1
|
Gu X, Lai D, Liu S, Chen K, Zhang P, Chen B, Huang G, Cheng X, Lu C. Hub Genes, Diagnostic Model, and Predicted Drugs Related to Iron Metabolism in Alzheimer's Disease. Front Aging Neurosci 2022; 14:949083. [PMID: 35875800 PMCID: PMC9300955 DOI: 10.3389/fnagi.2022.949083] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disease, remains unclear in terms of its underlying causative genes and effective therapeutic approaches. Meanwhile, abnormalities in iron metabolism have been demonstrated in patients and mouse models with AD. Therefore, this study sought to find hub genes based on iron metabolism that can influence the diagnosis and treatment of AD. First, gene expression profiles were downloaded from the GEO database, including non-demented (ND) controls and AD samples. Fourteen iron metabolism-related gene sets were downloaded from the MSigDB database, yielding 520 iron metabolism-related genes. The final nine hub genes associated with iron metabolism and AD were obtained by differential analysis and WGCNA in brain tissue samples from GSE132903. GO analysis revealed that these genes were mainly involved in two major biological processes, autophagy and iron metabolism. Through stepwise regression and logistic regression analyses, we selected four of these genes to construct a diagnostic model of AD. The model was validated in blood samples from GSE63061 and GSE85426, and the AUC values showed that the model had a relatively good diagnostic performance. In addition, the immune cell infiltration of the samples and the correlation of different immune factors with these hub genes were further explored. The results suggested that these genes may also play an important role in immunity to AD. Finally, eight drugs targeting these nine hub genes were retrieved from the DrugBank database, some of which were shown to be useful for the treatment of AD or other concomitant conditions, such as insomnia and agitation. In conclusion, this model is expected to guide the diagnosis of patients with AD by detecting the expression of several genes in the blood. These hub genes may also assist in understanding the development and drug treatment of AD.
Collapse
Affiliation(s)
- Xuefeng Gu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Xuefeng Gu
| | - Donglin Lai
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shuang Liu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Kaijie Chen
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Peng Zhang
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Bing Chen
- Department of Neurosurgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Gang Huang
| | - Xiaoqin Cheng
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- Xiaoqin Cheng
| | - Changlian Lu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- *Correspondence: Changlian Lu
| |
Collapse
|
2
|
Hegde AN, Smith SG, Duke LM, Pourquoi A, Vaz S. Perturbations of Ubiquitin-Proteasome-Mediated Proteolysis in Aging and Alzheimer's Disease. Front Aging Neurosci 2019; 11:324. [PMID: 31866849 PMCID: PMC6910070 DOI: 10.3389/fnagi.2019.00324] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/11/2019] [Indexed: 01/09/2023] Open
Abstract
The ubiquitin-proteasome pathway (UPP) has multiple roles in the normal nervous system, including the development of synaptic connections and synaptic plasticity. Research over the past several years has indicated a role for the UPP in aging without any overt pathology in the brain. In addition, malfunction of the UPP is implicated in Alzheimer’s disease (AD) and dementia associated with it. In this mini review article, we assess the literature on the role of protein degradation by the UPP in aging and in AD with special emphasis on dysregulation of the UPP and its contribution to cognitive decline and impairment.
Collapse
Affiliation(s)
- Ashok N Hegde
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA, United States
| | - Spencer G Smith
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA, United States
| | - Lindsey M Duke
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA, United States
| | - Allison Pourquoi
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA, United States
| | - Savannah Vaz
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA, United States
| |
Collapse
|
3
|
Abstract
Ubiquitination of proliferating cell nuclear antigen (PCNA) plays an important role in DNA damage response. Ectopic expression of PCNA fused at either terminus with ubiquitin (Ub) lacking two C-terminal glycine residues induces translesion DNA synthesis which resembles synthesis mediated by PCNA monoubiquitination. PCNA fused with Ub containing the C-terminal Gly residues at the C-terminus can be further polyubiquitinated in a Gly-dependent manner, which inhibits cell proliferation and induces ATR-dependent replication checkpoint. In this study, we surprisingly found that PCNA fused to a head-to-tail linear Ub chain induces apoptosis in a Ub chain length-dependent manner. Further investigation revealed that the apoptotic effect is actually induced by the linear Ub chain independently from PCNA, as the Ub chain fused to GFP or an epitope tag still efficiently induces apoptosis. It is revealed that the artificial linear Ub chain differs from endogenously encoded linear Ub chains in that its Ubs contain a Ub-G76S substitution, making the Ub chain resistant to cleavage by deubiquitination enzymes. We demonstrated in this study that ectopic expression of the artificial Ub chain alone in cultured human cancer cells is sufficient to inhibit tumor growth in a xenograft mouse model, making the linear Ub chain a putative anti-cancer agent.
Collapse
Affiliation(s)
- Zhoushuai Qin
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, S7N 5E5, Canada
| | - Wandong Jiang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Guifen Wang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Ying Sun
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Wei Xiao
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China.
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, S7N 5E5, Canada.
| |
Collapse
|
4
|
Verheijen BM, Gentier RJG, Hermes DJHP, van Leeuwen FW, Hopkins DA. Selective Transgenic Expression of Mutant Ubiquitin in Purkinje Cell Stripes in the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2017; 16:746-750. [PMID: 27966098 PMCID: PMC5427096 DOI: 10.1007/s12311-016-0838-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ubiquitin-proteasome system (UPS) is one of the major mechanisms for protein breakdown in cells, targeting proteins for degradation by enzymatically conjugating them to ubiquitin molecules. Intracellular accumulation of ubiquitin-B+1 (UBB+1), a frameshift mutant of ubiquitin-B, is indicative of a dysfunctional UPS and has been implicated in several disorders, including neurodegenerative disease. UBB+1-expressing transgenic mice display widespread labeling for UBB+1 in brain and exhibit behavioral deficits. Here, we show that UBB+1 is specifically expressed in a subset of parasagittal stripes of Purkinje cells in the cerebellar cortex of a UBB+1-expressing mouse model. This expression pattern is reminiscent of that of the constitutively expressed Purkinje cell antigen HSP25, a small heat shock protein with neuroprotective properties.
Collapse
Affiliation(s)
- Bert M Verheijen
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.
- Lab of Experimental Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Romina J G Gentier
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Denise J H P Hermes
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Fred W van Leeuwen
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - David A Hopkins
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
5
|
Gong B, Radulovic M, Figueiredo-Pereira ME, Cardozo C. The Ubiquitin-Proteasome System: Potential Therapeutic Targets for Alzheimer's Disease and Spinal Cord Injury. Front Mol Neurosci 2016; 9:4. [PMID: 26858599 PMCID: PMC4727241 DOI: 10.3389/fnmol.2016.00004] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/07/2016] [Indexed: 01/20/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) is a crucial protein degradation system in eukaryotes. Herein, we will review advances in the understanding of the role of several proteins of the UPS in Alzheimer’s disease (AD) and functional recovery after spinal cord injury (SCI). The UPS consists of many factors that include E3 ubiquitin ligases, ubiquitin hydrolases, ubiquitin and ubiquitin-like molecules, and the proteasome itself. An extensive body of work links UPS dysfunction with AD pathogenesis and progression. More recently, the UPS has been shown to have vital roles in recovery of function after SCI. The ubiquitin hydrolase (Uch-L1) has been proposed to increase cellular levels of mono-ubiquitin and hence to increase rates of protein turnover by the UPS. A low Uch-L1 level has been linked with Aβ accumulation in AD and reduced neuroregeneration after SCI. One likely mechanism for these beneficial effects of Uch-L1 is reduced turnover of the PKA regulatory subunit and consequently, reduced signaling via CREB. The neuron-specific F-box protein Fbx2 ubiquitinates β-secretase thus targeting it for proteasomal degradation and reducing generation of Aβ. Both Uch-L1 and Fbx2 improve synaptic plasticity and cognitive function in mouse AD models. The role of Fbx2 after SCI has not been examined, but abolishing ß-secretase reduces neuronal recovery after SCI, associated with reduced myelination. UBB+1, which arises through a frame-shift mutation in the ubiquitin gene that adds 19 amino acids to the C-terminus of ubiquitin, inhibits proteasomal function and is associated with increased neurofibrillary tangles in patients with AD, Pick’s disease and Down’s syndrome. These advances in understanding of the roles of the UPS in AD and SCI raise new questions but, also, identify attractive and exciting targets for potential, future therapeutic interventions.
Collapse
Affiliation(s)
- Bing Gong
- Department of Medicine, Mount Sinai School of MedicineNew York, NY, USA; Medicine, James J. Peters Veteran Affairs Medical CenterBronx, NY, USA
| | - Miroslav Radulovic
- Department of Medicine, Mount Sinai School of MedicineNew York, NY, USA; Medicine, James J. Peters Veteran Affairs Medical CenterBronx, NY, USA; National Center of Excellence for the Medical Consequences of Spinal Cord Injury (SCI)Bronx, NY, USA
| | - Maria E Figueiredo-Pereira
- Department of Biological Sciences, Hunter College, and the Graduate School and University Center, The City University of New York New York, NY, USA
| | - Christopher Cardozo
- Department of Medicine, Mount Sinai School of MedicineNew York, NY, USA; Medicine, James J. Peters Veteran Affairs Medical CenterBronx, NY, USA; National Center of Excellence for the Medical Consequences of Spinal Cord Injury (SCI)Bronx, NY, USA
| |
Collapse
|
6
|
Gentier RJG, Verheijen BM, Zamboni M, Stroeken MMA, Hermes DJHP, Küsters B, Steinbusch HWM, Hopkins DA, Van Leeuwen FW. Localization of mutant ubiquitin in the brain of a transgenic mouse line with proteasomal inhibition and its validation at specific sites in Alzheimer's disease. Front Neuroanat 2015; 9:26. [PMID: 25852488 PMCID: PMC4362318 DOI: 10.3389/fnana.2015.00026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 02/21/2015] [Indexed: 11/13/2022] Open
Abstract
Loss of protein quality control by the ubiquitin-proteasome system (UPS) during aging is one of the processes putatively contributing to cellular stress and Alzheimer's disease (AD) pathogenesis. Recently, pooled Genome Wide Association Studies (GWAS), pathway analysis and proteomics identified protein ubiquitination as one of the key modulators of AD. Mutations in ubiquitin B mRNA that result in UBB+1 dose-dependently cause an impaired UPS, subsequent accumulation of UBB+1 and most probably depositions of other aberrant proteins present in plaques and neurofibrillary tangles. We used specific immunohistochemical probes for a comprehensive topographic mapping of the UBB+1 distribution in the brains of transgenic mouse line 3413 overexpressing UBB+1. We also mapped the expression of UBB+1 in brain areas of AD patients selected based upon the distribution of UBB+1 in line 3413. Therefore, we focused on the olfactory bulb, basal ganglia, nucleus basalis of Meynert, inferior colliculus and raphe nuclei. UBB+1 distribution was compared with established probes for pre-tangles and tangles and Aβ plaques. UBB+1 distribution found in line 3413 is partly mirrored in the AD brain. Specifically, nuclei with substantial accumulations of tangle-bearing neurons, such as the nucleus basalis of Meynert and raphe nuclei also present high densities of UBB+1 positive tangles. Line 3413 is useful for studying the contribution of proteasomal dysfunction in AD. The findings are consistent with evidence that areas outside the forebrain are also affected in AD. Line 3413 may also be predictive for other conformational diseases, including related tauopathies and polyglutamine diseases, in which UBB+1 accumulates in their cellular hallmarks.
Collapse
Affiliation(s)
- Romina J G Gentier
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University Maastricht, Netherlands
| | - Bert M Verheijen
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University Maastricht, Netherlands
| | - Margherita Zamboni
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University Maastricht, Netherlands
| | - Maartje M A Stroeken
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University Maastricht, Netherlands
| | - Denise J H P Hermes
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University Maastricht, Netherlands
| | - Benno Küsters
- Department of Pathology, Radboud University Nijmegen Medical Center Nijmegen, Netherlands ; Department of Pathology, Maastricht University Medical Center Maastricht, Netherlands
| | - Harry W M Steinbusch
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University Maastricht, Netherlands
| | - David A Hopkins
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University Maastricht, Netherlands ; Department of Medical Neuroscience, Dalhousie University Halifax, NS, Canada
| | - Fred W Van Leeuwen
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University Maastricht, Netherlands
| |
Collapse
|
7
|
Braun RJ. Ubiquitin-dependent proteolysis in yeast cells expressing neurotoxic proteins. Front Mol Neurosci 2015; 8:8. [PMID: 25814926 PMCID: PMC4357299 DOI: 10.3389/fnmol.2015.00008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/24/2015] [Indexed: 01/16/2023] Open
Abstract
Critically impaired protein degradation is discussed to contribute to neurodegenerative disorders, including Parkinson's, Huntington's, Alzheimer's, and motor neuron diseases. Misfolded, aggregated, or surplus proteins are efficiently degraded via distinct protein degradation pathways, including the ubiquitin-proteasome system, autophagy, and vesicular trafficking. These pathways are regulated by covalent modification of target proteins with the small protein ubiquitin and are evolutionary highly conserved from humans to yeast. The yeast Saccharomyces cerevisiae is an established model for deciphering mechanisms of protein degradation, and for the elucidation of pathways underlying programmed cell death. The expression of human neurotoxic proteins triggers cell death in yeast, with neurotoxic protein-specific differences. Therefore, yeast cell death models are suitable for analyzing the role of protein degradation pathways in modulating cell death upon expression of disease-causing proteins. This review summarizes which protein degradation pathways are affected in these yeast models, and how they are involved in the execution of cell death. I will discuss to which extent this mimics the situation in other neurotoxic models, and how this may contribute to a better understanding of human disorders.
Collapse
Affiliation(s)
- Ralf J Braun
- Institut für Zellbiologie, Universität Bayreuth Bayreuth, Germany
| |
Collapse
|
8
|
Bach SV, Tacon PR, Morgan JW, Hegde AN. Proteasome regulates transcription-favoring histone methylation, acetylation and ubiquitination in long-term synaptic plasticity. Neurosci Lett 2015; 591:59-64. [PMID: 25687290 DOI: 10.1016/j.neulet.2015.02.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 02/07/2023]
Abstract
Histone modifications, such as lysine methylation, acetylation and ubiquitination, are epigenetic tags that shape the chromatin landscape and regulate transcription required for synaptic plasticity and memory. Here, we show that transcription-promoting histone H3 trimethylated at lysine 4 (H3K4me3), histone H3 acetylated at lysine 9 and 14 (H3K9/14ac), and histone H2B monoubiquitinated at lysine 120 (H2BK120ub) are enhanced after the induction of long-lasting chemically-induced long-term potentiation (cLTP) in the murine hippocampus. While H3K4me3 and H3K9/14ac were transiently upregulated, H2BK120ub levels oscillated after cLTP induction. In addition, we present results showing that blocking the proteasome, a molecular complex specialized for targeted protein degradation, inhibited the upregulation of these epigenetic tags after cLTP. Thus, our study provides the initial steps toward understanding the role of the proteasome in regulating histone modifications critical for synaptic plasticity.
Collapse
Affiliation(s)
- Svitlana V Bach
- Department of Neurobiology and Anatomy, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - P Ryan Tacon
- Department of Neurobiology and Anatomy, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - James W Morgan
- Department of Neurobiology and Anatomy, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Ashok N Hegde
- Department of Neurobiology and Anatomy, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
9
|
van Tijn P, Dennissen FJA, Gentier RJG, Hobo B, Hermes D, Steinbusch HWM, Van Leeuwen FW, Fischer DF. Mutant ubiquitin decreases amyloid β plaque formation in a transgenic mouse model of Alzheimer's disease. Neurochem Int 2012; 61:739-48. [PMID: 22797007 DOI: 10.1016/j.neuint.2012.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/02/2012] [Accepted: 07/04/2012] [Indexed: 12/12/2022]
Abstract
The mutant ubiquitin UBB(+1) is a substrate as well as an inhibitor of the ubiquitin-proteasome system (UPS) and accumulates in the neuropathological hallmarks of Alzheimer's disease (AD). A role for the UPS has been suggested in the generation of amyloid β (Aβ) plaques in AD. To investigate the effect of UBB(+1) expression on amyloid pathology in vivo, we crossed UBB(+1) transgenic mice with a transgenic line expressing AD-associated mutant amyloid precursor protein (APPSwe) and mutant presenilin 1 (PS1dE9), resulting in APPPS1/UBB(+1) triple transgenic mice. In these mice, we determined the Aβ levels at 3, 6, 9 and 11 months of age. Surprisingly, we found a significant decrease in Aβ deposition in amyloid plaques and levels of soluble Aβ(42) in APPPS1/UBB(+1) transgenic mice compared to APPPS1 mice at 6 months of age, without alterations in UBB(+1) protein levels or proteasomal chymotrypsin activity. These lowering effects of UBB(+1) on Aβ deposition were transient, as this relative decrease in plaque load was not significant in APPPS1/UBB(+1) mice at 9 and 11 months of age. We also show that APPPS1/UBB(+1) mice exhibit astrogliosis, indicating that they may not be improved functionally compared to APPPS1 mice despite the Aβ reduction. The molecular mechanism underlying this decrease in Aβ deposition in APPPS1/UBB(+1) mice is more complex than previously assumed because UBB(+1) is also ubiquitinated at K63 opening the possibility of additional effects of UBB(+1) (e.g. kinase activation).
Collapse
Affiliation(s)
- Paula van Tijn
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Chadwick L, Gentle L, Strachan J, Layfield R. Review: unchained maladie - a reassessment of the role of Ubb(+1) -capped polyubiquitin chains in Alzheimer's disease. Neuropathol Appl Neurobiol 2012; 38:118-31. [PMID: 22082077 DOI: 10.1111/j.1365-2990.2011.01236.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular misreading allows the formation of mutant proteins in the absence of gene mutations. A mechanism has been proposed by which a frameshift mutant of the ubiquitin protein, Ubb(+1) , which accumulates in an age-dependent manner as a result of molecular misreading, contributes to neuropathology in Alzheimer's disease (Lam et al. 2000). Specifically, in the Ubb(+1) -mediated proteasome inhibition hypothesis Ubb(+1) 'caps' unanchored (that is, nonsubstrate linked) polyubiquitin chains, which then act as dominant inhibitors of the 26S proteasome. A review of subsequent literature indicates that this original hypothesis is broadly supported, and offers new insights into the mechanisms accounting for the age-dependent accumulation of Ubb(+1) , and how Ubb(+1) -mediated proteasome inhibition may contribute to Alzheimer's disease. Further, recent studies have highlighted a physiological role for free endogenous unanchored polyubiquitin chains in the direct activation of certain protein kinases. This raises the possibility that Ubb(+1) -capped unanchored polyubiquitin chains could also exert harmful effects through the aberrant activation of tau or other ubiquitin-dependent kinases, neuronal NF-κB activity or NF-κB-mediated neuroinflammatory processes.
Collapse
Affiliation(s)
- L Chadwick
- School of Biomedical Sciences, University of Nottingham, UK
| | | | | | | |
Collapse
|