1
|
Chen CY, Zhang Y. Berberine: An isoquinoline alkaloid targeting the oxidative stress and gut-brain axis in the models of depression. Eur J Med Chem 2025; 290:117475. [PMID: 40107207 DOI: 10.1016/j.ejmech.2025.117475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/08/2025] [Accepted: 03/02/2025] [Indexed: 03/22/2025]
Abstract
Depression seriously affects people's quality of life, and there is an urgent need to find novel drugs to cure treatment-resistant depression. Berberine (BBR), extracted from Coptis chinensis Franch., Phellodendron bark, Berberis vulgaris, and Berberis petiolaris, could be a potential multi-target drug for depression. To summarize the effects of BBR on depression in terms of in vitro or in vivo experiments, we searched electronic databases, such as PubMed, Web of Science, Google Scholar, Wanfang Database, and China National Knowledge Infrastructure, from inception until May 2024. Then, we summarize that BBR has indirect antidepressant properties to improve depressive symptoms, manifesting in modulating the gut microbial community, strengthening the intestinal barrier, increasing the abundance of short-chain fatty acid-producing bacteria, and regulating tryptophan metabolism. BBR also exerts antidepressant-like effects via remodulating nuclear factor-erythroid 2-related factor 2/antioxidant response element pathway, hypothalamic-pituitary-adrenal axis, and peroxisome proliferators-activated receptor-delta. Nevertheless, further clinical trials and more high-quality animal studies are needed to show the actual clinical value of BBR for depression.
Collapse
Affiliation(s)
- Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
2
|
Chen G, Zhang C, Zou J, Zhou Z, Zhang J, Yan Y, Liang Y, Tang G, Chen G, Xu X, Wang N, Feng Y. Coptidis Rhizoma and Berberine as Anti-cancer Drugs: a 10-year updates and future perspectives. Pharmacol Res 2025:107742. [PMID: 40258505 DOI: 10.1016/j.phrs.2025.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/08/2025] [Accepted: 04/16/2025] [Indexed: 04/23/2025]
Abstract
Cancer continues to be among the most substantial health challenges globally. Among various natural compounds, berberine, an isoquinoline alkaloid obtained from Coptidis Rhizoma, has garnered considerable attention for its broad-spectrum biological activities, including anti-inflammatory, antioxidant, anti-diabetic, anti-obesity, and anti-microbial activities. Furthermore, berberine exhibits a broad spectrum of anti-cancer efficacy against various malignancies, such as ovarian, breast, lung, gastric, hepatic, colorectal, cervical, and prostate cancers. Its anti-cancer mechanisms are multifaceted, encompassing the inhibition of cancer cell proliferation, the prevention of metastasis, the induction of apoptosis, the facilitation of autophagy, the modulation of the tumor microenvironment and gut microbiota, and the enhancement of the efficacy of conventional therapeutic strategies. This paper offers an exhaustive overview of the cancer-fighting characteristics of Coptidis Rhizoma and berberine, while also exploring recent developments in nanotechnology aimed at enhancing the bioavailability of berberine. Furthermore, the side effects and safety of berberine are addressed as well. The potential role of artificial intelligence in optimizing berberine's therapeutic applications is also highlighted. This paper provides precious perspectives on the prospective application of Coptidis Rhizoma and berberine in the prevention and management of cancer.
Collapse
Affiliation(s)
- Guoming Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Cheng Zhang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Jiayi Zou
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zitian Zhou
- The Fourth School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiayi Zhang
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Yan
- The School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yinglan Liang
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guoyi Tang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Guang Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Xiaoyu Xu
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R., China.
| |
Collapse
|
3
|
Ren J, Yan G, Yang L, Kong L, Guan Y, Sun H, Liu C, Liu L, Han Y, Wang X. Cancer chemoprevention: signaling pathways and strategic approaches. Signal Transduct Target Ther 2025; 10:113. [PMID: 40246868 PMCID: PMC12006474 DOI: 10.1038/s41392-025-02167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/01/2024] [Accepted: 02/04/2025] [Indexed: 04/19/2025] Open
Abstract
Although cancer chemopreventive agents have been confirmed to effectively protect high-risk populations from cancer invasion or recurrence, only over ten drugs have been approved by the U.S. Food and Drug Administration. Therefore, screening potent cancer chemopreventive agents is crucial to reduce the constantly increasing incidence and mortality rate of cancer. Considering the lengthy prevention process, an ideal chemopreventive agent should be nontoxic, inexpensive, and oral. Natural compounds have become a natural treasure reservoir for cancer chemoprevention because of their superior ease of availability, cost-effectiveness, and safety. The benefits of natural compounds as chemopreventive agents in cancer prevention have been confirmed in various studies. In light of this, the present review is intended to fully delineate the entire scope of cancer chemoprevention, and primarily focuses on various aspects of cancer chemoprevention based on natural compounds, specifically focusing on the mechanism of action of natural compounds in cancer prevention, and discussing in detail how they exert cancer prevention effects by affecting classical signaling pathways, immune checkpoints, and gut microbiome. We also introduce novel cancer chemoprevention strategies and summarize the role of natural compounds in improving chemotherapy regimens. Furthermore, we describe strategies for discovering anticancer compounds with low abundance and high activity, revealing the broad prospects of natural compounds in drug discovery for cancer chemoprevention. Moreover, we associate cancer chemoprevention with precision medicine, and discuss the challenges encountered in cancer chemoprevention. Finally, we emphasize the transformative potential of natural compounds in advancing the field of cancer chemoprevention and their ability to introduce more effective and less toxic preventive options for oncology.
Collapse
Affiliation(s)
- Junling Ren
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Guangli Yan
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Ling Kong
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Yu Guan
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Hui Sun
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
| | - Chang Liu
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Lei Liu
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Xijun Wang
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
4
|
Wang Y, Li Y, Lin Y, Cao C, Chen D, Huang X, Li C, Xu H, Lai H, Chen H, Zhou Y. Roles of the gut microbiota in hepatocellular carcinoma: from the gut dysbiosis to the intratumoral microbiota. Cell Death Discov 2025; 11:140. [PMID: 40185720 PMCID: PMC11971373 DOI: 10.1038/s41420-025-02413-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/23/2025] [Accepted: 03/18/2025] [Indexed: 04/07/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is closely linked to alterations in the gut microbiota. This dysbiosis is characterized by significant changes in the microbial population, which correlate with the progression of HCC. Gut dysbiosis ultimately promotes HCC development in several ways: it damages the integrity of the gut-vascular barrier (GVB), alters the tumor microenvironment (TME), and even affects the intratumoral microbiota. Subsequently, intratumoral microbiota present a characteristic profile and play an essential role in HCC progression mainly by causing DNA damage, mediating tumor-related signaling pathways, altering the TME, promoting HCC metastasis, or through other mechanisms. Both gut microbiota and intratumoral microbiota have dual effects on HCC progression; a comprehensive understanding of their complex biological roles will provide a theoretical foundation for potential clinical applications in HCC treatment.
Collapse
Affiliation(s)
- Yiqin Wang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yongqiang Li
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yong Lin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chuangyu Cao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Dongcheng Chen
- Department of Gastroenterology and Hepatology, Baiyun Hospital of Guangzhou First People's Hospital (The Second People's Hospital of Baiyun District), Guangzhou, China
| | - Xianguang Huang
- Department of Gastroenterology and Hepatology, Baiyun Hospital of Guangzhou First People's Hospital (The Second People's Hospital of Baiyun District), Guangzhou, China
| | - Canhua Li
- Department of Gastroenterology and Hepatology, Baiyun Hospital of Guangzhou First People's Hospital (The Second People's Hospital of Baiyun District), Guangzhou, China
| | - Haoming Xu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huasheng Lai
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huiting Chen
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
5
|
Yakut A. Gut microbiota in the development and progression of chronic liver diseases: Gut microbiota-liver axis. World J Hepatol 2025; 17:104167. [PMID: 40177197 PMCID: PMC11959663 DOI: 10.4254/wjh.v17.i3.104167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/28/2025] [Accepted: 02/25/2025] [Indexed: 03/26/2025] Open
Abstract
The gut microbiota (GM) is a highly dynamic ecology whose density and composition can be influenced by a wide range of internal and external factors. Thus, "How do GM, which can have commensal, pathological, and mutualistic relationships with us, affect human health?" has become the most popular research issue in recent years. Numerous studies have demonstrated that the trillions of microorganisms that inhabit the human body can alter host physiology in a variety of systems, such as metabolism, immunology, cardiovascular health, and neurons. The GM may have a role in the development of a number of clinical disorders by producing bioactive peptides, including neurotransmitters, short-chain fatty acids, branched-chain amino acids, intestinal hormones, and secondary bile acid conversion. These bioactive peptides enter the portal circulatory system through the gut-liver axis and play a role in the development of chronic liver diseases, cirrhosis, and hepatic encephalopathy. This procedure is still unclear and quite complex. In this study, we aim to discuss the contribution of GM to the development of liver diseases, its effects on the progression of existing chronic liver disease, and to address the basic mechanisms of the intestinal microbiota-liver axis in the light of recent publications that may inspire the future.
Collapse
Affiliation(s)
- Aysun Yakut
- Department of Gastroenterology, İstanbul Medipol University Sefakoy Health Practice Research Center, İstanbul 38000, Türkiye.
| |
Collapse
|
6
|
Zaied H, Ashmawy MI, Abdel Karim AE, Ghareeb DA, El Wakil A. Berberine-loaded albumin nanoparticles alleviate liver damage in rats by modulating mitochondrial biogenesis and mitochondria-endoplasmic reticulum interactions. Biochem Biophys Res Commun 2025; 754:151555. [PMID: 40036899 DOI: 10.1016/j.bbrc.2025.151555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
The liver performs essential functions critical to overall health. This study evaluated the efficacy of berberine-loaded albumin nanoparticles (BRB-BSA NPs) and cisplatin in mitigating hepatic damage caused by diethylnitrosamine (DEN) and carbon tetrachloride (CCl4) in male albino rats. Molecular modeling was conducted to explore BRB interactions with Sirt1, a NAD+-dependent protein deacetylase involved in key cellular pathways. BRB-BSA NPs showed superior results to cisplatin in reducing liver enzymes, oxidative stress, and proinflammatory markers while enhancing antioxidant activities. Cisplatin, however, was more effective in restoring mitochondrial pathway regulators. Additionally, BRB-BSA NPs improved liver tissue histoarchitecture and ultrastructure, bringing them closer to normal. In conclusion, BRB-BSA NPs demonstrated potent efficacy in alleviating DEN/CCl4-induced liver injury in male rats.
Collapse
Affiliation(s)
- Heba Zaied
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Mohamed I Ashmawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ahmed E Abdel Karim
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Doaa A Ghareeb
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA-city), New Borg El Arab, Alexandria, Egypt; Research Projects Unit, Pharos University in Alexandria, Canal El Mahmoudia Street, Beside Green Plaza Complex 21648, Alexandria, Egypt
| | - Abeer El Wakil
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
7
|
Sun X, Wang C, Li S, Liu X, Li Y, Wang Y, Niu Y, Ren Z, Yang X, Yang X, Liu Y. Folic acid alleviates the negative effects of dexamethasone induced stress on production performance in Hyline Brown laying hens. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:54-65. [PMID: 39949729 PMCID: PMC11821403 DOI: 10.1016/j.aninu.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/24/2024] [Accepted: 11/28/2024] [Indexed: 02/16/2025]
Abstract
Multiple stressors are believed to deteriorate production performance and cause substantial economic losses in commercial poultry farming. Folic acid (FA) is an antioxidant compound that can improve oocyte function and regulate gut microbiota composition. The current study was conducted to investigate the role of FA in alleviating stress and improving production performance. Sixty Hyline Brown laying hens at 21 weeks of age were randomly divided into three groups, with 10 replicates in each group and each replicate containing two chickens. Each group received basic diet and saline injection (Con group), basic diet with dexamethasone (DXM) injection (DXM group), or basic diet supplemented with FA (13 mg/kg in the premix) with DXM injection (FA group). The feeding trial lasted five weeks. Birds in the DXM and FA groups receiving subcutaneous DXM injections at a dosage of 4.50 mg/kg per day during the first seven days of the trial. Results showed that the levels of corticosterone, triglyceride, total cholesterol, and malondialdehyde in serum were significantly increased in the DXM group (P < 0.05), while the concentrations of FA and 5-methyltetrahydrofolate were decreased in the DXM group (P < 0.05). Laying hens in the DXM group had lower laying rates and egg quality, including egg weight, eggshell thickness, eggshell strength, albumen height, and Haugh units (P < 0.05). Conversely, FA alleviated these negative impacts. Through transcriptome analysis, a total of 247 and 151 differentially expressed genes were identified among the three groups, and 32 overlapped genes were further identified. Moreover, 44 and 59 differential metabolites were influenced by DXM and FA, respectively. Kyoto Encyclopedia of Genes and Genomes enrichment from the transcriptome and metabolomics showed that the reduced production performance may be due to the disturbance of oocyte production, calcium metabolism, and oxidative stress. Analysis of 16S rRNA gene amplicon sequences revealed the differential microbial composition and potential functional changes among the different groups. LEfSe analysis showed that Mucispirillum and Nautella were the predominant bacteria in the DXM group, while Clostridium was the predominant bacteria in the FA group. Functional prediction demonstrated that stressors enhanced fatty acid biosynthesis, while betaine biosynthesis and retinol metabolism were elevated in the FA group. Dietary FA reversed the elevated levels of bile acids (BA), including cholic acid, taurodeoxycholic acid, and taurochenodeoxycholic acid (P < 0.05). The DXM group showed an overall decrease in short-chain fatty acids (SCFA), but FA restored the concentrations of acetic acid, propionic acid, and isobutyric acid (P < 0.05). In conclusion, this study reveals that dietary FA can alleviate the degradation of production performance caused by stress through improving circulating antioxidant capacity, maintaining intestinal microbiota homeostasis, and regulating SCFA and BA biosynthesis. Thus, highlighting the prominent role of gut microbe-host interactions in alleviating multi-stresses.
Collapse
Affiliation(s)
- Xi Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chaohui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Sijing Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaoying Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yun Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yumeng Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yuxin Niu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhouzheng Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
8
|
Yamazaki T, Cable EE, Schnabl B. Peroxisome proliferator-activated receptor delta and liver diseases. Hepatol Commun 2025; 9:e0646. [PMID: 39899669 DOI: 10.1097/hc9.0000000000000646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/16/2024] [Indexed: 02/05/2025] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors involved in transcriptional regulation and play an important role in many physiological and metabolic processes. Unlike PPAR-alpha and PPAR-gamma, PPAR-delta is ubiquitously expressed, and its activity is key to maintaining proper metabolic homeostasis within the liver. PPAR-delta not only regulates physiologic processes of lipid, glucose, and bile acid metabolism but also attenuates pathologic responses to alcohol metabolism, inflammation, fibrosis, and carcinogenesis, and is considered an important therapeutic target in liver diseases. Promising results have been reported in clinical trials for PPAR-delta agonists in liver disease, and the selective agonist seladelpar was recently conditionally approved in the United States as a new treatment option for primary biliary cholangitis. This review provides an overview of PPAR-delta's function and biology in the liver, examines its kinetics and therapeutic potential across different liver diseases, and discusses the current status of clinical trials involving its agonists.
Collapse
Affiliation(s)
- Tomoo Yamazaki
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | | | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
9
|
Shou J, Ma J, Wang X, Li X, Chen S, Kang B, Shaw P. Free Cholesterol-Induced Liver Injury in Non-Alcoholic Fatty Liver Disease: Mechanisms and a Therapeutic Intervention Using Dihydrotanshinone I. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406191. [PMID: 39558866 PMCID: PMC11727260 DOI: 10.1002/advs.202406191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Indexed: 11/20/2024]
Abstract
Build-up of free cholesterol (FC) substantially contributes to the development and severity of non-alcoholic fatty liver disease (NAFLD). Here, we investigate the specific mechanism by which FC induces liver injury in NAFLD and propose a novel therapeutic approach using dihydrotanshinone I (DhT). Rather than cholesterol ester (CE), we observed elevated levels of total cholesterol, FC, and alanine transaminase (ALT) in NAFLD patients and high-cholesterol diet-induced NAFLD mice compared to those in healthy controls. The FC level demonstrated a positive correlation with the ALT level in both patients and mice. Mechanistic studies revealed that FC elevated reactive oxygen species level, impaired the function of lysosomes, and disrupted lipophagy process, consequently inducing cell apoptosis. We then found that DhT protected mice on an HCD diet, independent of gut microbiota. DhT functioned as a potent ligand for peroxisome proliferator-activated receptor α (PPARα), stimulating its transcriptional function and enhancing catalase expression to lower reactive oxygen species (ROS) level. Notably, the protective effect of DhT was nullified in mice with hepatic PPARα knockdown. Thus, these findings are the first to report the detrimental role of FC in NAFLD, which could lead to the development of new treatment strategies for NAFLD by leveraging the therapeutic potential of DhT and PPARα pathway.
Collapse
Affiliation(s)
- Jia‐Wen Shou
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese MedicineThe Chinese University of Hong KongHong Kong852852China
| | - Juncai Ma
- Centre for Cell and Developmental BiologyState Key Laboratory for AgrobiotechnologySchool of Life SciencesThe Chinese University of Hong KongHong Kong852852China
| | - Xuchu Wang
- Department of Laboratory Medicinethe Second Affiliated Hospital of Zhejiang UniversityHangzhou310000China
| | - Xiao‐Xiao Li
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese MedicineThe Chinese University of Hong KongHong Kong852852China
- Research Center for Chinese Medicine InnovationThe Hong Kong Polytechnic UniversityHong Kong852852China
| | - Shu‐Cheng Chen
- School of NursingThe Hong Kong Polytechnic UniversityHong Kong852852China
| | - Byung‐Ho Kang
- Centre for Cell and Developmental BiologyState Key Laboratory for AgrobiotechnologySchool of Life SciencesThe Chinese University of Hong KongHong Kong852852China
| | - Pang‐Chui Shaw
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese MedicineThe Chinese University of Hong KongHong Kong852852China
- School of Life SciencesThe Chinese University of Hong KongHong Kong852852China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants and Institute of Chinese MedicineThe Chinese University of Hong KongHong Kong852852China
| |
Collapse
|
10
|
Akbar M, Toppo P, Nazir A. Ageing, proteostasis, and the gut: Insights into neurological health and disease. Ageing Res Rev 2024; 101:102504. [PMID: 39284418 DOI: 10.1016/j.arr.2024.102504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Recent research has illuminated the profound bidirectional communication between the gastrointestinal tract and the brain, furthering our understanding of neurological ailments facilitating possible therapeutic strategies. Technological advancements in high-throughput sequencing and multi-omics have unveiled significant alterations in gut microbiota and their metabolites in various neurological disorders. This review provides a thorough analysis of the role of microbiome-gut-brain axis in neurodegenerative disease pathology, linking it to reduced age-associated proteostasis. We discuss evidences that substantiate the existence of a gut-brain cross talk ranging from early clinical accounts of James Parkinson to Braak's hypothesis. In addition to understanding of microbes, the review particularly entails specific metabolites which are altered in neurodegenerative diseases. The regulatory effects of microbial metabolites on protein clearance mechanisms, proposing their potential therapeutic implications, are also discussed. By integrating this information, we advocate for a combinatory therapeutic strategy that targets early intervention, aiming to restore proteostasis and ameliorate disease progression. This approach not only provides a new perspective on the pathogenesis of neurodegenerative diseases but also highlights innovative strategies to combat the increasing burden of these age-related disorders.
Collapse
Affiliation(s)
- Mahmood Akbar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Pranoy Toppo
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Aamir Nazir
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
11
|
Hu J, Shi Q, Xue C, Wang Q. Berberine Protects against Hepatocellular Carcinoma Progression by Regulating Intrahepatic T Cell Heterogeneity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405182. [PMID: 39135526 PMCID: PMC11497054 DOI: 10.1002/advs.202405182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/25/2024] [Indexed: 10/25/2024]
Abstract
Accumulating evidence suggests that berberine (BBR) exhibits anti-cancer effects in hepatocellular carcinoma (HCC). However, the mechanisms by which BBR regulates the immunological microenvironment in HCC has not been fully elucidated. In this study, a mouse model of orthotopic HCC is established and treated with varying doses of BBR. BBR showed effectiveness in reducing tumor burden in mice with HCC. Cytometry by time-of-flight depicted the alterations in the tumor immune landscape following BBR treatment, revealing the enhancement in the T lymphocytes effector function. In particular, BBR decreased the proportion of TCRbhiPD-1hiCD69+CD27+ effector CD8+ T lymphocytes and increased the proportion of Ly6ChiTCRb+CD69+CD27+CD62L+ central memory CD8+ T lymphocytes. Single-cell RNA sequencing further elucidates the effects of BBR on transcriptional profiles of liver immune cells and confirms the phenotypical heterogeneity of T lymphocytes in HCC immune microenvironment. Additionally, it is found that BBR potentially regulated the antitumor immunity in HCC by modulating the receptor-ligand interaction among immune cells mediated by cytokines. In summary, the findings improve the understanding of BBR's impact on protecting against HCC, emphasizing BBR's role in regulating intrahepatic T cell heterogeneity. BBR has the potential to be a promising therapeutic strategy to hinder the advancement of HCC.
Collapse
Affiliation(s)
- Jiaxiang Hu
- Institute of ImmunologyZhejiang University School of MedicineHangzhou310058China
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhou311121China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhou310003China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhou310003China
| | - Qingqing Wang
- Institute of ImmunologyZhejiang University School of MedicineHangzhou310058China
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhou311121China
| |
Collapse
|
12
|
Pan Y, Li Y, Fan H, Cui H, Chen Z, Wang Y, Jiang M, Wang G. Roles of the peroxisome proliferator-activated receptors (PPARs) in the pathogenesis of hepatocellular carcinoma (HCC). Biomed Pharmacother 2024; 177:117089. [PMID: 38972148 DOI: 10.1016/j.biopha.2024.117089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) holds a prominent position among global cancer types. Classically, HCC manifests in individuals with a genetic predisposition when they encounter risk elements, particularly in the context of liver cirrhosis. Peroxisome proliferator-activated receptors (PPARs), which are transcription factors activated by fatty acids, belong to the nuclear hormone receptor superfamily and play a pivotal role in the regulation of energy homeostasis. At present, three distinct subtypes of PPARs have been recognized: PPARα, PPARγ, and PPARβ/δ. They regulate the transcription of genes responsible for cellular development, energy metabolism, inflammation, and differentiation. In recent years, with the rising incidence of HCC, there has been an increasing focus on the mechanisms and roles of PPARs in HCC. PPARα primarily mediates the occurrence and development of HCC by regulating glucose and lipid metabolism, inflammatory responses, and oxidative stress. PPARβ/δ is closely related to the self-renewal ability of liver cancer stem cells (LCSCs) and the formation of the tumor microenvironment. PPARγ not only influences tumor growth by regulating the glucose and lipid metabolism of HCC, but its agonists also have significant clinical significance for the treatment of HCC. Therefore, this review offers an exhaustive examination of the role of the three PPAR subtypes in HCC progression, focusing on their mediation of critical cellular processes such as glucose and lipid metabolism, inflammation, oxidative stress, and other pivotal signaling pathways. At the end of the review, we discuss the merits and drawbacks of existing PPAR-targeted therapeutic strategies and suggest a few alternative combinatorial therapeutic approaches that diverge from conventional methods.
Collapse
Affiliation(s)
- Yujie Pan
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Hongyu Fan
- Department of Orthopedic Surgery, Second Affiliated Hospital of Harbin Medical University, No. 246 Baojian Road, Harbin 150086, China
| | - Huijuan Cui
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Zhiyue Chen
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yunzhu Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Mengyu Jiang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
13
|
Owumi S, Chimezie J, Otunla M, Oluwawibe B, Agbarogi H, Anifowose M, Arunsi U, Owoeye O. Prepubertal Repeated Berberine Supplementation Enhances Cerebrocerebellar Functions by Modulating Neurochemical and Behavioural Changes in Wistar Rats. J Mol Neurosci 2024; 74:72. [PMID: 39042258 DOI: 10.1007/s12031-024-02250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Antioxidant-rich supplementation plays an essential role in the function of mammals' central nervous system. However, no research has documented the effect of berberine (BER) supplementation on the cerebrocerebellar function of prepubertal rats. The present study was designed to investigate the impact of BER supplementation on neurochemical and behavioural changes in prepubertal male rats. Five groups (90 ± 5 g, n = 7 each) of experimental rats were orally treated with corn oil or different doses of BER (25, 50, 100, and 200 mg/kg bw) from the 28th at 68 post-natal days. On the 69 days of life, animals underwent behavioural assessment in the open field, hanging wire, and negative geotaxis tests. The result revealed that BER administration improved locomotive and motor behaviour by increasing distance travelled, line crossings, average speed, time mobile, and absolute turn angle in open field test and decrease in time to re-orient on an incline plane, a decrease in immobility time relative to the untreated control. Furthermore, BER supplementation increased (p < 0.05) antioxidant enzyme activities such as SOD, CAT, GPx, GSH, and TSH and prevented increases (p < 0.05) in oxidative and inflammatory levels as indicated by decreases in RONS, LPO, XO, carbonyl protein, NO, MPO, and TNF-α compared to the untreated control. BER-treated animals a lessened number of dark-stained Nissl cells compared to the untreated control rats. Our findings revealed that BER minimised neuronal degeneration and lesions, improved animal behaviour, and suppressed oxidative and inflammatory mediators, which may probably occur through its agonistic effect on PPAR-α, PPAR-δ, and PPAR-γ - essential proteins known to resolve inflammation and modulate redox signalling towards antioxidant function.
Collapse
Affiliation(s)
- Solomon Owumi
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, University of Ibadan, Ibadan, 200005, Oyo State, Nigeria.
| | - Joseph Chimezie
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Moses Otunla
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, University of Ibadan, Ibadan, 200005, Oyo State, Nigeria
| | - Bayode Oluwawibe
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, University of Ibadan, Ibadan, 200005, Oyo State, Nigeria
| | - Harieme Agbarogi
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, University of Ibadan, Ibadan, 200005, Oyo State, Nigeria
| | - Mayowa Anifowose
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Uche Arunsi
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Olatunde Owoeye
- Neuroanatomy Research Laboratories, Department of Anatomy, University of Ibadan, Ibadan, 200005, Oyo State, Nigeria
| |
Collapse
|
14
|
Gu N, Yan J, Tang W, Zhang Z, Wang L, Li Z, Wang Y, Zhu Y, Tang S, Zhong J, Cheng C, Sun X, Huang Z. Prevotella copri transplantation promotes neurorehabilitation in a mouse model of traumatic brain injury. J Neuroinflammation 2024; 21:147. [PMID: 38835057 DOI: 10.1186/s12974-024-03116-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND The gut microbiota plays a critical role in regulating brain function through the microbiome-gut-brain axis (MGBA). Dysbiosis of the gut microbiota is associated with neurological impairment in Traumatic brain injury (TBI) patients. Our previous study found that TBI results in a decrease in the abundance of Prevotella copri (P. copri). P. copri has been shown to have antioxidant effects in various diseases. Meanwhile, guanosine (GUO) is a metabolite of intestinal microbiota that can alleviate oxidative stress after TBI by activating the PI3K/Akt pathway. In this study, we investigated the effect of P. copri transplantation on TBI and its relationship with GUO-PI3K/Akt pathway. METHODS In this study, a controlled cortical impact (CCI) model was used to induce TBI in adult male C57BL/6J mice. Subsequently, P. copri was transplanted by intragastric gavage for 7 consecutive days. To investigate the effect of the GUO-PI3K/Akt pathway in P. copri transplantation therapy, guanosine (GUO) was administered 2 h after TBI for 7 consecutive days, and PI3K inhibitor (LY294002) was administered 30 min before TBI. Various techniques were used to assess the effects of these interventions, including quantitative PCR, neurological behavior tests, metabolite analysis, ELISA, Western blot analysis, immunofluorescence, Evans blue assays, transmission electron microscopy, FITC-dextran permeability assay, gastrointestinal transit assessment, and 16 S rDNA sequencing. RESULTS P. copri abundance was significantly reduced after TBI. P. copri transplantation alleviated motor and cognitive deficits tested by the NSS, Morris's water maze and open field test. P. copri transplantation attenuated oxidative stress and blood-brain barrier damage and reduced neuronal apoptosis after TBI. In addition, P. copri transplantation resulted in the reshaping of the intestinal flora, improved gastrointestinal motility and intestinal permeability. Metabolomics and ELISA analysis revealed a significant increase in GUO levels in feces, serum and injured brain after P. copri transplantation. Furthermore, the expression of p-PI3K and p-Akt was found to be increased after P. copri transplantation and GUO treatment. Notably, PI3K inhibitor LY294002 treatment attenuated the observed improvements. CONCLUSIONS We demonstrate for the first time that P. copri transplantation can improve GI functions and alter gut microbiota dysbiosis after TBI. Additionally, P. copri transplantation can ameliorate neurological deficits, possibly via the GUO-PI3K/Akt signaling pathway after TBI.
Collapse
Affiliation(s)
- Nina Gu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jin Yan
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Tang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhaosi Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurosurgery, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Zhao Li
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Emergency Department, Chengdu First People's Hospital, Chengdu, China
| | - Yingwen Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yajun Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shuang Tang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurosurgery, Suining Central Hospital, Suining, China
| | - Jianjun Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chongjie Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Zhijian Huang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
15
|
Valsecchi AA, Ferrari G, Paratore C, Dionisio R, Vignani F, Sperone P, Vellani G, Novello S, Di Maio M. Gut and local microbiota in patients with cancer: increasing evidence and potential clinical applications. Crit Rev Oncol Hematol 2024; 197:104328. [PMID: 38490281 DOI: 10.1016/j.critrevonc.2024.104328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/19/2023] [Accepted: 03/11/2024] [Indexed: 03/17/2024] Open
Abstract
In recent years, cancer research has highlighted the role of disrupted microbiota in carcinogenesis and cancer recurrence. However, microbiota may also interfere with drug metabolism, influencing the efficacy of cancer drugs, especially immunotherapy, and modulating the onset of adverse events. Intestinal micro-organisms can be altered by external factors, such as use of antibiotics, proton pump inhibitors treatment, lifestyle and the use of prebiotics or probiotics. The aim of our review is to provide a picture of the current evidence about preclinical and clinical data of the role of gut and local microbiota in malignancies and its potential clinical role in cancer treatments. Standardization of microbiota sequencing approaches and its modulating strategies within prospective clinical trials could be intriguing for two aims: first, to provide novel potential biomarkers both for early cancer detection and for therapeutic effectiveness; second, to propose personalized and "microbiota-tailored" treatment strategies.
Collapse
Affiliation(s)
- Anna Amela Valsecchi
- Department of Oncology, University of Turin, Città della Salute e della Scienza di Torino, Turin, Italy
| | - Giorgia Ferrari
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Chiara Paratore
- Department of Oncology, ASL TO4, Ivrea Community Hospital, Ivrea, Italy.
| | - Rossana Dionisio
- Department of Oncology, University of Turin, Mauriziano Hospital, Turin, Italy
| | - Francesca Vignani
- Department of Oncology, University of Turin, Mauriziano Hospital, Turin, Italy
| | - Paola Sperone
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Giorgio Vellani
- Department of Oncology, ASL TO4, Ivrea Community Hospital, Ivrea, Italy
| | - Silvia Novello
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Massimo Di Maio
- Department of Oncology, University of Turin, Città della Salute e della Scienza di Torino, Turin, Italy
| |
Collapse
|
16
|
Lin X, Zhang J, Chu Y, Nie Q, Zhang J. Berberine prevents NAFLD and HCC by modulating metabolic disorders. Pharmacol Ther 2024; 254:108593. [PMID: 38301771 DOI: 10.1016/j.pharmthera.2024.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global metabolic disease with high prevalence in both adults and children. Importantly, NAFLD is becoming the main cause of hepatocellular carcinoma (HCC). Berberine (BBR), a naturally occurring plant component, has been demonstrated to have advantageous effects on a number of metabolic pathways as well as the ability to kill liver tumor cells by causing cell death and other routes. This permits us to speculate and make assumptions about the value of BBR in the prevention and defense against NAFLD and HCC by a global modulation of metabolic disorders. Herein, we briefly describe the etiology of NAFLD and NAFLD-related HCC, with a particular emphasis on analyzing the potential mechanisms of BBR in the treatment of NAFLD from aspects including increasing insulin sensitivity, controlling the intestinal milieu, and controlling lipid metabolism. We also elucidate the mechanism of BBR in the treatment of HCC. More significantly, we provided a list of clinical studies for BBR in NAFLD. Taking into account our conclusions and perspectives, we can make further progress in the treatment of BBR in NAFLD and NAFLD-related HCC.
Collapse
Affiliation(s)
- Xinyue Lin
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Juanhong Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Yajun Chu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qiuying Nie
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
17
|
Hadi M, Qutaiba B Allela O, Jabari M, Jasoor AM, Naderloo O, Yasamineh S, Gholizadeh O, Kalantari L. Recent advances in various adeno-associated viruses (AAVs) as gene therapy agents in hepatocellular carcinoma. Virol J 2024; 21:17. [PMID: 38216938 PMCID: PMC10785434 DOI: 10.1186/s12985-024-02286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024] Open
Abstract
Primary liver cancer, which is scientifically referred to as hepatocellular carcinoma (HCC), is a significant concern in the field of global health. It has been demonstrated that conventional chemotherapy, chemo-hormonal therapy, and conformal radiotherapy are ineffective against HCC. New therapeutic approaches are thus urgently required. Identifying single or multiple mutations in genes associated with invasion, metastasis, apoptosis, and growth regulation has resulted in a more comprehensive comprehension of the molecular genetic underpinnings of malignant transformation, tumor advancement, and host interaction. This enhanced comprehension has notably propelled the development of novel therapeutic agents. Therefore, gene therapy (GT) holds great promise for addressing the urgent need for innovative treatments in HCC. However, the complexity of HCC demands precise and effective therapeutic approaches. The adeno-associated virus (AAV) distinctive life cycle and ability to persistently infect dividing and nondividing cells have rendered it an alluring vector. Another appealing characteristic of the wild-type virus is its evident absence of pathogenicity. As a result, AAV, a vector that lacks an envelope and can be modified to transport DNA to specific cells, has garnered considerable interest in the scientific community, particularly in experimental therapeutic strategies that are still in the clinical stage. AAV vectors emerge as promising tools for HCC therapy due to their non-immunogenic nature, efficient cell entry, and prolonged gene expression. While AAV-mediated GT demonstrates promise across diverse diseases, the current absence of ongoing clinical trials targeting HCC underscores untapped potential in this context. Furthermore, gene transfer through hepatic AAV vectors is frequently facilitated by GT research, which has been propelled by several congenital anomalies affecting the liver. Notwithstanding the enthusiasm associated with this notion, recent discoveries that expose the integration of the AAV vector genome at double-strand breaks give rise to apprehensions regarding their enduring safety and effectiveness. This review explores the potential of AAV vectors as versatile tools for targeted GT in HCC. In summation, we encapsulate the multifaceted exploration of AAV vectors in HCC GT, underlining their transformative potential within the landscape of oncology and human health.
Collapse
Affiliation(s)
- Meead Hadi
- Department of Microbiology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Mansoureh Jabari
- Medical Campus, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Asna Mahyazadeh Jasoor
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Omid Naderloo
- Department of Laboratory Sciences, Faculty of Medicine, Islamic Azad University of Gorgan Breanch, Gorgan, Iran
| | | | | | - Leila Kalantari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
18
|
Zheng Y, Zhang M, Wu X, Tan R, Jiang H. Coptis Chinensis Franch: Substance Basis, Mechanism of Action and Quality Control Standard Revealed Based on the Q-marker Concept and New Strategy of Systemic Pharmacology and Biosynthesis Research. Curr Top Med Chem 2024; 24:2013-2032. [PMID: 39136504 DOI: 10.2174/0115680266305274240723120426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 10/22/2024]
Abstract
Coptis chinensis Franch. (Ranunculaceae, Coptis), a traditional Chinese medicine (TCM) with thousands of years of clinical use history, also a natural medicine available in many countries, has wide pharmacological mechanisms and significant bioactivity according to its traditional efficacy combined with modern scientific research. The quality marker (Q-marker) of C. chinensis Franch. is predicted in this paper based on the chemical composition and pharmacological effects of the plant, as well as the current system pharmacology, plant relatedness, biosynthetic pathways and quantitative analysis of multi-components (QAMS). Natural medicine has the advantage of being multi-component, multi-pathway and multi-target. However, there are few reports on safety evaluation. This review predicts the Q-marker of C. chinensis, the safety and efficacy of C. chinensis is provided. Studies from 1975 to 2023 were reviewed from PubMed, Elsevier, ScienceDirect, Web of Science, SpringerLink, and Google Scholar. Alkaloids and organic acids are the two main component categories of Q-Markers. The specific alkaloids identified through predictive results include berberine, coptisine, palmatine, epiberberine, jatrorrhizine, columbamine, and berberrubine. Quinic acid and malic acid, due to their influence on the content of alkaloids and their ability to aid in identifying the active components of C. chinensis, are also considered Q-markers. The research strategy of "exploring chemical components, exploring pharmacological activities, constructing pharmacological mechanism network and locating biosynthetic pathways" was used to accurately screen the quality markers of C. chinensis in this review and summarise the quality evaluation methods and criteria. In addition, we updated the biosynthetic pathway of C. chinensis and refined the specific synthetic pathways of jatrorrhizine (quality markers) and epiberberine (quality markers). Finally, we summarised the quality evaluation methods of C. chinensis, which provide an important reference for resource evaluation and provide a key reference for the discovery of new functional chemical entities for natural medicines.
Collapse
Affiliation(s)
- Yating Zheng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 613100, P.R. China
| | - Mengyu Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 613100, P.R. China
| | - Xiaoqing Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 613100, P.R. China
| | - Rui Tan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 613100, P.R. China
| | - Hezhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 613100, P.R. China
| |
Collapse
|
19
|
Vijayan Y, Sandhu JS, Harikumar KB. Modulatory Role of Phytochemicals/Natural Products in Cancer Immunotherapy. Curr Med Chem 2024; 31:5165-5177. [PMID: 38549529 DOI: 10.2174/0109298673274796240116105555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 09/06/2024]
Abstract
Immunotherapy is a newly emerging and effective approach to treating cancer. However, there are many challenges associated with using checkpoint inhibitors in this treatment strategy. The component of the tumor microenvironment plays a crucial role in antitumor immune response, regulating tumor immune surveillance and immunological evasion. Natural products/phytochemicals can modulate the tumor microenvironment and function as immunomodulatory agents. In clinical settings, there is a strong need to develop synergistic combination regimens using natural products that can effectively enhance the therapeutic benefits of immune checkpoint inhibitors relative to their effectiveness as single therapies. The review discusses immunotherapy, its side effects, and a summary of evidence suggesting the use of natural products to modulate immune checkpoint pathways.
Collapse
Affiliation(s)
- Yadu Vijayan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, India
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Jaskirat Singh Sandhu
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, India
| | - Kuzhuvelil B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, India
| |
Collapse
|
20
|
Shou JW, Shaw PC. Berberine Reduces Lipid Accumulation in Obesity via Mediating Transcriptional Function of PPARδ. Int J Mol Sci 2023; 24:11600. [PMID: 37511356 PMCID: PMC10380538 DOI: 10.3390/ijms241411600] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Obesity is defined as a dampness-heat syndrome in traditional Chinese medicine. Coptidis Rhizoma is an herb used to clear heat and eliminate dampness in obesity and its complications. Berberine (BBR), the main active compound in Coptidis Rhizoma, shows anti-obesity effects. Peroxisome proliferator-activated receptors (PPARs) are a group of nuclear receptor proteins that regulate the expression of genes involved in energy metabolism, lipid metabolism, inflammation, and adipogenesis. However, whether PPARs are involved in the anti-obesity effect of BBR remains unclear. As such, the aim of this study was to elucidate the role of PPARs in BBR treatment on obesity and the underlying molecular mechanisms. Our data showed that BBR produced a dose-dependent regulation of the levels of PPARγ and PPARδ but not PPARα. The results of gene silencing and specific antagonist treatment demonstrated that PPARδ is key to the effect of BBR. In 3T3L1 preadipocytes, BBR reduced lipid accumulation; in high-fat-diet (HFD)-induced obese mice, BBR reduced weight gain and white adipose tissue mass and corrected the disturbed biochemical parameters, including lipid levels and inflammatory and oxidative markers. Both the in vitro and in vivo efficacies of BBR were reversed by the presence of a specific antagonist of PPARδ. The results of a mechanistic study revealed that BBR could activate PPARδ in both 3T3L1 cells and HFD mice, as evidenced by the significant upregulation of PPARδ endogenous downstream genes. After activating by BBR, the transcriptional functions of PPARδ were invoked, exhibiting negative regulation of CCAAT/enhancer-binding protein α (Cebpα) and Pparγ promoters and positive mediation of heme oxygenase-1 (Ho-1) promoter. In summary, this is the first report of a novel anti-obesity mechanism of BBR, which was achieved through the PPARδ-dependent reduction in lipid accumulation.
Collapse
Affiliation(s)
- Jia-Wen Shou
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Pang-Chui Shaw
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants and Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|