1
|
Rojic-Becker D, Portero-Tresserra M, Martí-Nicolovius M, Vale-Martínez A, Guillazo-Blanch G. Caloric restriction modulates the monoaminergic and glutamatergic systems in the hippocampus, and attenuates age-dependent spatial memory decline. Neurobiol Learn Mem 2019; 166:107107. [DOI: 10.1016/j.nlm.2019.107107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/27/2022]
|
2
|
Maliković J, Feyissa DD, Hussein AM, Höger H, Lubec G, Korz V. Moderate Differences in Feeding Diets Largely Affect Motivation and Spatial Cognition in Adult and Aged but Less in Young Male Rats. Front Aging Neurosci 2018; 10:249. [PMID: 30158866 PMCID: PMC6104161 DOI: 10.3389/fnagi.2018.00249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/30/2018] [Indexed: 01/03/2023] Open
Abstract
Nutrition can have significant effects on behavior and cognitive processes. Most of the studies related to this use extremely modified diets, such as high fat contents or the exclusion of distinct components needed for normal development and bodily homeostasis. Here we report significant effects of diets with moderate differences in compositions on food rewarded spatial learning in young (3–4 months), adult (6–7 months), and aged (17–18 months) rats. Young rats fed with a lower energy diet showed better performance only during aquisition of the spatial task when compared to rats fed with a standard diet. Adult rats (6–7 months) fed with a standard diet performed less well in the spatial learning task, than rats fed with lower energy diet. Aged rats fed with a lower energy diet (from 13 to 18 months of age) performed better during all training phases, as in a previous test when they were adult and fed with a standard diet. This difference could only be partly explained by lower motivation to search for food in the first test. Correspondingly, the variability of individual performance was significantly higher and increased over trials in adult rats fed with the standard diet as compared to adult rats fed with lower energy diet. Thus, moderate changes in feeding diets have large effects on motivation and cognition in elderly and less in young rats in a food rewarded spatial learning task. Therefore, nutrition effects upon food rewarded spatial learning and memory should be considered especially in aging studies.
Collapse
Affiliation(s)
- Jovana Maliković
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Daniel D Feyissa
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Ahmed M Hussein
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria.,Department of Zoology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Harald Höger
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Vienna, Austria
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Medical University, Salzburg, Austria
| | - Volker Korz
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Calorie restriction in rodents: Caveats to consider. Ageing Res Rev 2017; 39:15-28. [PMID: 28610949 DOI: 10.1016/j.arr.2017.05.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 02/08/2023]
Abstract
The calorie restriction paradigm has provided one of the most widely used and most useful tools for investigating mechanisms of aging and longevity. By far, rodent models have been employed most often in these endeavors. Over decades of investigation, claims have been made that the paradigm produces the most robust demonstration that aging is malleable. In the current review of the rodent literature, we present arguments that question the robustness of the paradigm to increase lifespan and healthspan. Specifically, there are several questions to consider as follows: (1) At what age does CR no longer produce benefits? (2) Does CR attenuate cognitive decline? (3) Are there negative effects of CR, including effects on bone health, wound healing, and response to infection? (4) How important is schedule of feeding? (5) How long does CR need to be imposed to be effective? (6) How do genotype and gender influence CR? (7) What role does dietary composition play? Consideration of these questions produce many caveats that should guide future investigations to move the field forward.
Collapse
|
4
|
Schättin A, Baur K, Stutz J, Wolf P, de Bruin ED. Effects of Physical Exercise Combined with Nutritional Supplements on Aging Brain Related Structures and Functions: A Systematic Review. Front Aging Neurosci 2016; 8:161. [PMID: 27458371 PMCID: PMC4933713 DOI: 10.3389/fnagi.2016.00161] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/20/2016] [Indexed: 01/12/2023] Open
Abstract
Age-related decline in gray and white brain matter goes together with cognitive depletion. To influence cognitive functioning in elderly, several types of physical exercise and nutritional intervention have been performed. This paper systematically reviews the potential additive and complementary effects of nutrition/nutritional supplements and physical exercise on cognition. The search strategy was developed for EMBASE, Medline, PubMed, Cochrane, CINAHL, and PsycInfo databases and focused on the research question: “Is the combination of physical exercise with nutrition/nutritional supplementation more effective than nutrition/nutritional supplementation or physical exercise alone in effecting on brain structure, metabolism, and/or function?” Both mammalian and human studies were included. In humans, randomized controlled trials that evaluated the effects of nutrition/nutritional supplements and physical exercise on cognitive functioning and associated parameters in healthy elderly (>65 years) were included. The systematic search included English and German language literature without any limitation of publication date. The search strategy yielded a total of 3129 references of which 67 studies met the inclusion criteria; 43 human and 24 mammalian, mainly rodent, studies. Three out of 43 human studies investigated a nutrition/physical exercise combination and reported no additive effects. In rodent studies, additive effects were found for docosahexaenoic acid supplementation when combined with physical exercise. Although feasible combinations of physical exercise/nutritional supplements are available for influencing the brain, only a few studies evaluated which possible combinations of nutrition/nutritional supplementation and physical exercise might have an effect on brain structure, metabolism and/or function. The reason for no clear effects of combinatory approaches in humans might be explained by the misfit between the combinations of nutritional methods with the physical interventions in the sense that they were not selected on sharing of similar neuronal mechanisms. Based on the results from this systematic review, future human studies should focus on the combined effect of docosahexaenoic acid supplementation and physical exercise that contains elements of (motor) learning.
Collapse
Affiliation(s)
- Alexandra Schättin
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, Swiss Federal Institute of Technology (ETH Zurich) Zurich, Switzerland
| | - Kilian Baur
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zurich) Zurich, Switzerland
| | - Jan Stutz
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, Swiss Federal Institute of Technology (ETH Zurich) Zurich, Switzerland
| | - Peter Wolf
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zurich) Zurich, Switzerland
| | - Eling D de Bruin
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, Swiss Federal Institute of Technology (ETH Zurich) Zurich, Switzerland
| |
Collapse
|
5
|
Salvatore MF, Terrebonne J, Fields V, Nodurft D, Runfalo C, Latimer B, Ingram DK. Initiation of calorie restriction in middle-aged male rats attenuates aging-related motoric decline and bradykinesia without increased striatal dopamine. Neurobiol Aging 2016; 37:192-207. [PMID: 26610387 PMCID: PMC4688216 DOI: 10.1016/j.neurobiolaging.2015.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 01/07/2023]
Abstract
Aging-related bradykinesia affects ∼ 15% of those reaching age 65 and 50% of those reaching their 80s. Given this high risk and lack of pharmacologic therapeutics, noninvasive lifestyle strategies should be identified to diminish its risk and identify the neurobiological targets to reduce aging-related bradykinesia. Early-life, long-term calorie restriction (CR) attenuates aging-related bradykinesia in rodents. Here, we addressed whether CR initiation at middle age could attenuate aging-related bradykinesia and motoric decline measured as rotarod performance. A 30% CR regimen was implemented for 6 months duration in 12-month-old male Brown-Norway Fischer 344 F1 hybrid rats after establishing individual baseline locomotor activities. Locomotor capacity was assessed every 6 weeks thereafter. The ad libitum group exhibited predictably decreased locomotor activity, except movement speed, out to 18 months of age. In contrast, in the CR group, movement number and horizontal activity did not decrease during the 6-month trial, and aging-related decline in rotarod performance was attenuated. The response to CR was influenced by baseline locomotor activity. The lower the locomotor activity level at baseline, the greater the response to CR. Rats in the lower 50th percentile surpassed their baseline level of activity, whereas rats in the top 50th percentile decreased at 6 weeks and then returned to baseline by 12 weeks of CR. We hypothesized that nigrostriatal dopamine tissue content would be greater in the CR group and observed a modest increase only in substantia nigra with no group differences in striatum, nucleus accumbens, or ventral tegmental area. These results indicate that initiation of CR at middle age may reduce aging-related bradykinesia, and, furthermore, subjects with below average locomotor activity may increase baseline activity. Sustaining nigral dopamine neurotransmission may be one component of preserving locomotor capabilities during aging.
Collapse
Affiliation(s)
- Michael F Salvatore
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA.
| | - Jennifer Terrebonne
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Victoria Fields
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Danielle Nodurft
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Cori Runfalo
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Brian Latimer
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Donald K Ingram
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
6
|
Gallagher M, Stocker AM, Koh MT. Mindspan: lessons from rat models of neurocognitive aging. ILAR J 2011; 52:32-40. [PMID: 21411856 DOI: 10.1093/ilar.52.1.32] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Research on the biology of aging seeks to enhance understanding of basic mechanisms and thus support improvements in outcomes throughout the lifespan, including longevity itself, susceptibility to disease, and life-long adaptive capacities. The focus of this review is the use of rats as an animal model of cognitive change during aging, and specifically lessons learned from aging rats in behavioral studies of cognitive processes mediated by specialized neural circuitry. An advantage of this approach is the ability to compare brain aging across species where functional homology exists for specific neural systems; in this article we focus on behavioral assessments that target the functions of the medial temporal lobe and prefrontal cortex. We also take a critical look at studies using calorie restriction (CR) as a well-defined experimental approach to manipulating biological aging. We conclude that the effects of CR on cognitive aging in rats are less well established than commonly assumed, with much less supportive evidence relative to its benefits on longevity and susceptibility to disease, and that more research in this area is necessary.
Collapse
Affiliation(s)
- Michela Gallagher
- Department of Psychological and Brain Sciences, Johns Hopkins University, Ames Hall, 3400 North Charles Street, Baltimore, MD 21218, USA.
| | | | | |
Collapse
|
7
|
Growth rate and retention of learned predator cues by juvenile rainbow trout: faster-growing fish forget sooner. Behav Ecol Sociobiol 2011. [DOI: 10.1007/s00265-011-1140-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Dietary restriction delays aging, but not neuronal dysfunction, in Drosophila models of Alzheimer's disease. Neurobiol Aging 2009; 32:1977-89. [PMID: 19969390 PMCID: PMC3176895 DOI: 10.1016/j.neurobiolaging.2009.10.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 10/20/2009] [Accepted: 10/26/2009] [Indexed: 01/03/2023]
Abstract
Dietary restriction (DR) extends lifespan in diverse organisms and, in animal and cellular models, can delay a range of aging-related diseases including Alzheimer's disease (AD). A better understanding of the mechanisms mediating these interactions, however, may reveal novel pathways involved in AD pathogenesis, and potential targets for disease-modifying treatments and biomarkers for disease progression. Drosophila models of AD have recently been developed and, due to their short lifespan and susceptibility to genetic manipulation, we have used the fly to investigate the molecular connections among diet, aging and AD pathology. DR extended lifespan in both Arctic mutant Aβ42 and WT 4R tau over-expressing flies, but the underlying molecular pathology was not altered and neuronal dysfunction was not prevented by dietary manipulation. Our data suggest that DR may alter aging through generalised mechanisms independent of the specific pathways underlying AD pathogenesis in the fly, and hence that lifespan-extending manipulations may have varying effects on aging and functional declines in aging-related diseases. Alternatively, our analysis of the specific effects of DR on neuronal toxicity downstream of Aβ and tau pathologies with negative results may simply confirm that the neuro-protective effects of DR are upstream of the initiating events involved in the pathogenesis of AD.
Collapse
|
9
|
Le Rohellec M, Le Bourg E. Contrasted effects of suppressing live yeast from food on longevity, aging and resistance to several stresses in Drosophila melanogaster. Exp Gerontol 2009; 44:695-707. [PMID: 19666103 DOI: 10.1016/j.exger.2009.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 07/30/2009] [Accepted: 08/04/2009] [Indexed: 01/01/2023]
Abstract
It is often accepted that dietary restriction (DR) increases longevity in Drosophila melanogaster, but this is still a controversial issue. In the present study, adult flies were fed on a rich nutritious medium to which live yeast, a source of proteins, was added or not. Suppressing live yeast did not always increased longevity of virgin flies, but increased it in mated flies. It also decreased fecundity, delayed behavioral aging and increased resistance to heat of young females only. However, flies without live yeast suffered from a reduced resistance to cold, starvation and infection. This study thus reports some positive effects of suppressing live yeast on longevity, contrarily to previous studies of the same laboratory using other DR methods, but also shows that the absence of live yeast increases frailty. The effects of live yeast in flies are thus contrasted, and it is probable that flies without a high amount of proteins in the diet would not survive for a long time in the wild, due to their inability to resist stress and their low fecundity.
Collapse
Affiliation(s)
- Marion Le Rohellec
- Centre de Recherche sur la Cognition Animale, UMR CNRS 5169, Université Paul-Sabatier, 118 route de Narbonne, F-31062 Toulouse cedex 9, France
| | | |
Collapse
|