing Effects of Selected Properties of Arthrospira and Spirulina Microalgae on Skin. Pharmaceuticals (Basel) 2024; 17:1321. [PMID: 39458962 PMCID: PMC11510008 DOI: 10.3390/ph17101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Arthospira platensis and Spirulina platensis microalgae are a rich source of pro-health metabolites (% d.m.): proteins (50.0-71.3/46.0-63.0), carbohydrates (16.0-20.0/12.0-17.0), fats (0.9-14.2/6.4-14.3), polyphenolic compounds and phenols (7.3-33.2/7.8-44.5 and 4.2/0.3 mg GAE/g), and flavonoids (1.9/0.2 QUE/g) used in pharmaceutical and cosmetic formulations. This review summarises the research on the chemical profile, therapeutic effects in dermatological problems, application of Arthrospira and Spirulina microalgae, and contraindications to their use. The pro-health properties of these microalgae were analysed based on the relevant literature from 2019 to 2024. The antiviral mechanism of microalgal activity involves the inhibition of viral replication and enhancement of immunity. The anti-acne activity is attributed to alkaloids, alkanes, phenols, alkenes, phycocyanins, phthalates, tannins, carboxylic and phthalic acids, saponins, and steroids. The antibacterial activity generally depends on the components and structure of the bacterial cell wall. Their healing effect results from the inhibition of inflammatory and apoptotic processes, reduction of pro-inflammatory cytokines, stimulation of angiogenesis, and proliferation of fibroblasts and keratinocytes. The photoprotective action is regulated by amino acids, phlorotannins, carotenoids, mycosporins, and polyphenols inhibiting the production of tyrosinase, pro-inflammatory cytokines, and free oxygen radicals in fibroblasts and the stimulation of collagen production. Microalgae are promising molecular ingredients in innovative formulations of parapharmaceuticals and cosmetics used in the prophylaxis and therapy of dermatological problems. This review shows the application of spirulina-based commercial skin-care products as well as the safety and contraindications of spirulina use. Furthermore, the main directions for future studies of the pro-health suitability of microalgae exerting multidirectional effects on human skin are presented.
Collapse
Affiliation(s)
- Mirosława Chwil
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15 Street, 20-950 Lublin, Poland
| | - Rok Mihelič
- Department of Agronomy, University of Ljubljana, Jamnikarjeva 101 Street, 1000 Ljubljana, Slovenia;
| | - Renata Matraszek-Gawron
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15 Street, 20-950 Lublin, Poland
| | - Paulina Terlecka
- Department of Endocrinology, Diabetology and Metabolic Diseases, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland;
| | - Michał M. Skoczylas
- Department of Basic Medical Sciences, The John Paul II Catholic University of Lublin, Konstantynów 1 H Street, 20-708 Lublin, Poland;
| | - Karol Terlecki
- Department of Vascular Surgery and Angiology, Medical University of Lublin, Solidarności 8 Street, 20-841 Lublin, Poland;
| |
Collapse
|
3
|
Bozan M, Berreth H, Lindberg P, Bühler K. Cyanobacterial biofilms: from natural systems to applications. Trends Biotechnol 2024:S0167-7799(24)00215-4. [PMID: 39214791 DOI: 10.1016/j.tibtech.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/05/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Cyanobacteria are the ancestors of oxygenic photosynthesis. Fueled by light and water, their ability to reduce CO2 to sugar holds potential for carbon-neutral production processes. Due to challenges connected to cultivation and engineering issues, cyanobiotechnology has yet to be able to establish itself broadly in industry. In recent years, applying cyanobacterial biofilms as whole-cell biocatalysts instead of suspension cultures has emerged as a novel concept to counteract low cell densities and low reaction stability, critical challenges in cyanobacterial applications. This review explores the potential of cyanobacterial biofilms for biotechnology and bioremediation. It briefly introduces cyanobacteria as primary producers in natural structured microbial communities; describes various applications in biotechnology and bioremediation; and discusses innovations, challenges, and future trends in this exciting research field.
Collapse
Affiliation(s)
- Mahir Bozan
- Department of Environmental Microbiology, Helmholtz - Center for Environmental Research, Leipzig, Germany
| | - Hannah Berreth
- Department of Environmental Microbiology, Helmholtz - Center for Environmental Research, Leipzig, Germany
| | - Pia Lindberg
- Department of Chemistry - Ångström, Uppsala University, Uppsala, Sweden
| | - Katja Bühler
- Department of Environmental Microbiology, Helmholtz - Center for Environmental Research, Leipzig, Germany.
| |
Collapse
|
4
|
Wang Y, Zhao X, Qin Q, Cai B, Wei S. Polysaccharides derived from Spirulina platensis inhibited Singapore grouper iridovirus by impeding the entry of viral particles. Int J Biol Macromol 2024; 258:128860. [PMID: 38123030 DOI: 10.1016/j.ijbiomac.2023.128860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/01/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Attributable to the rapid dissemination and high lethality of Singapore grouper iridovirus (SGIV), it has caused significant economic losses for marine fish aquaculture in China and Southeast Asian nations. Hence, there is an urgent need to find antiviral drugs that are both safe and effective. In this study, a novel heteropolysaccharide named Spirulina platensis polysaccharides (SPP) was purified and characterized from S. platensis. The molecular weight of SPP is 276 kDa and it mainly consists of Glc and Rha, followed by minor components such as Gal, Xyl, and Fuc. The backbone of SPP was determined to be →2) -β-Rhap-(1 → 4) -α-Fucp-(1 → [2) -α-Rhap-(1] 2[→6)-α-Glcp-(1] 4[→ 4) -α-Glcp-(1] 8[→ 4) -β-Glcp-(1]2→, with branches of β-Galp, α-Xylp and α-Glcp. SPP significantly inhibited SGIV-induced cytopathic effects (CPEs), viral gene replication and viral protein expression. The antiviral mechanism of SPP was associated with the disruption of SGIV entry to host cells. Furthermore, it was not observed that SPP made statistically significant impact on the expression of interferon-related cytokines. Our results offered novel insights into the potential utilization of spirulina polysaccharides for combating aquatic animal viruses.
Collapse
Affiliation(s)
- Yuexuan Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiangtan Zhao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511457, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 528478, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Bingna Cai
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511457, China.
| |
Collapse
|
5
|
Hao C, Xu Z, Xu C, Yao R. Anti-herpes simplex virus activities and mechanisms of marine derived compounds. Front Cell Infect Microbiol 2024; 13:1302096. [PMID: 38259968 PMCID: PMC10800978 DOI: 10.3389/fcimb.2023.1302096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Herpes simplex virus (HSV) is the most widely prevalent herpes virus worldwide, and the herpetic encephalitis and genital herpes caused by HSV infection have caused serious harm to human health all over the world. Although many anti-HSV drugs such as nucleoside analogues have been ap-proved for clinical use during the past few decades, important issues, such as drug resistance, toxicity, and high cost of drugs, remain unresolved. Recently, the studies on the anti-HSV activities of marine natural products, such as marine polysaccharides, marine peptides and microbial secondary metabolites are attracting more and more attention all over the world. This review discusses the recent progress in research on the anti-HSV activities of these natural compounds obtained from marine organisms, relating to their structural features and the structure-activity relationships. In addition, the recent findings on the different anti-HSV mechanisms and molecular targets of marine compounds and their potential for therapeutic application will also be summarized in detail.
Collapse
Affiliation(s)
- Cui Hao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhongqiu Xu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Laboratory of Marine Drugs of Ministry of Education, Ocean University of China, Qingdao, China
| | - Can Xu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Laboratory of Marine Drugs of Ministry of Education, Ocean University of China, Qingdao, China
| | - Ruyong Yao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Januszewski J, Forma A, Zembala J, Flieger M, Tyczyńska M, Dring JC, Dudek I, Świątek K, Baj J. Nutritional Supplements for Skin Health-A Review of What Should Be Chosen and Why. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:68. [PMID: 38256329 PMCID: PMC10820017 DOI: 10.3390/medicina60010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024]
Abstract
Supplementation of micronutrients is considered to be crucial in the reinforcement of the skin's barrier. In this paper, 14 nutritional compounds commonly used in food or pharmaceutic industries were analyzed in terms of influencing skin conditions. The major objective of this paper was to provide a narrative review of the available literature regarding several chosen compounds that are currently widely recommended as supplements that aim to maintain proper and healthy skin conditions. We conducted a review of the literature from PubMed, Scopus, and Web of Science until September 2023 without any other restrictions regarding the year of the publication. Ultimately, we reviewed 238 articles, including them in this review. Each of the reviewed compounds, including vitamin A, vitamin C, vitamin D, vitamin E, curcumin, chlorella, Omega-3, biotin,Ppolypodium leucotomos, Simmondsia chinesis, gamma oryzanol, olive leaf extract, spirulina, and astaxanthin, was observed to present some possible effects with promising benefits for a skin condition, i.e., photoprotective radiation. Adding them to the diet or daily routine might have a positive influence on some skin inflammatory diseases such as atopic dermatitis or psoriasis. Further, UV radiation protection facilitated by some supplements and their impact on human cells might be helpful during chemotherapy or in preventing melanoma development. Further research is needed because of the lack of clear consensus regarding the doses of the described compounds that could provide desirable effects on the skin.
Collapse
Affiliation(s)
- Jacek Januszewski
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.F.); (I.D.)
| | - Julita Zembala
- University Clinical Center, Medical University of Warsaw, Lindleya 4, 02-004 Warsaw, Poland;
| | - Michał Flieger
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.F.); (I.D.)
| | - Magdalena Tyczyńska
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| | - James Curtis Dring
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| | - Iga Dudek
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.F.); (I.D.)
| | - Kamila Świątek
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| | - Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| |
Collapse
|
7
|
Liang Y, Liu M, Wang Y, Liu L, Gao Y. Analyzing the Material Basis of Anti-RSV Efficacy of Lonicerae japonicae Flos Based on the PK-PD Model. Molecules 2023; 28:6437. [PMID: 37764214 PMCID: PMC10537356 DOI: 10.3390/molecules28186437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Lonicerae japonicae Flos (LJF) possesses a good anti-respiratory syncytial virus (RSV) effect. However, the material basis of LJF in treating RSV is still unclear. In this study, a sensitive and accurate quantitative method based on UHPLC-QQQ MS was established and validated for the simultaneous determination of the 15 ingredients from LJF in RSV-infected mice plasma. Multiple reaction monitoring was performed for quantification of the standards and of the internal standard in plasma. All the calibration curves show good linear regression within the linear range (r2 > 0.9918). The method validation results, including specificity, linearity, accuracy, precision, extraction recovery, matrix effect, and stability of 15 ingredients, are all within the current acceptance criteria. This established method was successfully applied to the pharmacokinetic study of 15 compounds from LJF. Furthermore, the repair rate of lung index and the improvement rate of IFN-γ and IL-6 improved after administration of the LJF, indicating that LJF possessed a positive effect on the treatment of RSV infection. Finally, by combining Spearman and Grey relation analysis, isochlorogenic acid B, isochlorogenic acid C, secoxyloganin, chlorogenic acid, and loganic acid are speculated to be the main effective ingredients of LJF in treating RSV. This study lays the foundation for attempts to reveal the mechanisms of the anti-RSV effect of LJF.
Collapse
Affiliation(s)
- Yuting Liang
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.L.); (M.L.); (Y.W.); (L.L.)
| | - Mingjun Liu
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.L.); (M.L.); (Y.W.); (L.L.)
| | - Yanghai Wang
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.L.); (M.L.); (Y.W.); (L.L.)
| | - Lu Liu
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.L.); (M.L.); (Y.W.); (L.L.)
| | - Yan Gao
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.L.); (M.L.); (Y.W.); (L.L.)
- High Level Traditional Chinese Medicine Key Disciplines of the State Administration of Traditional Chinese Medicine: Pharmaceutics of Traditional Chinese Medicine, Jinan 250355, China
- Collaborative Innovation Center for Ecological Protection and High Quality Development of Characteristic Traditional Chinese Medicine in the Yellow River Basin, Jinan 250355, China
| |
Collapse
|