1
|
Gu W, Chang R, Xu Q, Zhao W, Chen G. Floor eggs in goose breeders: patterns, genetic and environmental influences, and physiological indexes. Poult Sci 2024; 103:103450. [PMID: 38277891 PMCID: PMC10840337 DOI: 10.1016/j.psj.2024.103450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/28/2024] Open
Abstract
A floor egg is an egg that is not laid in the nest, which is a prevalent issue in many fowl breeder farms, lowering egg collection efficiency, hatching performance, and economic benefits. Although the pattern and influencing factors of floor laying have been extensively reported in chickens and ducks, it is not clear in geese. Herein, the Yangzhou goose breeders were selected, and the time and location preferences, genetic and environmental influences, and physiological indexes in floor laying were investigated. The results revealed distinct time and location preferences existed. More floor eggs were laid from 2:00 to 5:00 and 8:00 to 12:00 am, with a concentration observed in the feed trough. Moreover, the proportion of floor eggs was higher at the early stage than at other stages of the laying cycle, and the fast-growing line laid more floor eggs than dual-purpose and high-yielding lines (P < 0.05). In addition to genetic factors, the effect of environmental influences on floor eggs was also surveyed. More floor eggs were observed in the family housing system than in large-group and small-population housing systems, and geese who reared in north-facing houses laid more floor eggs than in south-facing houses (P < 0.05). Physiological indexes were compared between floor-laying and nest-laying geese. Significantly decreased serum progesterone and prolactin levels were detected, alongside down-regulated gene expressions of progesterone receptor in ovaries, oxytocin receptor in both pituitary and ovaries, corticotropin-releasing hormone in ovaries, and dopamine receptor D2 in hypothalamus and ovaries in floor-laying geese compared to nest-laying geese (P < 0.05). In addition, a practical and inexpensive approach of adding a single decoy egg to the nest box effectively reduced the proportion of floor eggs (P < 0.05). Taken together, these data provide scientific information for patterns, genetic and environmental influences, and physiological indexes of floor eggs, thereby contributing to effective control of floor laying in goose breeders' production.
Collapse
Affiliation(s)
- Wang Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Rongxin Chang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Qi Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China; Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Poultry), Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P.R. China
| | - Wenming Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China.
| | - Guohong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China; Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Poultry), Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P.R. China
| |
Collapse
|
2
|
González-Mariscal G, Hoy S, Hoffman KL. Rabbit Maternal Behavior: A Perspective from Behavioral Neuroendocrinology, Animal Production, and Psychobiology. ADVANCES IN NEUROBIOLOGY 2022; 27:131-176. [PMID: 36169815 DOI: 10.1007/978-3-030-97762-7_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rabbit maternal behavior (MB) impacts meat and fur production on the farm, survival of the species in the wild, and pet welfare. Specific characteristics of rabbit MB (i.e., three-step nest building process; single, brief, daily nursing bout) have been used as models for exploring particular themes in neuroscience, like obsessive-compulsive actions, circadian rhythms, and cognition. Particular hormonal combinations regulate nest building by acting on brain regions controlling MB in other mammals. Nonhormonal factors like type of lodging and the doe's social rank influence nursing and milk production. The concurrency of pregnancy and lactation, the display of nonselective nursing, and the rapid growth of altricial young - despite a minimal effort of maternal care - have prompted the study of mother-young affiliation, neurodevelopment, and weaning. Neurohormonal mechanisms, common to other mammals, plus additional strategies (perhaps unique to rabbits) allow the efficient, adaptive display of MB in multiple settings.
Collapse
Affiliation(s)
- Gabriela González-Mariscal
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico.
| | - Steffen Hoy
- Department of Animal Breeding and Genetics Justus Liebig University Giessen, Giessen, Germany
| | - Kurt L Hoffman
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| |
Collapse
|
3
|
Braconnier M, González-Mariscal G, Wauters J, Gebhardt-Henrich SG. Levels of testosterone, progesterone and oestradiol in pregnant-lactating does in relation to aggression during group housing. WORLD RABBIT SCIENCE 2021. [DOI: 10.4995/wrs.2021.14897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The neuroendocrine regulation of rabbit maternal behaviour has been explored in detail. However, little is yet known about the hormonal regulation of aggression in concurrently pregnant-lactating does, a reproductive condition that prevails during group housing of rabbits on farms. Therefore, in this study we determined the relation between a) the levels of progesterone, testosterone, and oestradiol during lactation; b) the anogenital distance at artificial insemination; and c) the timing of grouping with the intensity of agonistic behaviour, published previously. We performed four consecutive trials, where three groups of eight does each were artificially inseminated on day 10 postpartum (pp) and grouped on either day 12, 18 or 22 pp. Using Dipetalogaster maxima, a reduviid blood-sucking bug, we collected blood samples during the pregnant-lactating phase (days 13, 15, 17, 19, 21, 23 pp) on one or two randomly chosen does per treatment group. Testosterone levels varied little across the pregnant-lactating phase, agreeing with results from pregnant-only rabbits, while progesterone levels increased from day 3 (=13 dpp) to day 7 (=17 dpp) and remained unchanged until day 13 (=23 dpp) of pregnancy. All oestradiol concentrations fell below the limit of detection. Overall, all concentrations were slightly lower in comparison to rabbit studies with pregnantonly does. The agonistic behaviour was not related to the respective hormonal concentrations at grouping. In conclusion, the time point of grouping does after artificial insemination (AI) in the semi-group housing system only had a weak influence on aggression and the hormonal profile did not indicate an optimum time for grouping.
Collapse
|
4
|
Psychological and neurobiological mechanisms underlying the decline of maternal behavior. Neurosci Biobehav Rev 2020; 116:164-181. [PMID: 32569707 DOI: 10.1016/j.neubiorev.2020.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 11/23/2022]
Abstract
The maternal behavior decline is important for the normal development of the young and the wellbeing of the mother. This paper reviews limited research on the factors and mechanisms involved in the rat maternal behavior decline and proposes a multi-level model. Framed in the parent-offspring conflict theory (an ultimate cause) and the approach-withdrawal model (a proximate cause), the maternal behavior decline is viewed as an active and effortful process, reflecting the dynamic interplay between the mother and her offspring. It is instigated by the waning of maternal motivation, coupled with the increased maternal aversion by the mother in responding to the changing sensory and motoric patterns of pup stimuli. In the decline phase, the neural circuit that mediates the inhibitory ("withdrawal") responses starts to increase activity and gain control of behavioral outputs, while the excitatory ("approach") maternal neural circuit is being inhibited or reorganized. Various hormones and certain monoamines may play a critical role in tipping the balance between the excitatory and inhibitory neural circuits to synchronize the mother-infant interaction.
Collapse
|
5
|
González-Mariscal G, Caba M, Martínez-Gómez M, Bautista A, Hudson R. Mothers and offspring: The rabbit as a model system in the study of mammalian maternal behavior and sibling interactions. Horm Behav 2016; 77:30-41. [PMID: 26062431 DOI: 10.1016/j.yhbeh.2015.05.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/18/2015] [Accepted: 05/18/2015] [Indexed: 01/06/2023]
Abstract
UNLABELLED This article is part of a Special Issue "Parental Care". Jay Rosenblatt effectively promoted research on rabbit maternal behavior through his interaction with colleagues in Mexico. Here we review the activities of pregnant and lactating rabbits (Oryctolagus cuniculus), their neuro-hormonal regulation, and the synchronization of behavior between mother and kits. Changing concentrations of estradiol, progesterone, and prolactin throughout gestation regulate nest-building (digging, straw-carrying, fur-pulling) and prime the mother's brain to respond to the newborn. Nursing is the only mother-young contact throughout lactation. It happens once/day, inside the nest, with ca. 24h periodicity, and lasts around 3min. Periodicity and duration of nursing depend on a threshold of suckling as procedures reducing the amount of nipple stimulation interfere with the temporal aspects of nursing, though not with the doe's maternal motivation. Synchronization between mother and kits, critical for nursing, relies on: a) the production of pheromonal cues which guide the young to the mother's nipples for suckling; b) an endogenous circadian rhythm of anticipatory activity in the young, present since birth. Milk intake entrains the kits' locomotor behavior, corticosterone secretion, and the activity of several brain structures. Sibling interactions within the huddle, largely determined by body mass at birth, are important for: a) maintaining body temperature; b) ensuring normal neuromotor and social development. Suckling maintains nursing behavior past the period of abundant milk production but abrupt and efficient weaning occurs in concurrently pregnant-lactating does by unknown factors. CONCLUSION female rabbits have evolved a reproductive strategy largely dissociating maternal care from maternal presence, whose multifactorial regulation warrants future investigations.
Collapse
Affiliation(s)
- G González-Mariscal
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Mexico.
| | - M Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - M Martínez-Gómez
- Centro Tlaxcala Biología de la Conducta, Universidad Autónoma de Tlaxcala, Mexico; Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - A Bautista
- Centro Tlaxcala Biología de la Conducta, Universidad Autónoma de Tlaxcala, Mexico
| | - R Hudson
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|