Habibi Razi F, Mohammad Jafari R, Manavi MA, Sheibani M, Rashidian A, Tavangar SM, Beighmohammadi MT, Dehpour AR. Ivermectin ameliorates bleomycin-induced lung fibrosis in male rats by inhibiting the inflammation and oxidative stress.
Immunopharmacol Immunotoxicol 2024;
46:183-191. [PMID:
38224264 DOI:
10.1080/08923973.2023.2298895]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/17/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND
Idiopathic pulmonary fibrosis (IPF) is a pulmonary fibrotic disease characterized by a poor prognosis, which its pathogenesis involves the accumulation of abnormal fibrous tissue, inflammation, and oxidative stress. Ivermectin, a positive allosteric modulator of GABAA receptor, exerts anti-inflammatory and antioxidant properties in preclinical studies. The present study investigates the potential protective effects of ivermectin treatment in rats against bleomycin-induced IPF.
MATERIALS AND METHODS
The present study involved 42 male Wistar rats, which were divided into five groups: control (without induction of IPF), bleomycin (IPF-induced by bleomycin 2.5 mg/kg, by intratracheal administration), and three fibrosis groups receiving ivermectin (0.5, 1, and 3 mg/kg). lung tissues were harvested for measurement of oxidative stress [via myeloperoxidase (MPO), superoxide dismutase (SOD), glutathione (GSH)] and inflammatory markers (tumor necrosis factor-α [TNF-α], interleukin-1β [IL-1β], and transforming growth factor-β [TGF-β]). Histological assessments of tissue damage were performed using hematoxylin-eosin (H&E) and Masson's trichrome staining methods.
RESULTS
The induction of fibrosis via bleomycin was found to increase levels of MPO as well as TNF-α, IL-1β, and TGF-β while decrease SOD activity and GSH level. Treatment with ivermectin at a dosage of 3 mg/kg was able to reverse the effects of bleomycin-induced fibrosis on these markers. In addition, results from H&E and Masson's trichrome staining showed that ivermectin treatment at this same dose reduced tissue damage and pulmonary fibrosis.
CONCLUSION
The data obtained from this study indicate that ivermectin may have therapeutic benefits for IPF, likely due to its ability to reduce inflammation and mitigate oxidative stress-induced toxicity.
Collapse