1
|
Santos GX, Dos SantosTeodoro JE, Fonseca MG, Acunha RM, da Silva Júnior PI, Reis LMD, de Freitas RL, Medeiros P. Mygalin, an Acanthoscurria gomesiana spider-derived synthetic, modulates haloperidol-induced cataleptic state in mice. Neurosci Lett 2024; 820:137572. [PMID: 38072029 DOI: 10.1016/j.neulet.2023.137572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Haloperidol (HAL) is an antipsychotic used in the treatment of schizophrenia. However, adverse effects are observed in the extrapyramidal tracts due to its systemic action. Natural compounds are among the treatment alternatives widely available in Brazilian biodiversity. Mygalin (MY), a polyamine that was synthesized from a natural molecule present in the hemolymph of the Acanthoscurria gomesian spider, may present an interesting approach. AIMS This study aimed to evaluate the effect of MY in mice subjected to HAL-induced catalepsy. METHODS Male Swiss mice were used. Catalepsy was induced by intraperitoneal administration of HAL (0.5 mg/kg - 1 mL/Kg) diluted in physiological saline. To assess the MY effects on catalepsy, mice were assigned to 4 groups: (1) physiological saline (NaCl 0.9 %); (2) MY at 0.002 mg/Kg; (3) MY at 0.02 mg/Kg; (4) MY at 0.2 mg/Kg. MY or saline was administered intraperitoneally (IP) 10 min b HAL before saline. Catalepsy was evaluated using the bar test at 15, 30, 60, 90, and 120 min after the IP administration of HAL. RESULTS The latency time in the bar test 15, 30, 60, and 90 min increased (p < 0.05) after IP administration of HAL compared to the control group. Catalepsy was attenuated 15, 30, 90, and 120 min (p < 0.05) after the IP-administration of MY at 0.2 mg/Kg; while MY at 0.02 mg/Kg attenuated catalepsy 15 min after the HAL treatment. Our findings showed that MY attenuates the HAL-induced cataleptic state in mice.
Collapse
Affiliation(s)
| | | | | | - Renata Moreira Acunha
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes 3900 Ribeirão Preto, São Paulo 14049-900, Brazil
| | | | | | - Renato Leonardo de Freitas
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes 3900 Ribeirão Preto, São Paulo 14049-900, Brazil; Interdisciplinary Center for Pain Care, Federal University of São Carlos (UFSCar), Universidade Federal de São Carlos, Rodovia Washington Luiz, Km 235, Caixa Postal 676, CEP 13565-905, SP, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café 2450 Ribeirão Preto, São Paulo 14050-220, Brazil
| | - Priscila Medeiros
- Interdisciplinary Center for Pain Care, Federal University of São Carlos (UFSCar), Universidade Federal de São Carlos, Rodovia Washington Luiz, Km 235, Caixa Postal 676, CEP 13565-905, SP, Brazil; Department of General and Specialized Nursing - EERP/USP Ribeirão Preto College of Nursing - USP, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café 2450 Ribeirão Preto, São Paulo 14050-220, Brazil.
| |
Collapse
|
2
|
Antipsychotic- and Anxiolytic-like Properties of a Multimodal Compound JJGW08 in Rodents. Int J Mol Sci 2022; 23:ijms232415929. [PMID: 36555568 PMCID: PMC9781916 DOI: 10.3390/ijms232415929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Schizophrenia is a chronic mental illness, which remains difficult to treat. A high resistance to the available therapies, their insufficient efficacy, and numerous side effects are the reasons why there is an urgent need to develop new antipsychotics. This study aimed to assess the antipsychotic-like effects of JJGW08, a novel arylpiperazine alkyl derivative of salicylamide, in rodents. First, considering the JJGW08 receptor profile, we investigated the compound's intrinsic activity towards dopamine D2 and serotonin 5-HT1A, 5-HT2A, and 5-HT7 receptors using functional assays. Next, we assessed the effect of JJGW08 on MK-801- and amphetamine-induced hyperlocomotion, its risk of inducing catalepsy and impairing motor coordination, as well as the anxiolytic-like effects in the four-plate and marble burying tests in mice. Finally, we investigated the antipsychotic-like properties of JJGW08 in rats using MK-801-induced hyperlocomotion and prepulse inhibition tests. We found that JJGW08 showed antagonistic properties at dopamine D2 and serotonin 5-HT1A, 5-HT2A, and 5-HT7 receptors. However, the effect on the 5-HT2A and 5-HT7 receptors was very weak. Moreover, the tested compound showed an antipsychotic-like effect in MK-801- and amphetamine-induced hyperlocomotion but not in a prepulse inhibition test in rats. Notably, JJGW08 demonstrated anxiolytic-like properties in both behavioral tests. Importantly, the compound did not induce catalepsy or motor coordination impairment in mice at antipsychotic-like doses. Our study suggests it is worth searching for new potential antipsychotics among arylpiperazine alkyl derivatives of salicylamide.
Collapse
|
3
|
Bengoetxea de Tena I, Moreno-Rodríguez M, Llorente-Ovejero A, Monge-Benito S, Martínez-Gardeazabal J, Onandia-Hinchado I, Manuel I, Giménez-Llort L, Rodríguez-Puertas R. HANDLING AND NOVEL OBJECT RECOGNITION MODULATE FEAR RESPONSE AND ENDOCANNABINOID SIGNALING IN NUCLEUS BASALIS MAGNOCELLULARIS. Eur J Neurosci 2022; 55:1532-1546. [PMID: 35266590 PMCID: PMC9313565 DOI: 10.1111/ejn.15642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/29/2022]
Abstract
Storage of aversive memories is of utmost importance for survival, allowing animals to avoid upcoming similar stimuli. However, without reinforcement, the learned avoidance response gradually decreases over time. Although the molecular mechanisms controlling this extinction process are not well known, there is evidence that the endocannabinoid system plays a key role through CB1 receptor‐mediated modulation of cholinergic signaling. In this study, we measured fear extinction throughout 7 months using naïve rats, assessed in passive avoidance (PA) test in a non‐reinforced manner. Then, we evaluated the effect of gentle handling and non‐aversive novel object recognition test (NORT) on the extinction and expression of fear memories by measuring passive avoidance responses. Neurochemical correlates were analyzed by functional autoradiography for cannabinoid, cholinergic, and dopaminergic receptors. Despite results showing a gradual decrease of passive avoidance response, it did not fully disappear even after 7 months, indicating the robustness of this process. Meanwhile, in rats that received gentle handling or performed NORT after receiving the PA aversive stimulus, extinction occurred within a week. In contrast, gentle handling performed before receiving the aversive stimulus exacerbated fear expression and triggered escape response in PA. The neurochemical analysis showed increased cannabinoid and cholinergic activity in the nucleus basalis magnocellularis (NBM) in rats that had performed only PA, as opposed to rats that received gentle handling before PA. Additionally, a correlation between CB1 mediated‐signaling in the NBM and freezing in PA was found, suggesting that the endocannabinoid system might be responsible for modulating fear response induced by aversive memories.
Collapse
Affiliation(s)
- I Bengoetxea de Tena
- Dept. Pharmacology, Fac. of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - M Moreno-Rodríguez
- Dept. Pharmacology, Fac. of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - A Llorente-Ovejero
- Dept. Pharmacology, Fac. of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - S Monge-Benito
- Dept. Audiovisual Communication and Advertising, Fac. of Social Sciences and Communication, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - J Martínez-Gardeazabal
- Dept. Pharmacology, Fac. of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - I Onandia-Hinchado
- Dept. Clinical and Health Psychology and Research Methodology, Fac. of Psychology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - I Manuel
- Dept. Pharmacology, Fac. of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Neurodegenerative Diseases, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - L Giménez-Llort
- Dept. Psychiatry and Forensic Medicine, School of Medicine & Institute of Neuroscience, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - R Rodríguez-Puertas
- Dept. Pharmacology, Fac. of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Neurodegenerative Diseases, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
4
|
Yi GL, Zhu MZ, Cui HC, Yuan XR, Liu P, Tang J, Li YQ, Zhu XH. A hippocampus dependent neural circuit loop underlying the generation of auditory mismatch negativity. Neuropharmacology 2022; 206:108947. [PMID: 35026286 DOI: 10.1016/j.neuropharm.2022.108947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/11/2021] [Accepted: 01/06/2022] [Indexed: 11/16/2022]
Abstract
Extracting relevant information and transforming it into appropriate behavior, is a fundamental brain function, and requires the coordination between the sensory and cognitive systems, however, the underlying mechanisms of interplay between sensory and cognition systems remain largely unknown. Here, we developed a mouse model for mimicking human auditory mismatch negativity (MMN), a well-characterized translational biomarker for schizophrenia, and an index of early auditory information processing. We found that a subanesthetic dose of ketamine decreased the amplitude of MMN in adult mice. Using pharmacological and chemogenetic approaches, we identified an auditory cortex-entorhinal cortex-hippocampus neural circuit loop that is required for the generation of MMN. In addition, we found that inhibition of dCA1→MEC circuit impaired the auditory related fear discrimination. Moreover, we found that ketamine induced MMN deficiency by inhibition of long-range GABAergic projection from the CA1 region of the dorsal hippocampus to the medial entorhinal cortex. These results provided circuit insights for ketamine effects and early auditory information processing. As the entorhinal cortex is the interface between the neocortex and hippocampus, and the hippocampus is critical for the formation, consolidation, and retrieval of episodic memories and other cognition, our results provide a neural mechanism for the interplay between the sensory and cognition systems.
Collapse
Affiliation(s)
- Guo-Liang Yi
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Min-Zhen Zhu
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - He-Chen Cui
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xin-Rui Yuan
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Peng Liu
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jie Tang
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuan-Qing Li
- Research Center for Brain-Computer Interface, Pazhou Lab, Guangzhou, 510330, China
| | - Xin-Hong Zhu
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Research Center for Brain Health, Pazhou Lab, Guangzhou, 510330, China; School of Psychology, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
5
|
Wake N, Ishizu K, Abe T, Takahashi H. Prepulse inhibition predicts subjective hearing in rats. Sci Rep 2021; 11:18902. [PMID: 34556706 PMCID: PMC8460677 DOI: 10.1038/s41598-021-98167-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023] Open
Abstract
Auditory studies in animals benefit from quick and accurate audiometry. The auditory brainstem response (ABR) and prepulse inhibition (PPI) have been widely used for hearing assessment in animals, but how well these assessments predict subjective audiometry still remains unclear. Human studies suggest that subjective audiometry is consistent with the ABR-based audiogram, not with the PPI-based audiogram, likely due to top-down processing in the cortex that inhibits PPI. Here, we challenged this view in Wistar rats, as rodents exhibit less complexity of cortical activities and thereby less influence of the cerebral cortex on PPI compared to humans. To test our hypothesis, we investigated whether subjective audiometry correlates with ABR- or PPI-based audiograms across the range of audible frequencies in Wistar rats. The subjective audiogram was obtained through pure-tone audiometry based on operant conditioning. Our results demonstrated that both the ABR-based and PPI-based audiograms significantly correlated to the subjective audiogram. We also found that ASR strength was information-rich, and adequate interpolation of this data offered accurate audiometry. Thus, unlike in humans, PPI could be used to predict subjective audibility in rats.
Collapse
Affiliation(s)
- Naoki Wake
- grid.26999.3d0000 0001 2151 536XDepartment of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan
| | - Kotaro Ishizu
- grid.26999.3d0000 0001 2151 536XDepartment of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan
| | - Taiki Abe
- grid.26999.3d0000 0001 2151 536XDepartment of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan
| | - Hirokazu Takahashi
- grid.26999.3d0000 0001 2151 536XDepartment of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan
| |
Collapse
|
6
|
Cholinergic Neurons of the Medial Septum Are Crucial for Sensorimotor Gating. J Neurosci 2019; 39:5234-5242. [PMID: 31028115 DOI: 10.1523/jneurosci.0950-18.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 03/23/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Hypofunction of NMDA receptors has been considered a possible cause for the pathophysiology of schizophrenia. More recently, indirect ways to regulate NMDA that would be less disruptive have been proposed and metabotropic glutamate receptor subtype 5 (mGluR5) represents one such candidate. To characterize the cell populations involved, we demonstrated here that knock-out (KO) of mGluR5 in cholinergic, but not glutamatergic or parvalbumin (PV)-positive GABAergic, neurons reduced prepulse inhibition of the startle response (PPI) and enhanced sensitivity to MK801-induced locomotor activity. Inhibition of cholinergic neurons in the medial septum by DREADD (designer receptors exclusively activated by designer drugs) resulted in reduced PPI further demonstrating the importance of these neurons in sensorimotor gating. Volume imaging and quantification were used to compare PV and cholinergic cell distribution, density, and total cell counts in the different cell-type-specific KO lines. Electrophysiological studies showed reduced NMDA receptor-mediated currents in cholinergic neurons of the medial septum in mGluR5 KO mice. These results obtained from male and female mice indicate that cholinergic neurons in the medial septum represent a key cell type involved in sensorimotor gating and are relevant to pathologies associated with disrupted sensorimotor gating such as schizophrenia.SIGNIFICANCE STATEMENT The mechanistic complexity underlying psychiatric disorders remains a major challenge that is hindering the drug discovery process. Here, we generated genetically modified mouse lines to better characterize the involvement of the receptor mGluR5 in the fine-tuning of NMDA receptors, specifically in the context of sensorimotor gating. We evaluated the importance of knocking-out mGluR5 in three different cell types in two brain regions and performed different sets of experiments including behavioral testing and electrophysiological recordings. We demonstrated that cholinergic neurons in the medial septum represent a key cell-type involved in sensorimotor gating. We are proposing that pathologies associated with disrupted sensorimotor gating, such as with schizophrenia, could benefit from further evaluating strategies to modulate specifically cholinergic neurons in the medial septum.
Collapse
|
7
|
Borsoi M, Antonio CB, Müller LG, Viana AF, Hertzfeldt V, Lunardi PS, Zanotto C, Nardin P, Ravazzolo AP, Rates SMK, Gonçalves CA. Repeated forced swimming impairs prepulse inhibition and alters brain-derived neurotrophic factor and astroglial parameters in rats. Pharmacol Biochem Behav 2015; 128:50-61. [DOI: 10.1016/j.pbb.2014.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 11/12/2014] [Accepted: 11/15/2014] [Indexed: 11/26/2022]
|
8
|
Shao S, Li M, Du W, Shao F, Wang W. Galanthamine, an acetylcholine inhibitor, prevents prepulse inhibition deficits induced by adolescent social isolation or MK-801 treatment. Brain Res 2014; 1589:105-11. [DOI: 10.1016/j.brainres.2014.09.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 09/10/2014] [Accepted: 09/12/2014] [Indexed: 12/14/2022]
|
9
|
Tomaz VS, Cordeiro RC, Costa AMN, de Lucena DF, Nobre Júnior HV, de Sousa FCF, Vasconcelos SMM, Vale ML, Quevedo J, Macêdo D. Antidepressant-like effect of nitric oxide synthase inhibitors and sildenafil against lipopolysaccharide-induced depressive-like behavior in mice. Neuroscience 2014; 268:236-46. [PMID: 24662848 DOI: 10.1016/j.neuroscience.2014.03.025] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/21/2014] [Accepted: 03/13/2014] [Indexed: 01/22/2023]
Abstract
Inflammation, oxidative and nitrosative stress underlie depression being assessed in rodents by the systemic administration of lipopolysacharide (LPS). There is an increasing body of evidence of an involvement of nitric oxide (NO) pathway in depression, but this issue was not investigated in LPS-induced model. Thus, herein we evaluated the effects of NO-pathway-modulating drugs, named aminoguanidine, l-NAME, sildenafil and l-arginine, on the behavioral (forced swimming test [FST], sucrose preference [SPT] and prepulse inhibition [PPI] of the startle) and neurochemical (glutathione [GSH], lipid peroxidation, IL-1β) alterations in the prefrontal cortex, hippocampus and striatum as well as in BDNF levels in the hippocampus 24h after LPS (0.5mg/kg, i.p.) administration, a time-point related to depressive-like behavior. Twenty-four hours post LPS there was an increase in immobility time in the FST, decrease in sucrose preference and PPI levels accompanied by a decrease in GSH levels and an increase in lipid peroxidation, IL-1β and hippocampal BDNF levels suggestive of a depressive-like state. The pretreatment with the NOS inhibitors, l-NAME and aminoguanidine as well as sildenafil prevented the behavioral and neurochemical alterations induced by LPS, although sildenafil and l-NAME were not able to prevent the increase in hippocampal BDNF levels induced by LPS. The iNOS inhibitor, aminoguanidine, and imipramine prevented all behavioral and neurochemical alterations induced by LPS. l-arginine did not prevent the alterations in immobility time, sucrose preference and GSH induced by LPS. Taken together our results show that the NO-cGMP pathway is important in the modulation of the depressive-like alterations induced by LPS.
Collapse
Affiliation(s)
- V S Tomaz
- Neuropharmacology Laboratory, Department of Physiology and Pharmacology, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - R C Cordeiro
- Neuropharmacology Laboratory, Department of Physiology and Pharmacology, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - A M N Costa
- Neuropharmacology Laboratory, Department of Physiology and Pharmacology, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - D F de Lucena
- Neuropharmacology Laboratory, Department of Physiology and Pharmacology, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - H V Nobre Júnior
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection and Experiments in Yeast, LABEL, Federal University of Ceará, Fortaleza, CE, Brazil
| | - F C F de Sousa
- Neuropharmacology Laboratory, Department of Physiology and Pharmacology, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - S M M Vasconcelos
- Neuropharmacology Laboratory, Department of Physiology and Pharmacology, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - M L Vale
- Laboratory of Inflammation and Cancer Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - J Quevedo
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| | - D Macêdo
- Neuropharmacology Laboratory, Department of Physiology and Pharmacology, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
10
|
Liu H, Ren Z, Zhong J, Cai H, Chen X, Li J. Haloperidol and Clozapine Reverse MK-801-Induced Deficits in Hypoactivity, but Not the Impairment of Spatial Memory in Sprague-Dawley Rats. INT J PHARMACOL 2014. [DOI: 10.3923/ijp.2014.120.128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Atypical antipsychotic olanzapine reversed deficit on prepulse inhibition of the acoustic startle reflex produced by microinjection of dizocilpine (MK-801) into the inferior colliculus in rats. Behav Brain Res 2013; 257:77-82. [DOI: 10.1016/j.bbr.2013.09.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 09/03/2013] [Accepted: 09/07/2013] [Indexed: 12/15/2022]
|
12
|
Custódio CS, Mello BSF, Cordeiro RC, de Araújo FYR, Chaves JH, Vasconcelos SMM, Júnior HVN, de Sousa FCF, Vale ML, Carvalho AF, Macêdo DS. Time course of the effects of lipopolysaccharide on prepulse inhibition and brain nitrite content in mice. Eur J Pharmacol 2013; 713:31-8. [DOI: 10.1016/j.ejphar.2013.04.040] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 04/20/2013] [Accepted: 04/26/2013] [Indexed: 01/01/2023]
|
13
|
Feinstein I, Kritzer MF. Acute N-methyl-D-aspartate receptor hypofunction induced by MK801 evokes sex-specific changes in behaviors observed in open-field testing in adult male and proestrus female rats. Neuroscience 2012; 228:200-14. [PMID: 23085219 DOI: 10.1016/j.neuroscience.2012.10.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/02/2012] [Accepted: 10/10/2012] [Indexed: 12/21/2022]
Abstract
Schizophrenia is a complex constellation of positive, negative and cognitive symptoms. Acute administration of the non-competitive antagonist of the N-methyl-d-aspartate receptor (NMDAR) dizocilpine (MK801) in rats is one of few preclinical animal models of this disorder that has both face and/or construct validity for these multiple at-risk behavioral domains and predictive power for the efficacy of therapeutic drugs in treating them. This study asked whether and to what extent the rat NMDAR hypofunction model also embodies the sex differences that distinguish the symptoms of schizophrenia and their treatment. Thus, we compared the effects of acute MK801, with and without pretreatment with haloperidol or clozapine, on seven discrete spontaneous open-field activities in adult male and female rats. These analyses revealed that MK801 was more effective in stimulating ataxia and locomotion and inhibiting stationary behavior in females while more potently stimulating stereotypy and thigmotaxis and inhibiting rearing and grooming in males. Haloperidol and clozapine pretreatments had markedly different efficacies in terms of behaviors but strong similarities in their effectiveness in male and female subjects. These results bear intriguing relationships with the complex male/female differences that characterize the symptoms of schizophrenia and suggest possible applications for acute NMDAR hypofunction as a preclinical model for investigating the neurobiology that underlies them.
Collapse
Affiliation(s)
- I Feinstein
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794-5230, USA
| | | |
Collapse
|
14
|
Gururajan A, Taylor DA, Malone DT. Cannabidiol and clozapine reverse MK-801-induced deficits in social interaction and hyperactivity in Sprague-Dawley rats. J Psychopharmacol 2012; 26:1317-32. [PMID: 22495620 DOI: 10.1177/0269881112441865] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recently, a novel paradigm has been designed to assess social investigative behaviour in pairs of Sprague-Dawley rats, which involves physical separation whilst ensuring they are able to maintain contact through other social cues. We have modified this set-up in order to assess not just social behaviour but also locomotor activity of the rats. Results showed that the MK-801- (0.3 mg/kg) treated rats displayed reduced social investigative behaviour, hyperactivity as well as reduced attention span. Pretreatment with the phytocannabinoid cannabidiol (3 mg/kg) not only normalised social investigative behaviour but increased it beyond control levels. Pretreatment with clozapine (1, 3 mg/kg) also normalised social investigative behaviour. Both cannabidiol and clozapine inhibited MK-801-induced hyperactivity. However, there were no effects of pretreatment on impairments to attention span. Our findings reinforce several aspects of the validity of the MK-801-induced model of social withdrawal and hyperactivity and also support the use of this novel set-up for further investigations to assess the antipsychotic potential of novel compounds.
Collapse
Affiliation(s)
- Anand Gururajan
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.
| | | | | |
Collapse
|
15
|
Lim AL, Taylor DA, Malone DT. A two-hit model: behavioural investigation of the effect of combined neonatal MK-801 administration and isolation rearing in the rat. J Psychopharmacol 2012; 26:1252-64. [PMID: 22361477 DOI: 10.1177/0269881111430751] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This study combined two neurodevelopmental manipulations, neonatal MK-801 treatment and isolation rearing, to produce a 'two-hit' model and determine whether two hits induce a more robust behavioural phenotype of an animal model of aspects of schizophrenia compared with individual manipulations alone. The effect of clozapine was also assessed. Male Sprague-Dawley rats received 0.2 mg/kg MK-801 or saline intraperitoneally (i.p.) once daily on postnatal days (PNDs) 7-10 and were assigned to group or isolation rearing at weaning (PND 21). From PND 77, they received a vehicle or 5 mg/kg clozapine (i.p.) treatment regimen and were subjected to three prepulse inhibition (PPI) tests, a locomotor activity assessment and a novel object recognition task. MK-801-treated rats reared in isolation displayed robust PPI disruptions which were consistently manifested in all three tests. PPI deficits were also detected in saline-treated rats reared in isolation but not in all tests. Only the two-hit rats demonstrated hyperlocomotion and impaired object recognition memory. Clozapine restored PPI anomalies in the two-hit rats. The two-hit model showed greater psychotic-like effects than either neonatal MK-801 or isolation rearing alone. The preliminary predictive validity shown with clozapine suggests this model may be useful for predicting the efficacy of putative antipsychotics.
Collapse
Affiliation(s)
- Ann Li Lim
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| | | | | |
Collapse
|
16
|
Consequences of early life MK-801 administration: long-term behavioural effects and relevance to schizophrenia research. Behav Brain Res 2011; 227:276-86. [PMID: 22085878 DOI: 10.1016/j.bbr.2011.10.052] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 10/31/2011] [Indexed: 12/13/2022]
Abstract
Animal models contribute significantly to advancing the understanding of schizophrenia neurobiology, in addition to being an important tool for the screening of antipsychotic potential of new compounds. However, the entire spectrum or all the symptoms manifested in schizophrenia cannot be straightforwardly reproduced in animals due to the complexity of the disorder, difference in mental capacities and behaviours, and the ability to quantify or measure the changes. Blockade of the NMDA receptor by the use of MK-801, a non-competitive NMDA receptor antagonist, during the early postnatal period has been proposed to be an experimental model which induces behavioural changes that mimic several aspects of the disorder. The long term behavioural profile arising from this early life manipulation is reviewed herein, with a specific focus on behaviours relevant to a schizophrenia-like condition. Some of the reported neurochemical changes are also compiled. Although this method may be suitable to model some aspects of schizophrenia in rodents, there are unmet areas which need to be addressed, notably the characterisation of its predictive value.
Collapse
|
17
|
Sarantis K, Antoniou K, Matsokis N, Angelatou F. Exposure to novel environment is characterized by an interaction of D1/NMDA receptors underlined by phosphorylation of the NMDA and AMPA receptor subunits and activation of ERK1/2 signaling, leading to epigenetic changes and gene expression in rat hippocampus. Neurochem Int 2011; 60:55-67. [PMID: 22080157 DOI: 10.1016/j.neuint.2011.10.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/14/2011] [Accepted: 10/29/2011] [Indexed: 01/22/2023]
Abstract
Interactions between dopamine and glutamate receptors are essential for prefrontal cortical (PFC) and hippocampal cognitive functions. The hippocampus has been identified as a detector of a novel stimulus, where an association between incoming information and stored memories takes place. Further to our previous results which showed a strong synergistic interaction of dopamine D1 and glutamate NMDA receptors, the present study is going to investigate the functional status of that interaction in rats, following their exposure to a novel environment. Our results showed that the "spatial" novelty induced in rat hippocampus and PFC (a) a significant increase in phosphorylation of NMDA and AMPA receptor subunits, as well as a robust phosphorylation/activation of ERK1/2 signaling, which are both dependent on the concomitant stimulation of D1/NMDA receptors and are both abolished by habituation procedure, (b) chromatin remodeling events (phosphorylation-acetylation of histone H3) and (c) an increase in the immediate early genes (IEGs) c-Fos and zif-268 expression in the CA1 region of hippocampus, which is dependent on the co-activation of D1/NMDA and acetylcholine muscarinic receptors. In conclusion, our results clearly show that a strong synergistic interaction of D1/NMDA receptor is required for the novelty-induced phosphorylation of NMDA and AMPA receptor subunits and for the robust activation of ERK1/2 signaling, leading to chromatin remodeling events and the expression of the IEGs c-Fos and zif-268, which are involved in the regulation of synaptic plasticity and memory consolidation.
Collapse
Affiliation(s)
- Konstantinos Sarantis
- Department of Physiology, Medical School, University of Patras, 26500 Patras, Greece
| | | | | | | |
Collapse
|
18
|
Gururajan A, Taylor DA, Malone DT. Effect of cannabidiol in a MK-801-rodent model of aspects of Schizophrenia. Behav Brain Res 2011; 222:299-308. [DOI: 10.1016/j.bbr.2011.03.053] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 03/24/2011] [Indexed: 10/18/2022]
|
19
|
Levin R, Calzavara MB, Santos CM, Medrano WA, Niigaki ST, Abílio VC. Spontaneously Hypertensive Rats (SHR) present deficits in prepulse inhibition of startle specifically reverted by clozapine. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1748-52. [PMID: 21693159 DOI: 10.1016/j.pnpbp.2011.06.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/17/2011] [Accepted: 06/07/2011] [Indexed: 11/16/2022]
Abstract
Deficits in an operational measure of sensorimotor gating - the prepulse inhibition of startle (PPI) - are presented in psychiatric disorders such as schizophrenia, bipolar disorder, and attention deficit/hyperactivity disorder (ADHD). Some previous studies showed that the spontaneously hypertensive rats (SHR) present PPI deficit. Although SHR is suggested as an animal model to study ADHD, we have suggested that the behavioral phenotype of this strain mimics some aspects of schizophrenia. The aim of this study was to characterize the PPI response in SHR. Pharmacological characterization consisted in the evaluation of the effects of the following drugs administered to adult Wistar rats (WR) and SHR previously to the PPI test: amphetamine (used for ADHD and also a psychotomimetic drug), haloperidol and clozapine (antipsychotic drugs), metoclopramide (dopamine antagonist without antipsychotic properties) and carbamazepine (mood stabilizer). Our results showed that SHR presented reduced PPI. This deficit was similar to that induced by amphetamine in WR. Only the atypical antipsychotic clozapine improved the PPI deficit observed in SHR. These findings reinforce the SHR strain as an animal model to study several aspects of schizophrenia, including the abnormalities in sensorimotor gating associated with this disease.
Collapse
Affiliation(s)
- Raquel Levin
- Department of Pharmacology, Universidade Federal de São Paulo. Rua Pedro de Toledo, 669, 5 ° andar, Ed. de Pesquisas II, CEP 04039-032, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|