1
|
Ben-Dor M, Sirtoli R, Barkai R. The evolution of the human trophic level during the Pleistocene. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 175 Suppl 72:27-56. [PMID: 33675083 DOI: 10.1002/ajpa.24247] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/07/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
The human trophic level (HTL) during the Pleistocene and its degree of variability serve, explicitly or tacitly, as the basis of many explanations for human evolution, behavior, and culture. Previous attempts to reconstruct the HTL have relied heavily on an analogy with recent hunter-gatherer groups' diets. In addition to technological differences, recent findings of substantial ecological differences between the Pleistocene and the Anthropocene cast doubt regarding that analogy's validity. Surprisingly little systematic evolution-guided evidence served to reconstruct HTL. Here, we reconstruct the HTL during the Pleistocene by reviewing evidence for the impact of the HTL on the biological, ecological, and behavioral systems derived from various existing studies. We adapt a paleobiological and paleoecological approach, including evidence from human physiology and genetics, archaeology, paleontology, and zoology, and identified 25 sources of evidence in total. The evidence shows that the trophic level of the Homo lineage that most probably led to modern humans evolved from a low base to a high, carnivorous position during the Pleistocene, beginning with Homo habilis and peaking in Homo erectus. A reversal of that trend appears in the Upper Paleolithic, strengthening in the Mesolithic/Epipaleolithic and Neolithic, and culminating with the advent of agriculture. We conclude that it is possible to reach a credible reconstruction of the HTL without relying on a simple analogy with recent hunter-gatherers' diets. The memory of an adaptation to a trophic level that is embedded in modern humans' biology in the form of genetics, metabolism, and morphology is a fruitful line of investigation of past HTLs, whose potential we have only started to explore.
Collapse
Affiliation(s)
- Miki Ben-Dor
- Department of Archaeology, Tel Aviv University, Tel Aviv, Israel
| | | | - Ran Barkai
- Department of Archaeology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Bescos R, Brookes ZL, Belfield LA, Fernandez-Sanjurjo M, Casas-Agustench P. Modulation of oral microbiota: A new frontier in exercise supplementation. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
3
|
Thamadilok S, Choi KS, Ruhl L, Schulte F, Kazim AL, Hardt M, Gokcumen O, Ruhl S. Human and Nonhuman Primate Lineage-Specific Footprints in the Salivary Proteome. Mol Biol Evol 2020; 37:395-405. [PMID: 31614365 PMCID: PMC6993864 DOI: 10.1093/molbev/msz223] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Proteins in saliva are needed for preprocessing food in the mouth, maintenance of tooth mineralization, and protection from microbial pathogens. Novel insights into human lineage-specific functions of salivary proteins and clues to their involvement in human disease can be gained through evolutionary studies, as recently shown for salivary amylase AMY1 and salivary agglutinin DMBT1/gp340. However, the entirety of proteins in saliva, the salivary proteome, has not yet been investigated from an evolutionary perspective. Here, we compared the proteomes of human saliva and the saliva of our closest extant evolutionary relatives, chimpanzees and gorillas, using macaques as an outgroup, with the aim to uncover features in saliva protein composition that are unique to each species. We found that humans produce a waterier saliva, containing less than half total protein than great apes and Old World monkeys. For all major salivary proteins in humans, we could identify counterparts in chimpanzee and gorilla saliva. However, we discovered unique protein profiles in saliva of humans that were distinct from those of nonhuman primates. These findings open up the possibility that dietary differences and pathogenic pressures may have shaped a distinct salivary proteome in the human lineage.
Collapse
Affiliation(s)
- Supaporn Thamadilok
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY
| | - Kyoung-Soo Choi
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, University at Buffalo, Buffalo, NY
| | - Lorenz Ruhl
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, University at Buffalo, Buffalo, NY
| | - Fabian Schulte
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA
| | - A Latif Kazim
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, University at Buffalo, Buffalo, NY
| | - Markus Hardt
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA
| | - Omer Gokcumen
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, Buffalo, NY
| | - Stefan Ruhl
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY
| |
Collapse
|
4
|
Yi J, Zhao Y, Bi J, Hou C, Peng J, Guo Y. Evaluation of processing methods and oral mastication on the carotenoid bioaccessibility of restructured carrot chips. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4858-4869. [PMID: 32478412 DOI: 10.1002/jsfa.10546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/04/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Carrot carotenoids are typically located in chromoplasts, forming a crystalline substructure. Cell walls and chromoplasts therefore constitute two major physical barriers to the release of carotenoids from the food matrix during digestion. The release of carotenoids from these physical barriers is supposed to be substantially affected by mechanical factors during food processing and oral mastication. Given the implications of this, the effects of four different processing procedures, and various mastication levels, on the carotenoid bioaccessibility of carrot chips were evaluated. RESULTS Restructuring and drying methods substantially affected the carotenoid bioaccessibility of carrot chips. The highest carotenoid bioaccessibility was obtained for the air-dried combined with instant pressure-drop-dried (AD-DIC) restructured chips. Although the fresh carrots possessed the highest carotenoid content, their bioaccessibility was lower than that of the carrot chips. The evolution of the particle sizes of the samples was responsible for the changes in carotenoid bioaccessibility due to oral masitication. The particle size of the fresh carrots decreased with increasing oral masitication, which favored carotenoid bioaccessibilty. However, the restructured chips that combined freeze drying with instant pressure-drop drying (R-FD-DIC) demonstrated the opposite trend, probably caused by the severe aggregation of the sample during digestion, which compromised the effect of mastication on the release of carotenoid. CONCLUSION Data regarding the effects of the drying process and oral mastication digestion behavior on the samples suggested that AD-DIC-dried restructured carrot chips are effective in enhancing carotenoid bioaccessibility, which explains the key factors involved in the release of carotenoids from carrot chips prepared by different processes. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianyong Yi
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanyuan Zhao
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinfeng Bi
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunhui Hou
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Peng
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
- Guangdong Key Laboratory of Agricultural Products Processing, Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yuxia Guo
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Mouritsen OG. Deliciousness of food and a proper balance in fatty acid composition as means to improve human health and regulate food intake. ACTA ACUST UNITED AC 2016. [DOI: 10.1186/s13411-016-0048-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Abstract
The transition to a cooked diet represents an important shift in human ecology and evolution. Cooking requires a set of sophisticated cognitive abilities, including causal reasoning, self-control and anticipatory planning. Do humans uniquely possess the cognitive capacities needed to cook food? We address whether one of humans' closest relatives, chimpanzees (Pan troglodytes), possess the domain-general cognitive skills needed to cook. Across nine studies, we show that chimpanzees: (i) prefer cooked foods; (ii) comprehend the transformation of raw food that occurs when cooking, and generalize this causal understanding to new contexts; (iii) will pay temporal costs to acquire cooked foods; (iv) are willing to actively give up possession of raw foods in order to transform them; and (v) can transport raw food as well as save their raw food in anticipation of future opportunities to cook. Together, our results indicate that several of the fundamental psychological abilities necessary to engage in cooking may have been shared with the last common ancestor of apes and humans, predating the control of fire.
Collapse
Affiliation(s)
- Felix Warneken
- Department of Psychology, Harvard University, Cambridge, MA, USA
| | - Alexandra G Rosati
- Department of Psychology, Harvard University, Cambridge, MA, USA Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA Department of Psychology, Yale University, New Haven, CT, USA
| |
Collapse
|
7
|
|
8
|
Lindeberg S. Paleolithic diets as a model for prevention and treatment of Western disease. Am J Hum Biol 2012; 24:110-5. [PMID: 22262579 DOI: 10.1002/ajhb.22218] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 12/03/2011] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES To explore the possibility that a paleolithic-like diet can be used in the prevention of age-related degenerative Western disease. METHODS Literature review of African Paleolithic foods in relation to recent evidence of healthy nutrition. RESULTS AND DISCUSSION Available evidence lends weak support in favor and little against the notion that lean meat, fish, vegetables, tubers, and fruit can be effective in the prevention and treatment of common Western diseases. There are no obvious risks with avoiding dairy products, margarine, oils, refined sugar, and cereal grains, which provide 70% or more of the dietary intake in northern European populations. If stroke, coronary heart disease, type 2 diabetes, and cancer are preventable by dietary changes, an ancestral-like diet may provide an appropriate template.
Collapse
Affiliation(s)
- Staffan Lindeberg
- Department of Primary Health Care Research, Lund University, Sweden.
| |
Collapse
|
9
|
Thompson CL, Donley EM, Stimpson CD, Horne WI, Vinyard CJ. The influence of experimental manipulations on chewing speed during in vivo laboratory research in tufted capuchins (Cebus apella). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 145:402-14. [PMID: 21469081 DOI: 10.1002/ajpa.21514] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 01/30/2011] [Indexed: 11/09/2022]
Abstract
Even though in vivo studies of mastication in living primates are often used to test functional and adaptive hypotheses explaining primate masticatory behavior, we currently have little data addressing how experimental procedures performed in the laboratory influence mastication. The obvious logistical issue in assessing how animal manipulation impacts feeding physiology reflects the difficulty in quantifying mechanical parameters without handling the animal. In this study, we measured chewing cycle duration as a mechanical variable that can be collected remotely to: 1) assess how experimental manipulations affect chewing speed in Cebus apella, 2) compare captive chewing cycle durations to that of wild conspecifics, and 3) document sources of variation (beyond experimental manipulation) impacting captive chewing cycle durations. We find that experimental manipulations do increase chewing cycle durations in C. apella by as much as 152 milliseconds (ms) on average. These slower chewing speeds are mainly an effect of anesthesia (and/or restraint), rather than electrode implantation or more invasive surgical procedures. Comparison of captive and wild C. apella suggest there is no novel effect of captivity on chewing speed, although this cannot unequivocally demonstrate that masticatory mechanics are similar in captive and wild individuals. Furthermore, we document significant differences in cycle durations due to inter-individual variation and food type, although duration did not always significantly correlate with mechanical properties of foods. We advocate that the significant reduction in chewing speed be considered as an appropriate qualification when applying the results of laboratory-based feeding studies to adaptive explanations of primate feeding behaviors.
Collapse
Affiliation(s)
- C L Thompson
- Department of Anthropology, Kent State University, OH 44242, USA.
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Lindeberg S. Modern Human Physiology with Respect to Evolutionary Adaptations that Relate to Diet in the Past. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/978-1-4020-9699-0_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Great apes prefer cooked food. J Hum Evol 2008; 55:340-8. [PMID: 18486186 DOI: 10.1016/j.jhevol.2008.03.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 02/26/2008] [Accepted: 03/12/2008] [Indexed: 11/22/2022]
Abstract
The cooking hypothesis proposes that a diet of cooked food was responsible for diverse morphological and behavioral changes in human evolution. However, it does not predict whether a preference for cooked food evolved before or after the control of fire. This question is important because the greater the preference shown by a raw-food-eating hominid for the properties present in cooked food, the more easily cooking should have been adopted following the control of fire. Here we use great apes to model food preferences by Paleolithic hominids. We conducted preference tests with various plant and animal foods to determine whether great apes prefer food items raw or cooked. We found that several populations of captive apes tended to prefer their food cooked, though with important exceptions. These results suggest that Paleolithic hominids would likewise have spontaneously preferred cooked food to raw, exapting a pre-existing preference for high-quality, easily chewed foods onto these cooked items. The results, therefore, challenge the hypothesis that the control of fire preceded cooking by a significant period.
Collapse
|