1
|
Mulheron H, DuBois A, Mayhew EJ. Quantifying the sweetness intensity and impact of aroma in honey from four floral sources. J Food Sci 2024; 89:9732-9741. [PMID: 39437307 DOI: 10.1111/1750-3841.17461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Unlike many commercial sweeteners for which sweetness dose-response curves have been constructed, honey's sweetness has yet to be quantified. Honey differs from most commercial sweeteners in that it has a robust aroma; this aroma may impact its perceived sweetness. This study quantified the sweetness intensity and the impact of aroma on the perceived sweetness of four different honey varieties (clover, wildflower, alfalfa, and orange) compared to sucrose. Each sweetener evaluated was diluted to six concentrations in water ranging from 12.5 g/L to 125 g/L. Panelists (n = 55) rated the sweetness intensities with and without aroma, in replicate, on the Global Sensory Intensity Scale. Additionally, the volatile organic compounds in the honey samples were profiled using gas chromatography-mass spectrometry (GC/MS) analysis. Honey and sugar were equivalently sweet at a given concentration (g/L), with aroma present (p = 0.251). Additionally, honey and sugar were not equivalently sweet without aroma; aroma significantly increased sweetness intensities for all sweeteners (p = 0.042) and especially honeys. In a 100 g/L solution, the aromas in honey increased its sweetness by 23%-43%, depending on the floral source. Compounds with sweet aroma characteristics were identified at high concentrations in all honey samples using GC/MS analysis, including furfural, benzaldehyde, benzene acetaldehyde, and dimethyl sulfide. Additionally, (S)-limonene and toluene were present in high quantities in the orange and alfalfa samples. This study can inform appropriate honey usage levels and identify major volatiles that may enhance sweetness. PRACTICAL APPLICATION: Honey sweetness has not been determined quantitatively, despite the widespread use of honey among consumers and product formulators. Sweetness enhancement by honey aroma volatiles may support a reduction in added sugars while maintaining sweetness intensity.
Collapse
Affiliation(s)
- Hannah Mulheron
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | - Aubrey DuBois
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | - Emily J Mayhew
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Ribeiro G, Fernandes AB, Oliveira FPM, Duarte JS, Oliveira M, Limbert C, Costa RM, Costa DC, Oliveira-Maia AJ. Postingestive reward acts through behavioral reinforcement and is conserved in obesity and after bariatric surgery. PLoS Biol 2024; 22:e3002936. [PMID: 39689052 DOI: 10.1371/journal.pbio.3002936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/13/2024] [Indexed: 12/19/2024] Open
Abstract
Postingestive nutrient stimulation conditions food preferences through striatal dopamine and may be associated with blunted brain responses in obesity. In a cross-sectional study, we tested flavor-nutrient conditioning (FNC) with maltodextrin-enriched yogurt, with maltodextrin previously optimized for concentration and dextrose equivalents (n = 57), and to mask texture cues (n = 102). After conditioning, healthy volunteers (n = 52) increased preference for maltodextrin-paired (+102 kcal, CS+), relative to control (+1.8 kcal, CS-) flavors, as assessed according to intake, but not pleasantness. In a clinical study (n = 61), behavioral conditioning without effects on pleasantness was confirmed across pre-bariatric candidates with obesity, weight-stable post-surgery patients, and healthy controls, without significant differences between groups. Striatal dopamine D2-like receptor (DD2lR) availability, assessed with [123I]IBZM SPECT, was reduced in the obesity group and strongly correlated with conditioning strength and a measure of restrained eating in patients with gastric bypass. These results show that postingestive nutrient stimulation influences human food choices through behavioral reinforcement, and is conserved in obesity and after bariatric surgery. Trial Registration: ISRCTN17965026: Dopaminergic neurotransmission in dietary learning and obesity.
Collapse
Affiliation(s)
- Gabriela Ribeiro
- Champalimaud Research & Clinical Centre, Champalimaud Foundation, Av. de Brasília, Doca de Pedrouços, Lisboa, Portugal
- Lisbon Academic Medical Centre PhD Program, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Ana B Fernandes
- Champalimaud Research & Clinical Centre, Champalimaud Foundation, Av. de Brasília, Doca de Pedrouços, Lisboa, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, Lisboa, Portugal
| | - Francisco P M Oliveira
- Champalimaud Research & Clinical Centre, Champalimaud Foundation, Av. de Brasília, Doca de Pedrouços, Lisboa, Portugal
| | - João S Duarte
- Department of Endocrinology, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira, Lisboa, Portugal
| | - Manuela Oliveira
- Department of Endocrinology, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira, Lisboa, Portugal
| | - Clotilde Limbert
- Department of Endocrinology, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira, Lisboa, Portugal
| | - Rui M Costa
- Department of Neuroscience and Neurology, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Allen Institute, Seattle, Washington State, United States of America
| | - Durval C Costa
- Champalimaud Research & Clinical Centre, Champalimaud Foundation, Av. de Brasília, Doca de Pedrouços, Lisboa, Portugal
| | - Albino J Oliveira-Maia
- Champalimaud Research & Clinical Centre, Champalimaud Foundation, Av. de Brasília, Doca de Pedrouços, Lisboa, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, Lisboa, Portugal
| |
Collapse
|
3
|
Olsen ML, Olsen K, Jensen PE. Consumer acceptance of microalgae as a novel food - Where are we now? And how to get further. PHYSIOLOGIA PLANTARUM 2024; 176:e14337. [PMID: 38716544 DOI: 10.1111/ppl.14337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/24/2024]
Abstract
Microalgae provide a potential new food resource for sustainable human nutrition. Many microalgae species can produce a high content of total protein with a balanced composition of essential amino acids, healthy oils rich in polyunsaturated fatty acids, carotenoids, fibers, and vitamins. These components can be made available via unprocessed microalgae or refined as individual ingredients. In either case, if added to foods, microalgae may affect taste, smell, texture, and appearance. This review focuses on how consumer acceptance of new foods - such as microalgae - can be accessed in the world of sensory science by bringing together examples from recent consumer surveys. The main aim is to obtain an overview of the attitude towards microalgae as a food ingredient in Europe. The overarching finding suggests that European consumers generally find microalgae acceptable as ingredients in food products. However, there is a prevailing preference for keeping inclusion levels low, primarily attributed to the vivid green color that algae impart to food items upon addition. Additionally, consumers tend to favor the taste of freshwater algae over marine species, often finding the latter's pronounced fishy flavor less appealing.
Collapse
Affiliation(s)
- Malene Lihme Olsen
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Karsten Olsen
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Poul Erik Jensen
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
4
|
Brunstrom JM, Flynn AN, Rogers PJ, Zhai Y, Schatzker M. Human nutritional intelligence underestimated? Exposing sensitivities to food composition in everyday dietary decisions. Physiol Behav 2023; 263:114127. [PMID: 36787811 DOI: 10.1016/j.physbeh.2023.114127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/03/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
The social and cultural significance of food is woven into every aspect of our dietary behaviour, and it contributes to our complex interaction with food. To find order within this complexity scientists often look for dietary 'universals' - phenomena or basic principles that guide our food choice and meal size, irrespective of wider context. One such idea is that taste characteristics provide a signal for dietary composition (e.g., sweet taste signals carbohydrate). Others have suggested that behaviour is guided by learning and is based on associations that form between the flavour of a food and its post-ingestive effects. Despite a large body of research, evidence supporting both processes is equivocal, leading some to conclude that humans are largely indifferent to food composition. Here, we argue that human abilities to gauge the nutritional composition or value of food have been underestimated, and that they can be exposed by embracing alternative methods, including cross-cultural comparisons, large nutrition surveys, and the use of virtual portion-selection tools. Our group has focused on assessments of food choice and expected satiety, and how comparisons across everyday foods can reveal non-linear relationships with food energy density, and even the potential for sensitivity to micronutrient composition. We suggest that these abilities might reflect a complex form of social learning, in which flavour-nutrient associations are not only formed but communicated and amplified across individuals in the form of a cuisine. Thus, rather than disregarding sociocultural influences as extraneous, we might reimagine their role as central to a process that creates and imbues a 'collective dietary wisdom.' In turn, this raises questions about whether rapid dietary, technological, and cultural change disrupts a fundamental process, such that it no longer guarantees a 'nutritional intelligence' that confers benefits for health.
Collapse
Affiliation(s)
- Jeffrey M Brunstrom
- Nutrition and Behaviour Unit, School of Psychological Science, University of Bristol, Bristol, United Kingdom; NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston, NHS Foundation Trust and University of Bristol, United Kingdom.
| | - Annika N Flynn
- Nutrition and Behaviour Unit, School of Psychological Science, University of Bristol, Bristol, United Kingdom
| | - Peter J Rogers
- Nutrition and Behaviour Unit, School of Psychological Science, University of Bristol, Bristol, United Kingdom
| | - Yujia Zhai
- Nutrition and Behaviour Unit, School of Psychological Science, University of Bristol, Bristol, United Kingdom
| | - Mark Schatzker
- Modern Diet and Physiology Research Center, Affiliated with Yale School of Medicine, Yale University, United States
| |
Collapse
|
5
|
Garcia-Burgos D, Wilhelm P, Vögele C, Munsch S. Food Restriction in Anorexia Nervosa in the Light of Modern Learning Theory: A Narrative Review. Behav Sci (Basel) 2023; 13:bs13020096. [PMID: 36829325 PMCID: PMC9952578 DOI: 10.3390/bs13020096] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Improvements in the clinical management of anorexia nervosa (AN) are urgently needed. To do so, the search for innovative approaches continues at laboratory and clinical levels to translate new findings into more effective treatments. In this sense, modern learning theory provides a unifying framework that connects concepts, methodologies and data from preclinical and clinical research to inspire novel interventions in the field of psychopathology in general, and of disordered eating in particular. Indeed, learning is thought to be a crucial factor in the development/regulation of normal and pathological eating behaviour. Thus, the present review not only tries to provide a comprehensive overview of modern learning research in the field of AN, but also follows a transdiagnostic perspective to offer testable explanations for the origin and maintenance of pathological food rejection. This narrative review was informed by a systematic search of research papers in the electronic databases PsycInfo, Scopus and Web of Science following PRISMA methodology. By considering the number and type of associations (Pavlovian, goal-directed or habitual) and the affective nature of conditioning processes (appetitive versus aversive), this approach can explain many features of AN, including why some patients restrict food intake to the point of life-threatening starvation and others restrict calorie intake to lose weight and binge on a regular basis. Nonetheless, it is striking how little impact modern learning theory has had on the current AN research agenda and practice.
Collapse
Affiliation(s)
- David Garcia-Burgos
- Department of Psychology, University of Fribourg, 1700 Fribourg, Switzerland
- Department of Psychobiology, The “Federico Olóriz” Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18071 Granada, Spain
- Correspondence:
| | - Peter Wilhelm
- Department of Psychology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Claus Vögele
- Institute for Health and Behaviour, Department of Behavioural and Cognitive Sciences, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Simone Munsch
- Department of Psychology, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
6
|
Kelly AL, Baugh ME, Oster ME, DiFeliceantonio AG. The impact of caloric availability on eating behavior and ultra-processed food reward. Appetite 2022; 178:106274. [PMID: 35963586 PMCID: PMC9749763 DOI: 10.1016/j.appet.2022.106274] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/07/2022] [Accepted: 08/07/2022] [Indexed: 12/19/2022]
Abstract
The food environment has changed rapidly and dramatically in the last 50 years. While industrial food processing has increased the safety and stability of the food supply, a rapid expansion in the scope and scale of food processing in the 1980's has resulted in a market dominated by ultra-processed foods. Here, we use the NOVA definition of category 4 ultra-processed foods (UPFs) as they make up around 58% of total calories consumed in the US and 66% of calories in US children. UPFs are formulated from ingredients with no or infrequent culinary use, contain additives, and have a long shelf-life, spending long periods in contact with packaging materials, allowing for the absorption of compounds from those materials. The full implications of this dietary shift to UPFs on human health and disease outcomes are difficult, if not impossible, to quantify. However, UPF consumption is linked with various forms of cancer, increased cardiovascular disease, and increased all-cause mortality. Understanding food choice is, therefore, a critical problem in health research. Although many factors influence food choice, here we focus on the properties of the foods themselves. UPFs are generally treated as food, not as the highly refined, industrialized substances that they are, whose properties and components must be studied. Here, we examine one property of UPFs, that they deliver useable calories rapidly as a potential factor driving UPF overconsumption. First, we explore evidence that UPFs deliver calories more rapidly. Next, we examine the role of the gut-brain axis and its interplay with canonical reward systems, and last, we describe how speed affects both basic learning processes and drugs of abuse.
Collapse
Affiliation(s)
- Amber L Kelly
- Fralin Biomedical Research Institute at Virginia Tech Carilion, USA
| | | | - Mary E Oster
- Fralin Biomedical Research Institute at Virginia Tech Carilion, USA
| | - Alexandra G DiFeliceantonio
- Fralin Biomedical Research Institute at Virginia Tech Carilion, USA; Center for Health Behaviors Research; Department of Human Nutrition Foods and Exercise at Virginia Tech, USA.
| |
Collapse
|
7
|
Mattes RD, Rowe SB, Ohlhorst SD, Brown AW, Hoffman DJ, Liska DJ, Feskens EJM, Dhillon J, Tucker KL, Epstein LH, Neufeld LM, Kelley M, Fukagawa NK, Sunde RA, Zeisel SH, Basile AJ, Borth LE, Jackson E. Valuing the Diversity of Research Methods to Advance Nutrition Science. Adv Nutr 2022; 13:1324-1393. [PMID: 35802522 PMCID: PMC9340992 DOI: 10.1093/advances/nmac043] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 12/13/2022] Open
Abstract
The ASN Board of Directors appointed the Nutrition Research Task Force to develop a report on scientific methods used in nutrition science to advance discovery, interpretation, and application of knowledge in the field. The genesis of this report was growing concern about the tone of discourse among nutrition professionals and the implications of acrimony on the productive study and translation of nutrition science. Too often, honest differences of opinion are cast as conflicts instead of areas of needed collaboration. Recognition of the value (and limitations) of contributions from well-executed nutrition science derived from the various approaches used in the discipline, as well as appreciation of how their layering will yield the strongest evidence base, will provide a basis for greater productivity and impact. Greater collaborative efforts within the field of nutrition science will require an understanding that each method or approach has a place and function that should be valued and used together to create the nutrition evidence base. Precision nutrition was identified as an important emerging nutrition topic by the preponderance of task force members, and this theme was adopted for the report because it lent itself to integration of many approaches in nutrition science. Although the primary audience for this report is nutrition researchers and other nutrition professionals, a secondary aim is to develop a document useful for the various audiences that translate nutrition research, including journalists, clinicians, and policymakers. The intent is to promote accurate, transparent, verifiable evidence-based communication about nutrition science. This will facilitate reasoned interpretation and application of emerging findings and, thereby, improve understanding and trust in nutrition science and appropriate characterization, development, and adoption of recommendations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Leonard H Epstein
- University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | | | - Michael Kelley
- Michael Kelley Nutrition Science Consulting, Wauwatosa, WI, USA
| | - Naomi K Fukagawa
- USDA Beltsville Human Nutrition Research Center, Beltsville, MD, USA
| | | | - Steven H Zeisel
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | |
Collapse
|
8
|
Shinohara K, Izumiya K, Nomura S, Yasoshima Y. Rats learn to prefer the late-consumed flavor over the early-consumed flavor in a multi-flavored meal paired with oral glucose and corn oil. Physiol Behav 2022; 254:113865. [PMID: 35654164 DOI: 10.1016/j.physbeh.2022.113865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 10/18/2022]
Abstract
Conditioned flavor preference (CFP) is established by association: where a neutral flavor (conditioned stimulus, CS) is paired with orosensory and post-ingestive components of nutrients, including sugar and fat (unconditioned stimulus, US). A previous study reported that rats can learn to prefer flavors that they consumed earlier and later in a multi-flavored solution paired with an intragastric infusion of glucose, but they expressed only a preference for a late-consumed flavor when they were tested after feeding (Myers and Whitney, 2011). This paradigm can be a suitable rodent model to explain how humans acquire a selective preference for routinely late-served "dessert" foods and why these foods remain attractive even in the absence of hunger. Here, we examined whether oral glucose (Experiment 1) or fat (Experiment 2) acts as a US for flavor preference learning processes in this paradigm. In Experiment 1, adult female rats under food restriction were trained in 16 daily sessions with two distinct flavor CSs in succession per session; eight CS(+) sessions in which two distinct flavor CSs (early(+), late(+)) were sequentially presented for 8 min each with oral glucose (12%) as a US, and eight CS(-) sessions in which different CSs (early(-), late(-)) were unpaired with the US. In the 30-minute two-bottle choice test, rats preferred late(+) over late(-) only when tested 90 min after consumption of normal chow (fed test) but not after overnight deprivation (hungry test). Early(+) was not preferred over early(-) in both tests. Moreover, a significant preference for late(+) over early(+) was observed only in the fed test, which is a unique feature of oral glucose-CFP. These results indicate that taste sensations of oral glucose promote a rewarding effect of late-onset glucose nutrients. In Experiment 2, separate rats were trained with the same conditioning paradigm, but used a caloric matched fat solution (5.3% corn oil) for a US. The results showed that they expressed stronger preferences for early(+) and late(+) relative to their respective CS(-) flavors in both tests. Similar to Experiment 1, it was observed in the fed test that there was a preference for late(+) over early(+) in oral fat-CFP. Taken together, the present results suggest that routine timing arrangements can cause qualitative differences in conditioned preferences between multiple flavors within a sugar or fat-containing meal in rats, and that rats prefer the late-consumed flavor over the early-consumed flavor in the absence of hunger.
Collapse
Affiliation(s)
- Keisuke Shinohara
- Division of Behavioral Physiology, Department of Behavioral Sciences, Graduate School of Human Sciences, Osaka University, 1-2 Yamadaoka, Suita, Osaka, Japan
| | - Kana Izumiya
- Division of Behavioral Physiology, Department of Behavioral Sciences, School of Human Sciences, Osaka University, 1-2 Yamadaoka, Suita, Osaka, Japan
| | - Saki Nomura
- Division of Behavioral Physiology, Department of Behavioral Sciences, School of Human Sciences, Osaka University, 1-2 Yamadaoka, Suita, Osaka, Japan
| | - Yasunobu Yasoshima
- Division of Behavioral Physiology, Department of Behavioral Sciences, Graduate School of Human Sciences, Osaka University, 1-2 Yamadaoka, Suita, Osaka, Japan.
| |
Collapse
|
9
|
Armitage RM, Iatridi V, Yeomans MR. Understanding sweet-liking phenotypes and their implications for obesity: Narrative review and future directions. Physiol Behav 2021; 235:113398. [PMID: 33771526 DOI: 10.1016/j.physbeh.2021.113398] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/02/2021] [Accepted: 03/19/2021] [Indexed: 01/21/2023]
Abstract
Building on a series of recent studies that challenge the universality of sweet liking, here we review the evidence for multiple sweet-liking phenotypes which strongly suggest, humans fall into three hedonic response patterns: extreme sweet likers (ESL), where liking increases with sweetness, moderate sweet likers (MSL), who like moderate but not intense sweetness, and sweet dislikers (SD), who show increasing aversion as sweetness increases. This review contrasts how these phenotypes differ in body size and composition, dietary intake and behavioural measures to test the widely held view that sweet liking may be a key driver of obesity. Apart from increased consumption of sugar-sweetened beverages in ESL, we found no clear evidence that sweet liking was associated with obesity and actually found some evidence that SD, rather than ESL, may have slightly higher body fat. We conclude that ESL may have heightened awareness of internal appetite cues that could protect against overconsumption and increased sensitivity to wider reward. We note many gaps in knowledge and the need for future studies to contrast these phenotypes in terms of genetics, neural processing of reward and broader measures of behaviour. There is also the need for more extensive longitudinal studies to determine the extent to which these phenotypes are modified by exposure to sweet stimuli in the context of the obesogenic environment.
Collapse
Affiliation(s)
| | - Vasiliki Iatridi
- Department of Sport, Health Sciences and Social Work, Oxford Brookes University, UK
| | - Martin R Yeomans
- School of Psychology, University of Sussex, Brighton, BN1 9QH, UK.
| |
Collapse
|
10
|
Moran GW, Thapaliya G. The Gut-Brain Axis and Its Role in Controlling Eating Behavior in Intestinal Inflammation. Nutrients 2021; 13:nu13030981. [PMID: 33803651 PMCID: PMC8003054 DOI: 10.3390/nu13030981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Malnutrition represents a major problem in the clinical management of the inflammatory bowel disease (IBD). Presently, our understanding of the cross-link between eating behavior and intestinal inflammation is still in its infancy. Crohn's disease patients with active disease exhibit strong hedonic desires for food and emotional eating patterns possibly to ameliorate feelings of low mood, anxiety, and depression. Impulsivity traits seen in IBD patients may predispose them to palatable food intake as an immediate reward rather than concerns for future health. The upregulation of enteroendocrine cells (EEC) peptide response to food intake has been described in ileal inflammation, which may lead to alterations in gut-brain signaling with implications for appetite and eating behavior. In summary, a complex interplay of gut peptides, psychological, cognitive factors, disease-related symptoms, and inflammatory burden may ultimately govern eating behavior in intestinal inflammation.
Collapse
Affiliation(s)
- Gordon William Moran
- National Institute of Health Research Nottingham Biomedical Research Centre, University of Nottingham, and Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
- Correspondence:
| | - Gita Thapaliya
- Division of Child & Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| |
Collapse
|
11
|
Macronutrient Sensing in the Oral Cavity and Gastrointestinal Tract: Alimentary Tastes. Nutrients 2021; 13:nu13020667. [PMID: 33669584 PMCID: PMC7922037 DOI: 10.3390/nu13020667] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
There are numerous and diverse factors enabling the overconsumption of foods, with the sense of taste being one of these factors. There are four well established basic tastes: sweet, sour, salty, and bitter; all with perceptual independence, salience, and hedonic responses to encourage or discourage consumption. More recently, additional tastes have been added to the basic taste list including umami and fat, but they lack the perceptual independence and salience of the basics. There is also emerging evidence of taste responses to kokumi and carbohydrate. One interesting aspect is the link with the new and emerging tastes to macronutrients, with each macronutrient having two distinct perceptual qualities that, perhaps in combination, provide a holistic perception for each macronutrient: fat has fat taste and mouthfeel; protein has umami and kokumi; carbohydrate has sweet and carbohydrate tastes. These new tastes can be sensed in the oral cavity, but they have more influence post- than pre-ingestion. Umami, fat, kokumi, and carbohydrate tastes have been suggested as an independent category named alimentary. This narrative review will present and discuss evidence for macronutrient sensing throughout the alimentary canal and evidence of how each of the alimentary tastes may influence the consumption of foods.
Collapse
|
12
|
Grahl S, Strack M, Mensching A, Mörlein D. Alternative protein sources in Western diets: Food product development and consumer acceptance of spirulina-filled pasta. Food Qual Prefer 2020. [DOI: 10.1016/j.foodqual.2020.103933] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
13
|
Stimulation of the vagus nerve reduces learning in a go/no-go reinforcement learning task. Eur Neuropsychopharmacol 2020; 35:17-29. [PMID: 32404279 DOI: 10.1016/j.euroneuro.2020.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 02/06/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023]
Abstract
When facing decisions to approach rewards or to avoid punishments, we often figuratively go with our gut, and the impact of metabolic states such as hunger on motivation are well documented. However, whether and how vagal feedback signals from the gut influence instrumental actions is unknown. Here, we investigated the effect of non-invasive transcutaneous auricular vagus nerve stimulation (taVNS) vs. sham (randomized cross-over design) on approach and avoidance behavior using an established go/no-go reinforcement learning paradigm in 39 healthy human participants (23 female) after an overnight fast. First, mixed-effects logistic regression analysis of choice accuracy showed that taVNS acutely impaired decision-making, p = .041. Computational reinforcement learning models identified the cause of this as a reduction in the learning rate through taVNS (∆α = -0.092, pboot = .002), particularly after punishment (∆αPun = -0.081, pboot = .012 vs. ∆αRew =-0.031, pboot = .22). However, taVNS had no effect on go biases, Pavlovian response biases or response time. Hence, taVNS appeared to influence learning rather than action execution. These results highlight a novel role of vagal afferent input in modulating reinforcement learning by tuning the learning rate according to homeostatic needs.
Collapse
|
14
|
Young HA, Gaylor CM, de Kerckhove D, Watkins H, Benton D. Interoceptive accuracy moderates the response to a glucose load: a test of the predictive coding framework. Proc Biol Sci 2020; 286:20190244. [PMID: 30862291 PMCID: PMC6458315 DOI: 10.1098/rspb.2019.0244] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recently, interoception and homeostasis have been described in terms of predictive coding and active inference. Afferent signals update prior predictions about the state of the body, and stimulate the autonomic mediation of homeostasis. Performance on tests of interoceptive accuracy (IAc) may indicate an individual's ability to assign precision to interoceptive signals, thus determining the relative influence of ascending signals and the descending prior predictions. Accordingly, individuals with high IAc should be better able to regulate during the postprandial period. One hundred females were allocated to consume glucose, an artificially sweetened drink, water or no drink. Before, and 30 min after a drink, IAc, heart rate (HR) and blood glucose (BG) were measured, and participants rated their hunger, thirst and mood. A higher IAc was related to lower BG levels, a decline in anxiety and a higher HR, after consuming glucose. A higher IAc also resulted in a larger decline in hunger if they consumed either glucose or sucralose. These data support the role of active inference in interoception and homeostasis, and suggest that the ability to attend to interoceptive signals may be critical to the maintenance of physical and emotional health.
Collapse
Affiliation(s)
- Hayley A Young
- Department of Psychology, Swansea University , Swansea SA2 8PP , UK
| | | | | | - Heather Watkins
- Department of Psychology, Swansea University , Swansea SA2 8PP , UK
| | - David Benton
- Department of Psychology, Swansea University , Swansea SA2 8PP , UK
| |
Collapse
|
15
|
Abstract
AbstractThe increasing availability of ultra-processed, energy dense food is contributing to the spread of the obesity pandemic, which is a serious health threat in today’s world. One possible cause for this association arises from the fact that the brain is wired to derive pleasure from eating. Specifically, food intake activates reward pathways involving dopamine receptor signalling. The reinforcing value of specific food items results from the interplay between taste and nutritional properties. Increasing evidence suggests that nutritional value is sensed in the gut by chemoreceptors in the intestinal tract and the hepatic portal vein, and conveyed to the brain through neuronal and endocrine pathways to guide food selection behaviour. Ultra-processed food is designed to potentiate the reward response through a combination of high fat and high sugar, therebye seeming highly appetizing. There is increasing evidence that overconsumption of processed food distorts normal reward signalling, leading to compulsive eating behaviour and obesity. Hence, it is essential to understand food reward and gut-brain signalling to find an effective strategy to combat the obesity pandemic.
Collapse
Affiliation(s)
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism ResearchGleueler Strasse 50, 50931 CologneCologneGermany
| |
Collapse
|
16
|
Abstract
The conscious perception of the hedonic sensory properties of caloric foods is commonly believed to guide our dietary choices. Current and traditional models implicate the consciously perceived hedonic qualities of food as driving overeating, whereas subliminal signals arising from the gut would curb our uncontrolled desire for calories. Here we review recent animal and human studies that support a markedly different model for food reward. These findings reveal in particular the existence of subcortical body-to-brain neural pathways linking gastrointestinal nutrient sensors to the brain's reward regions. Unexpectedly, consciously perceptible hedonic qualities appear to play a less relevant, and mostly transient, role in food reinforcement. In this model, gut-brain reward pathways bypass cranial taste and aroma sensory receptors and the cortical networks that give rise to flavor perception. They instead reinforce behaviors independently of the cognitive processes that support overt insights into the nature of our dietary decisions.
Collapse
Affiliation(s)
- Ivan E. de Araujo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Modern Diet and Physiology Research Center, Yale University, New Haven, Connecticut 06511, USA
| | - Mark Schatzker
- Modern Diet and Physiology Research Center, Yale University, New Haven, Connecticut 06511, USA
| | - Dana M. Small
- Modern Diet and Physiology Research Center, Yale University, New Haven, Connecticut 06511, USA
- Departments of Psychiatry and Psychology, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
17
|
Thanarajah SE, Backes H, DiFeliceantonio AG, Albus K, Cremer AL, Hanssen R, Lippert RN, Cornely OA, Small DM, Brüning JC, Tittgemeyer M. Food Intake Recruits Orosensory and Post-ingestive Dopaminergic Circuits to Affect Eating Desire in Humans. Cell Metab 2019; 29:695-706.e4. [PMID: 30595479 DOI: 10.1016/j.cmet.2018.12.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/18/2018] [Accepted: 12/04/2018] [Indexed: 01/07/2023]
Abstract
Pleasant taste and nutritional value guide food selection behavior. Here, orosensory features of food may be secondary to its nutritional value in underlying reinforcement, but it is unclear how the brain encodes the reward value of food. Orosensory and peripheral physiological signals may act together on dopaminergic circuits to drive food intake. We combined fMRI and a novel [11C]raclopride PET method to assess systems-level activation and dopamine release in response to palatable food intake in humans. We identified immediate orosensory and delayed post-ingestive dopamine release. Both responses recruit segregated brain regions: specialized integrative pathways and higher cognitive centers. Furthermore, we identified brain areas where dopamine release reflected the subjective desire to eat. Immediate dopamine release in these wanting-related regions was inversely correlated with, and presumably inhibited, post-ingestive release in the dorsal striatum. Our results highlight the role of brain and periphery in interacting to reinforce food intake in humans.
Collapse
Affiliation(s)
- Sharmili Edwin Thanarajah
- Max Planck Institute for Metabolism Research, Cologne, Germany; Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | - Heiko Backes
- Max Planck Institute for Metabolism Research, Cologne, Germany.
| | - Alexandra G DiFeliceantonio
- Max Planck Institute for Metabolism Research, Cologne, Germany; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Modern Diet and Physiology Research Center, New Haven, CT, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kerstin Albus
- Cologne Cluster of Excellence in Cellular Stress and Aging-Associated Disease (CECAD), Cologne, Germany
| | | | - Ruth Hanssen
- Max Planck Institute for Metabolism Research, Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEPD), University Hospital of Cologne, Cologne, Germany
| | | | - Oliver A Cornely
- Cologne Cluster of Excellence in Cellular Stress and Aging-Associated Disease (CECAD), Cologne, Germany; Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany; Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany
| | - Dana M Small
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Psychology, Yale University, New Haven, CT, USA; Modern Diet and Physiology Research Center, New Haven, CT, USA
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Cologne, Germany; Cologne Cluster of Excellence in Cellular Stress and Aging-Associated Disease (CECAD), Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEPD), University Hospital of Cologne, Cologne, Germany
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Cologne, Germany; Cologne Cluster of Excellence in Cellular Stress and Aging-Associated Disease (CECAD), Cologne, Germany; Modern Diet and Physiology Research Center, New Haven, CT, USA
| |
Collapse
|
18
|
|
19
|
Onaolapo A, Onaolapo O. Food additives, food and the concept of ‘food addiction’: Is stimulation of the brain reward circuit by food sufficient to trigger addiction? PATHOPHYSIOLOGY 2018; 25:263-276. [DOI: 10.1016/j.pathophys.2018.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/26/2018] [Accepted: 04/07/2018] [Indexed: 02/08/2023] Open
|
20
|
Sclafani A. From appetite setpoint to appetition: 50years of ingestive behavior research. Physiol Behav 2018; 192:210-217. [PMID: 29305256 PMCID: PMC6019132 DOI: 10.1016/j.physbeh.2018.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/06/2017] [Accepted: 01/01/2018] [Indexed: 12/17/2022]
Abstract
I review the main themes of my 50-year research career in ingestive behavior as a graduate student at the University of Chicago and a professor at the City University of New York. A seminar course with my Ph.D. mentor, S. P. Grossman, sparked my interest in the hypothalamic obesity syndrome. I developed a wire knife to dissect the neuropathways and the functional disorder responsible for the syndrome. An elevated appetite setpoint that permitted the overconsumption of palatable foods appeared central to the hypothalamic syndrome. In brain-intact rats, providing an assortment of highly palatable foods (the cafeteria diet) stimulated diet-induced obesity that mimicked elements of hypothalamic obesity. Studies of the determinants of food palatability led to the discovery of a "new" carbohydrate taste (maltodextrin taste) and the confirmation of a fatty taste. In addition to oral taste receptors, gut nutrient sensors stimulated the intake/preference for carbohydrate- and fat-rich foods via an appetition process that stimulates brain reward systems. My research career greatly benefited from many diligent and creative students, collaborators and technicians and research support from my university and the National Institutes of Health.
Collapse
Affiliation(s)
- Anthony Sclafani
- Department of Psychology, Brooklyn College and the Graduate Center of the City University of New York, 2900 Bedford Ave, Brooklyn, NY 11210, USA.
| |
Collapse
|
21
|
Supra-Additive Effects of Combining Fat and Carbohydrate on Food Reward. Cell Metab 2018; 28:33-44.e3. [PMID: 29909968 DOI: 10.1016/j.cmet.2018.05.018] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/29/2018] [Accepted: 05/18/2018] [Indexed: 01/19/2023]
Abstract
Post-ingestive signals conveying information about the nutritive properties of food are critical for regulating ingestive behavior. Here, using an auction task concomitant to fMRI scanning, we demonstrate that participants are willing to pay more for fat + carbohydrate compared with equally familiar, liked, and caloric fat or carbohydrate foods and that this potentiated reward is associated with response in areas critical for reward valuation, including the dorsal striatum and mediodorsal thalamus. We also show that individuals are better able to estimate the energy density of fat compared with carbohydrate and fat + carbohydrate foods, an effect associated with functional connectivity between visual (fusiform gyrus) and valuation (ventromedial prefrontal cortex) areas. These results provide the first demonstration that foods high in fat and carbohydrate are, calorie for calorie, valued more than foods containing only fat or carbohydrate and that this effect is associated with greater recruitment of central reward circuits.
Collapse
|
22
|
Schwartz C, Vandenberghe-Descamps M, Sulmont-Rossé C, Tournier C, Feron G. Behavioral and physiological determinants of food choice and consumption at sensitive periods of the life span, a focus on infants and elderly. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2017.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
23
|
The convergence of psychology and neurobiology in flavor-nutrient learning. Appetite 2018; 122:36-43. [DOI: 10.1016/j.appet.2017.03.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 12/15/2022]
|
24
|
Gould NJ, Zandstra EH, Yeomans MR. Knowing too much: Knowledge of energy content prevents liking change through flavour-nutrient associations. Q J Exp Psychol (Hove) 2018; 71:1939-1948. [PMID: 28854854 DOI: 10.1080/17470218.2017.1373360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Associations between flavours and the consequences of ingestion can lead to changes in flavour liking depending on nutrient content, an example of flavour-nutrient learning (FNL). Expectations about the consequences of ingestion can be modified by information at the point of ingestion, such as nutritional labelling. What is unknown is the extent to which these label-based expectations modify FNL. Since nutrient information can alter expectations about how filling a product would be, we hypothesised that labels predicting higher energy (HE) content would enhance satiety and so promote more rapid flavour learning. To test this, participants consumed either a lower energy (LE: 164 kcal) or HE (330 kcal) yoghurt breakfast on four separate days, either with no product label or with labels displaying either the actual energy content (Congruent label) or inaccurate energy (Incongruent label). Participants rated liking on all four days: on Days 1 and 4, they could also consume as much as they liked, but consumed a fixed amount (300 g) on Days 2 and 3. Both liking and intake increased with exposure in the HE, and decreased in the LE, condition when unlabelled in line with FNL. In contrast, no significant changes were seen in either the Congruent or Incongruent label conditions. Contrary to predictions, these data suggest that FNL occurs when there is an absence of explicit expectations of actual nutrient content, with both accurate and inaccurate information on nutrient content disrupting learning.
Collapse
|
25
|
Low JY, Lacy KE, McBride RL, Keast RS. Carbohydrate Taste Sensitivity Is Associated with Starch Intake and Waist Circumference in Adults. J Nutr 2017; 147:2235-2242. [PMID: 29070710 DOI: 10.3945/jn.117.254078] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/17/2017] [Accepted: 09/19/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Recent studies have proposed that humans may perceive complex carbohydrates and that sensitivity to simple carbohydrates is independent of sensitivity to complex carbohydrates. Variation in oral complex carbohydrate sensitivity may influence food consumption.Objective: This study aimed to investigate the associations between oral complex carbohydrate sensitivity, anthropometry, and dietary intake in adults.Methods: We assessed oral sensitivity to complex carbohydrates (maltodextrin and oligofructose) by measuring detection thresholds (DTs) and suprathreshold intensity perceptions (STs) for 34 participants, including 16 men (mean ± SEM age : 26.2 ± 0.4 y; range: 24-30 y) and 18 women (age: 29.4 ± 2.1 y; range: 24-55 y). We also measured height, weight, and waist circumference (WC) and participants completed a 4-d food diary and a food-frequency questionnaire.Results: Measurements of oral sensitivity to complex carbohydrates were significantly correlated with WC and dietary energy and starch intakes (DT: r = -0.38, P < 0.05; ST: r = 0.36-0.48, P < 0.05). When participants were grouped into tertiles, there were significant differences in WC and total energy or starch intakes for those who were more sensitive or experienced high intensity compared with those who were less sensitive or experienced low intensity. Being more sensitive or experiencing high intensity was associated with greater energy (7968-8954 kJ/d) and starch (29.1-29.8% of energy) intakes and a greater WC (88.2-91.4 cm) than was being less sensitive or experiencing low intensity (6693-7747 kJ/d, 20.9-22.2% of energy, and 75.5-80.5 cm, respectively).Conclusion: Complex carbohydrate sensing is associated with WC and consumption of complex carbohydrates and energy in adults. This trial was registered at anzctr.org.au as ACTRN12616001356459.
Collapse
Affiliation(s)
- Julia Yq Low
- Centre for Advanced Sensory Science, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia; and
| | - Kathleen E Lacy
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Robert L McBride
- Centre for Advanced Sensory Science, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia; and
| | - Russell Sj Keast
- Centre for Advanced Sensory Science, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia; and
| |
Collapse
|
26
|
Integration of Sweet Taste and Metabolism Determines Carbohydrate Reward. Curr Biol 2017; 27:2476-2485.e6. [PMID: 28803868 DOI: 10.1016/j.cub.2017.07.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/05/2017] [Accepted: 07/07/2017] [Indexed: 02/07/2023]
Abstract
Post-ingestive signals related to nutrient metabolism are thought to be the primary drivers of reinforcement potency of energy sources. Here, in a series of neuroimaging and indirect calorimetry human studies, we examine the relative roles of caloric load and perceived sweetness in driving metabolic, perceptual, and brain responses to sugared beverages. Whereas caloric load was manipulated using the tasteless carbohydrate maltodextrin, sweetness levels were manipulated using the non-nutritive sweetener sucralose. By formulating beverages that contain different amounts of maltodextrin+sucralose, we demonstrate a non-linear association between caloric load, metabolic response, and reinforcement potency, which is driven in part by the extent to which sweetness is proportional to caloric load. In particular, we show that (1) lower-calorie beverages can produce greater metabolic response and condition greater brain response and liking than higher-calorie beverages and (2) when sweetness is proportional to caloric load, greater metabolic responses are observed. These results demonstrate a non-linear association between caloric load and reward and describe an unanticipated role for sweet taste in regulating carbohydrate metabolism, revealing a novel mechanism by which sugar-sweetened beverages influence physiological responses to carbohydrate ingestion.
Collapse
|
27
|
Palframan KM, Myers KP. Modern ‘junk food’ and minimally-processed ‘natural food’ cafeteria diets alter the response to sweet taste but do not impair flavor-nutrient learning in rats. Physiol Behav 2016; 157:146-57. [DOI: 10.1016/j.physbeh.2016.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/02/2016] [Accepted: 01/11/2016] [Indexed: 01/10/2023]
|
28
|
Doets EL, Kremer S. The silver sensory experience – A review of senior consumers’ food perception, liking and intake. Food Qual Prefer 2016. [DOI: 10.1016/j.foodqual.2015.08.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Sclafani A, Koepsell H, Ackroff K. SGLT1 sugar transporter/sensor is required for post-oral glucose appetition. Am J Physiol Regul Integr Comp Physiol 2016; 310:R631-9. [PMID: 26791832 DOI: 10.1152/ajpregu.00432.2015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/14/2016] [Indexed: 01/27/2023]
Abstract
Recent findings suggest that the intestinal sodium-glucose transporter 1 (SGLT1) glucose transporter and sensor mediates, in part, the appetite-stimulation actions of intragastric (IG) glucose and nonmetabolizable α-methyl-d-glucopyranoside (MDG) infusions in mice. Here, we investigated the role of SGLT1 in sugar conditioning using SGLT1 knockout (KO) and C57BL/6J wild-type (WT) mice. An initial experiment revealed that both KO and WT mice maintained on a very low-carbohydrate diet display normal preferences for saccharin, which was used in the flavored conditioned stimulus (CS) solutions. In experiment 2, mice were trained to drink one flavored solution (CS+) paired with an IG MDG infusion and a different flavored solution (CS-) paired with IG water infusion. In contrast to WT mice, KO mice decreased rather than increased the intake of the CS+ during training and failed to prefer the CS+ over the CS- in a choice test. In experiment 3, the KO mice also decreased their intake of a CS+ paired with IG glucose and avoided the CS+ in a choice test, unlike WT mice, which preferred the CS+ to CS-. In experiment 4, KO mice, like WT mice preferred a glucose + saccharin solution to a saccharin solution. These findings support the involvement of SGLT1 in post-oral glucose and MDG conditioning. The results also indicate that sugar malabsorption in KO mice has inhibitory effects on sugar intake but does not block their natural preference for sweet taste.
Collapse
Affiliation(s)
- Anthony Sclafani
- Department of Psychology, Brooklyn College, City University of New York, Brooklyn, New York; and Cognition, Brain, and Behavior Doctoral Subprogram, Graduate School, City University of New York, New York, New York; and
| | - Hermann Koepsell
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University Würzburg, Würzburg, Germany
| | - Karen Ackroff
- Department of Psychology, Brooklyn College, City University of New York, Brooklyn, New York; and Cognition, Brain, and Behavior Doctoral Subprogram, Graduate School, City University of New York, New York, New York; and
| |
Collapse
|
30
|
Whether or not to eat: A controlled laboratory study of discriminative cueing effects on food intake in humans. Physiol Behav 2015; 152:347-53. [DOI: 10.1016/j.physbeh.2015.06.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/12/2015] [Accepted: 06/28/2015] [Indexed: 11/19/2022]
|
31
|
Teaching children to like and eat vegetables. Appetite 2015; 93:75-84. [DOI: 10.1016/j.appet.2015.06.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 11/19/2022]
|
32
|
|
33
|
Dermiki M, Prescott J, Sargent LJ, Willway J, Gosney MA, Methven L. Novel flavours paired with glutamate condition increased intake in older adults in the absence of changes in liking. Appetite 2015; 90:108-13. [DOI: 10.1016/j.appet.2015.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/16/2015] [Accepted: 03/01/2015] [Indexed: 11/25/2022]
|
34
|
Dus M, Lai JSY, Gunapala KM, Min S, Tayler TD, Hergarden AC, Geraud E, Joseph CM, Suh GSB. Nutrient Sensor in the Brain Directs the Action of the Brain-Gut Axis in Drosophila. Neuron 2015; 87:139-51. [PMID: 26074004 DOI: 10.1016/j.neuron.2015.05.032] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/30/2015] [Accepted: 05/07/2015] [Indexed: 11/15/2022]
Abstract
Animals can detect and consume nutritive sugars without the influence of taste. However, the identity of the taste-independent nutrient sensor and the mechanism by which animals respond to the nutritional value of sugar are unclear. Here, we report that six neurosecretory cells in the Drosophila brain that produce Diuretic hormone 44 (Dh44), a homolog of the mammalian corticotropin-releasing hormone (CRH), were specifically activated by nutritive sugars. Flies in which the activity of these neurons or the expression of Dh44 was disrupted failed to select nutritive sugars. Manipulation of the function of Dh44 receptors had a similar effect. Notably, artificial activation of Dh44 receptor-1 neurons resulted in proboscis extensions and frequent episodes of excretion. Conversely, reduced Dh44 activity led to decreased excretion. Together, these actions facilitate ingestion and digestion of nutritive foods. We propose that the Dh44 system directs the detection and consumption of nutritive sugars through a positive feedback loop.
Collapse
Affiliation(s)
- Monica Dus
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Jason Sih-Yu Lai
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Keith M Gunapala
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Soohong Min
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Timothy D Tayler
- Division of Biology 156-29, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Anne C Hergarden
- Division of Biology 156-29, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Eliot Geraud
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Christina M Joseph
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Greg S B Suh
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
35
|
Li X, Jervis S, Drake M. Examining Extrinsic Factors that Influence Product Acceptance: A Review. J Food Sci 2015; 80:R901-9. [DOI: 10.1111/1750-3841.12852] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 02/20/2015] [Indexed: 11/30/2022]
Affiliation(s)
- X.E. Li
- Dept. of Food; Bioprocessing and Nutrition Sciences; Southeast Dairy Foods Research Center; North Carolina State Univ; Raleigh NC 27695 U.S.A
| | - S.M. Jervis
- Dept. of Food; Bioprocessing and Nutrition Sciences; Southeast Dairy Foods Research Center; North Carolina State Univ; Raleigh NC 27695 U.S.A
| | - M.A. Drake
- Dept. of Food; Bioprocessing and Nutrition Sciences; Southeast Dairy Foods Research Center; North Carolina State Univ; Raleigh NC 27695 U.S.A
| |
Collapse
|
36
|
Hartvig DL, Hausner H, Wendin K, Ritz C, Bredie WL. Initial liking influences the development of acceptance learning across repeated exposure to fruit juices in 9–11year-old children. Food Qual Prefer 2015. [DOI: 10.1016/j.foodqual.2014.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Sclafani A, Zukerman S, Ackroff K. Fructose- and glucose-conditioned preferences in FVB mice: strain differences in post-oral sugar appetition. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1448-57. [PMID: 25320345 DOI: 10.1152/ajpregu.00312.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies indicate that, unlike glucose, fructose has little or no post-oral preference conditioning actions in C57BL/6J (B6) mice. The present study determined whether this is also the case for FVB mice, which overconsume fructose relative to B6 mice. In experiment 1, FVB mice strongly preferred a noncaloric 0.1% sucralose + 0.1% saccharin (S+S) solution to 8% fructose in a 2-day choice test but switched their preference to fructose after separate experience with the two sweeteners. Other FVB mice displayed a stronger preference for 8% glucose over S+S. In a second experiment, ad libitum-fed FVB mice trained 24 h/day acquired a significant preference for a flavor (CS+) paired with intragastric (IG) self-infusions of 16% fructose over a different flavor (CS-) paired with IG water infusions. IG fructose infusions also conditioned flavor preferences in food-restricted FVB mice trained 1 h/day. IG infusions of 16% glucose conditioned stronger preferences in FVB mice trained 24- or 1 h/day. Thus, fructose has post-oral flavor conditioning effects in FVB mice, but these effects are less pronounced than those produced by glucose. Further studies of the differential post-oral conditioning effects of fructose and glucose in B6 and FVB mice should enhance our understanding of the physiological processes involved in sugar reward.
Collapse
Affiliation(s)
- Anthony Sclafani
- Brooklyn College and the Graduate School, City University of New York, Brooklyn, New York
| | - Steven Zukerman
- Brooklyn College and the Graduate School, City University of New York, Brooklyn, New York
| | - Karen Ackroff
- Brooklyn College and the Graduate School, City University of New York, Brooklyn, New York
| |
Collapse
|
38
|
Davidson TL, Tracy AL, Schier LA, Swithers SE. A view of obesity as a learning and memory disorder. JOURNAL OF EXPERIMENTAL PSYCHOLOGY. ANIMAL LEARNING AND COGNITION 2014; 40:261-79. [PMID: 25453037 PMCID: PMC4247176 DOI: 10.1037/xan0000029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This articles describes how a cascade of associative relationships involving the sensory properties of foods, the nutritional consequences of their consumption, and perceived internal states may play an important role in the learned control of energy intake and body weight regulation. In addition, we describe ways in which dietary factors in the current environment can promote excess energy intake and body weight gain by degrading these relationships or by interfering with the neural substrates that underlie the ability of animals to use them to predict the nutritive or energetic consequences of intake. We propose that an expanded appreciation of the diversity of orosensory, gastrointestinal, and energy state signals about which animals learn, combined with a greater understanding of predictive relationships in which these cues are embedded, will help generate new information and novel approaches to addressing the current global problems of obesity and metabolic disease.
Collapse
|
39
|
González F, Garcia-Burgos D, Hall G. Analysis of blocking of flavor-preference conditioning based on nutrients and palatable tastes in rats. Appetite 2014; 80:161-7. [PMID: 24845784 DOI: 10.1016/j.appet.2014.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 04/28/2014] [Accepted: 05/06/2014] [Indexed: 12/01/2022]
Abstract
In Experiment 1 rats were given training in which a mixture of two flavors was paired with sucrose. This established a substantial preference for each of the flavors; however, when rats were given prior experience with just one of the flavors paired with sucrose, training with the compound produced only a weak preference for the other - an example of the blocking effect, well known in other associative learning paradigms. Both the palatable taste of sucrose and its nutrient properties contribute to its ability to reinforce preference acquisition. The role of these two forms of learning was examined in two further experiments in which the reinforcer used was fructose (which is considered to support preference learning because it is palatable but not through its nutrient properties) or maltodextrin (thought to support preference learning by way of its nutrient properties). In neither case was blocking observed. At the theoretical level, this outcome constitutes a challenge to the attempt to explain flavor-preference learning in terms of the standard principles of associative learning theory. Its implication at the level of application is that the potential of the blocking procedure as a technique for preventing the development of unwanted flavor preferences may be limited.
Collapse
Affiliation(s)
- Felisa González
- Department of Experimental Psychology, University of Granada, Campus Cartuja s/n, 18071 Granada, Spain.
| | - David Garcia-Burgos
- Department of Experimental Psychology, University of Granada, Campus Cartuja s/n, 18071 Granada, Spain
| | - Geoffrey Hall
- Department of Psychology, University of York, York YO10 5DD, UK; School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia; School of Psychology, Plymouth University, Plymouth, UK
| |
Collapse
|
40
|
Abed-Vieillard D, Cortot J, Everaerts C, Ferveur JF. Choice alters Drosophila oviposition site preference on menthol. Biol Open 2014; 3:22-8. [PMID: 24326184 PMCID: PMC3892157 DOI: 10.1242/bio.20136973] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/13/2013] [Indexed: 11/28/2022] Open
Abstract
Food choice and preference relies on multiple sensory systems that are under the control of genes and sensory experience. Exposure to specific nutrients and nutrient-related molecules can change food preference in vertebrates and invertebrates. For example, larval exposure of several holometabolous insects to menthol can change their adult response to this molecule. However, studies involving Drosophila melanogaster exposure to menthol produced controversial results due maybe to methodological differences. Here, we compared the oviposition-site preference of wild-type D. melanogaster lines freely or forcibly exposed to menthol-rich food. After 12 generations, oviposition-site preference diverged between the two lines. Counterintuitively, menthol 'forced' lines showed a persistent aversion to menthol whereas 'free choice' lines exhibited a decreased aversion to menthol-rich food. This effect was specific to menthol since the 'free choice' lines showed unaltered responses to caffeine and sucrose. This suggests that the genetic factors underlying Drosophila oviposition site preference are more rapidly influenced when flies have a choice between alternative sources compared to flies permanently exposed to the same aversive substance.
Collapse
Affiliation(s)
- Dehbia Abed-Vieillard
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, 6, Bd Gabriel, F-21000 Dijon, France
| | | | | | | |
Collapse
|
41
|
Wilkie LM, Capaldi Phillips ED, Wadhera D. Sodium Chloride Suppresses Vegetable Bitterness Only When Plain Vegetables Are Perceived as Highly Bitter. CHEMOSENS PERCEPT 2013. [DOI: 10.1007/s12078-013-9159-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Clouard C, Loison F, Meunier-Salaün MC, Val-Laillet D. An attempt to condition flavour preference induced by oral and/or postoral administration of 16% sucrose in pigs. Physiol Behav 2013; 124:107-15. [PMID: 24184509 DOI: 10.1016/j.physbeh.2013.10.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 09/05/2013] [Accepted: 10/22/2013] [Indexed: 11/29/2022]
Abstract
The present study investigated the acquisition of conditioned flavour preferences in pigs using the caloric value and/or sweet taste of sucrose. Nine water-deprived juvenile pigs were given four three-day conditioning sessions during which they received flavoured solutions as conditioned stimuli (CS). The CS solutions were paired with three treatments that generated a gustatory and/or a caloric reinforcement (US). The CS++ solution was added with 16% sucrose and paired with an intraduodenal (ID) infusion of water, the CS+ solution was paired with an ID infusion of 16% sucrose and the CS- solution was paired with an ID infusion of water. One and two weeks after conditioning, the water-deprived pigs were subjected to two-choice preference tests with the unreinforced CS solutions. Solutions intake, behavioural activity and some drinking parameters were measured. Despite no difference in CS intake during conditioning, the animals spent less time inactive and more time standing during CS++ than CS+ conditioning. When receiving CS++, the pigs explored the drinking trough more than when receiving CS-. Compared to the CS- condition, the numbers of drinking episodes and intra-drinking episode (IDE) pauses were also 36% and 49% lesser in the CS++ condition, but these differences were not significant. During the two-choice tests, the pigs did not show significant preferences. Nevertheless, during the first session, the pigs seemed to show a slight preference for the CS++ (57% of total intake) compared to CS+. The duration of CS++ drinking episodes represented 64% of the total duration compared to CS+ and CS- . The total time spent drinking the CS++ also represented 57% of the total time in the CS++ vs. CS- test. To conclude, although no clear-cut preferences were found during two-choice tests, the oral perception of 16% sucrose during conditioning induced changes in behavioural activities, motivational responses and microstructure of CS intake, suggesting the importance of oral food perception for food selection processes in pigs. Further studies are needed to investigate the impact of water deprivation on the expression of flavour preferences in pigs.
Collapse
Affiliation(s)
- Caroline Clouard
- INRA, UR1341 Alimentation, Adaptations Digestives, Nerveuses et Comportementales, F-35590 Saint Gilles, France; INRA, UMR1348 Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Elevage, F-35590 Saint Gilles, France; Agrocampus Ouest, Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Élevage, F-35000 Rennes, France
| | | | | | | |
Collapse
|
43
|
Zukerman S, Ackroff K, Sclafani A. Post-oral appetite stimulation by sugars and nonmetabolizable sugar analogs. Am J Physiol Regul Integr Comp Physiol 2013; 305:R840-53. [PMID: 23926132 PMCID: PMC3798804 DOI: 10.1152/ajpregu.00297.2013] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/03/2013] [Indexed: 01/06/2023]
Abstract
Post-oral sugar actions enhance the intake of and preference for sugar-rich foods, a process referred to as appetition. Here, we investigated the role of intestinal sodium glucose cotransporters (SGLTs) in sugar appetition in C57BL/6J mice using sugars and nonmetabolizable sugar analogs that differ in their affinity for SGLT1 and SGLT3. In experiments 1 and 2, food-restricted mice were trained (1 h/day) to consume a flavored saccharin solution [conditioned stimulus (CS-)] paired with intragastric (IG) self-infusions of water and a different flavored solution (CS+) paired with infusions of 8 or 12% sugars (glucose, fructose, and galactose) or sugar analogs (α-methyl-D-glucopyranoside, MDG; 3-O-methyl-D-glucopyranoside, OMG). Subsequent two-bottle CS+ vs. CS- choice tests were conducted without coinfusions. Infusions of the SGLT1 ligands glucose, galactose, MDG, and OMG stimulated CS+ licking above CS- levels. However, only glucose, MDG, and galactose conditioned significant CS+ preferences, with the SGLT3 ligands (glucose, MDG) producing the strongest preferences. Fructose, which is not a ligand for SGLTs, failed to stimulate CS+ intake or preference. Experiment 3 revealed that IG infusion of MDG+phloridzin (an SGLT1/3 antagonist) blocked MDG appetition, whereas phloridzin had minimal effects on glucose-induced appetition. However, adding phloretin (a GLUT2 antagonist) to the glucose+phloridzin infusion blocked glucose appetition. Taken together, these findings suggest that humoral signals generated by intestinal SGLT1 and SGLT3, and to a lesser degree, GLUT2, mediate post-oral sugar appetition in mice. The MDG results indicate that sugar metabolism is not essential for the post-oral intake-stimulating and preference-conditioning actions of sugars in mice.
Collapse
Affiliation(s)
- Steven Zukerman
- Department of Psychology, Brooklyn College, City University of New York, Brooklyn, New York; and Cognition, Brain, and Behavior Doctoral Subprogram, Graduate School, City University of New York, New York, New York
| | | | | |
Collapse
|
44
|
Sucrose and Non-nutritive Sweeteners Can Suppress the Bitterness of Vegetables Independent of PTC Taster Phenotype. CHEMOSENS PERCEPT 2013. [DOI: 10.1007/s12078-013-9151-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Panek LM, Swoboda C, Bendlin A, Temple JL. Caffeine increases liking and consumption of novel-flavored yogurt. Psychopharmacology (Berl) 2013; 227:425-36. [PMID: 23354532 DOI: 10.1007/s00213-013-2971-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/29/2012] [Indexed: 11/25/2022]
Abstract
RATIONALE Caffeine has been shown to increase preference for beverages with which it is paired; however, it is not known if caffeine alters liking for foods with which it is paired indirectly. OBJECTIVES The purpose of the current experiment was to test the hypothesis that a caffeinated beverage paired with a novel-flavored yogurt will increase preference for that yogurt compared to one paired with placebo. We also tested the hypothesis that liking would increase more when caffeine was paired with high energy density yogurt. METHODS Men and women (n = 62) were randomized to receive a beverage containing placebo (PLA) or caffeine (CAF) and to consume a low (LED) or high energy density (HED), novel-flavored yogurt. Participants rated, ranked, and consumed seven novel-flavored yogurts and then had a target yogurt paired with either PLA or CAF over four consecutive days. RESULTS In general, yogurt liking increased over time, the HED yogurt was liked more than the LED yogurt, and yogurt paired with caffeine was liked more than yogurt paired with placebo. Participants showed a significant increase in liking of LED yogurt paired with caffeine compared to those with LED yogurt paired with placebo. CONCLUSIONS Caffeine administration may increase liking and consumption of novel-flavored foods, particularly if the food is not highly liked at baseline. This suggests that caffeine pairing may be a way to increase liking of LED foods, such as vegetables and fruit.
Collapse
Affiliation(s)
- Leah M Panek
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, 3435 Main Street, 1 Farber Hall, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
46
|
de Araujo IE, Lin T, Veldhuizen MG, Small DM. Metabolic regulation of brain response to food cues. Curr Biol 2013; 23:878-83. [PMID: 23643837 DOI: 10.1016/j.cub.2013.04.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/06/2013] [Accepted: 04/02/2013] [Indexed: 11/20/2022]
Abstract
Identification of energy sources depends upon the ability to form associations between food cues and nutritional value. As such, cues previously paired with calories elicit neuronal activation in the nucleus accumbens (NAcc), which reflects the reinforcing value of food. The identity of the physiological signals regulating this response remains elusive. Using fMRI, we examined brain response to noncaloric versions of flavors that had been consumed in previous days with either 0 or 112.5 calories from undetected maltodextrin. We report a small but perceptually meaningful increase in liking for the flavor that had been paired with calories and find that change in liking was associated with changes in insular responses to this beverage. In contrast, NAcc and hypothalamic response to the calorie-paired flavor was unrelated to liking but was strongly associated with the changes in plasma glucose levels produced by ingestion of the beverage when consumed previously with calories. Importantly, because each participant ingested the same caloric dose, the change in plasma glucose depended upon individual differences in glucose metabolism. We conclude that glucose metabolism is a critical signal regulating NAcc and hypothalamic response to food cues, and that this process operates independently from the ability of calories to condition liking.
Collapse
|
47
|
Garcia-Burgos D, González F, Hall G. Motivational control of latent inhibition in flavor preference conditioning. Behav Processes 2013; 98:9-17. [PMID: 23624026 DOI: 10.1016/j.beproc.2013.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/01/2013] [Accepted: 04/11/2013] [Indexed: 11/28/2022]
Abstract
In three experiments, rats given pairings of a neutral flavor with sucrose showed a preference for that flavor when subsequently allowed to choose between it and water. Preexposure to the flavor produced a latent inhibition effect (reduced the size of the preference) when the rats were hungry during the test (Experiments 1 and 2). Rats that were not hungry during the test failed to show latent inhibition (Experiments 1-3). Experiment 3 confirmed that sucrose-flavor pairings were capable of producing a preference even in nonhungry rats. It is argued that the preference shown by rats that are hungry on test depends on a flavor-nutrient association, a form of learning that is susceptible to latent inhibition in the same way as standard conditioning procedures are. The failure to obtain latent inhibition in nonhungry rats suggests that the preference obtained in these conditions depends on a different form of learning that is less susceptible to the effects of stimulus exposure.
Collapse
|
48
|
Myers KP. Rats acquire stronger preference for flavors consumed towards the end of a high-fat meal. Physiol Behav 2013; 110-111:179-89. [PMID: 23313407 DOI: 10.1016/j.physbeh.2013.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 12/14/2012] [Accepted: 01/06/2013] [Indexed: 02/02/2023]
Abstract
Rats learn to prefer flavors associated with postingestive effects of nutrients. The physiological signals underlying this postingestive reward are unknown. We have previously shown that rats readily learn to prefer a flavor that was consumed early in a multi-flavored meal when glucose is infused intragastrically (IG), suggesting rapid postingestive reward onset. The present experiments investigate the timing of postingestive fat reward, by providing distinctive flavors in the first and second halves of meals accompanied by IG fat infusion. Learning stronger preference for the earlier or later flavor would indicate when the rewarding postingestive effects are sensed. Rats consumed sweetened, calorically-dilute flavored solutions accompanied by IG high-fat infusion (+ sessions) or water (- sessions). Each session included an "Early" flavor for 8min followed by a "Late" flavor for 8min. Learned preferences were then assessed in two-bottle tests (no IG infusion) between Early(+) vs. Early(-), Late(+) vs. Late(-), Early(+) vs. Late(+), and Early(-) vs. Late(-). Rats only preferred Late(+), not Early(+), relative to their respective (-) flavors. In a second experiment rats trained with a higher fat concentration learned to prefer Early(+) but more strongly preferred Late(+). Learned preferences were evident when rats were tested deprived or recently satiated. Unlike with glucose, ingested fat appears to produce a slower-onset rewarding signal, detected later in a meal or after its termination, becoming more strongly associated with flavors towards the end of the meal. This potentially contributes to enhanced liking for dessert foods, which persists even when satiated.
Collapse
Affiliation(s)
- Kevin P Myers
- Department of Psychology, Programs in Animal Behavior and Neuroscience, Bucknell University, Lewisburg, PA 17837, USA.
| |
Collapse
|
49
|
Small DM. Flavor is in the brain. Physiol Behav 2012; 107:540-52. [PMID: 22542991 DOI: 10.1016/j.physbeh.2012.04.011] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 04/10/2012] [Accepted: 04/12/2012] [Indexed: 11/25/2022]
|
50
|
Repetition counts: repeated exposure increases intake of a novel vegetable in UK pre-school children compared to flavour–flavour and flavour–nutrient learning. Br J Nutr 2012; 109:2089-97. [DOI: 10.1017/s0007114512004126] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Children are not consuming sufficient amounts of fruits and vegetables in their habitual diet. Methods derived from associative learning theories could be effective at promoting vegetable intake in pre-school children. The objective of the present study was to compare the effectiveness of different learning strategies in promoting the intake of a novel vegetable. Children aged between 9 and 38 months were recruited from UK nurseries. The children (n 72) were randomly assigned to one of three conditions (repeated exposure, flavour–flavour learning or flavour–nutrient learning). Each child was offered ten exposures to their respective version of a novel vegetable (artichoke). Pre- and post-intervention measures of artichoke purée and carrot purée (control vegetable) intake were taken. At pre-intervention, carrot intake was significantly higher than artichoke intake (P< 0·05). Intake of both vegetables increased over time (P< 0·001); however, when changes in intake were investigated, artichoke intake increased significantly more than carrot intake (P< 0·001). Artichoke intake increased to the same extent in all three conditions, and this effect was persistent up to 5 weeks post-intervention. Five exposures were sufficient to increase intake compared to the first exposure (P< 0·001). Repeated exposure to three variants of a novel vegetable was sufficient to increase intake of this vegetable, regardless of the addition of a familiar taste or energy. Repetition is therefore a critical factor for promoting novel vegetable intake in pre-school children.
Collapse
|