1
|
Fattore L, Amchova P, Fadda P, Ruda-Kucerova J. Olfactory Bulbectomy Model of Depression Lowers Responding for Food in Male and Female Rats: The Modulating Role of Caloric Restriction and Response Requirement. Biomedicines 2023; 11:2481. [PMID: 37760922 PMCID: PMC10525806 DOI: 10.3390/biomedicines11092481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Depression is a psychiatric disorder characterized by a marked decrease in reward sensitivity. By using the olfactory bulbectomy (OBX) model of depression, it was shown that OBX rats display enhanced drug-taking and seeking behaviors in a self-administration paradigm than sham-operated (SHAM) controls, and sex is an important regulating factor. To reveal potential strain effects, we compared the operant behavior of male and female Sprague-Dawley and Wistar OBX and SHAM rats trained to self-administer palatable food pellets. Results showed that Sprague-Dawley OBX rats of both sexes exhibited lower operant responding rates and food intake than SHAM controls. Food restriction increased responding in both OBX and SHAM groups. Female rats responded more than males, but the OBX lesion abolished this effect. In Wistar rats, bulbectomy lowered food self-administration only during the last training days. Food self-administration was not significantly affected in Wistar rats by sex. In summary, this study showed that bulbectomy significantly reduces operant responding and food intake in male and female Sprague-Dawley rats while inducing a mild reducing effect only in the Wistar strain. Strain-dependent effects were also observed in the modulating role of sex and food restriction on operant responding and palatable food intake.
Collapse
Affiliation(s)
- Liana Fattore
- CNR Institute of Neuroscience-Cagliari, National Research Council, 09042 Monserrato, CA, Italy; (L.F.); (P.F.)
| | - Petra Amchova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic;
| | - Paola Fadda
- CNR Institute of Neuroscience-Cagliari, National Research Council, 09042 Monserrato, CA, Italy; (L.F.); (P.F.)
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, CA, Italy
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic;
| |
Collapse
|
2
|
Otari KV, Patil RJ, Upasani CD. Improvement of cognitive dysfunction by a novel phosphodiesterase type 5 inhibitor, Tadalafil. Fundam Clin Pharmacol 2023; 37:263-274. [PMID: 36203370 DOI: 10.1111/fcp.12840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/05/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
There is substantial evidence for the modulatory role of cyclic guanosine monophosphate (cGMP)-specific phosphodiesterases (PDEs) in memory and synaptic plasticity, and an increase in intracellular cGMP facilitates these processes. The present study was aimed at the neuropharmacological investigations of tadalafil (TAD 5, 10, and 20 mg/kg, p.o.) and further involvement of nitric oxide (NO)-cGMP in its effects. The effects of tadalafil and its combination with NG -nitro-L-arginine methyl ester (L-NAME) were investigated in scopolamine- and diabetes-induced cognitive dysfunction using elevated plus maze (EPM) and object recognition (ORT) tests. The results of EPM revealed that the scopolamine- and diabetes-induced learning and memory deficit was dose dependently attenuated after administration of TAD (TAD 10 and 20 mg/kg, p.o.) in both paradigms studied. Administration of L-NAME (20 mg/kg) aggravated scopolamine- and diabetes-induced learning and memory deficit. Co-administration of L-NAME (20 mg/kg) after TAD (20 mg/kg) produced significant increase in cognitive performance as compared to scopolamine- and diabetic- control group. This showed that L-NAME (20 mg/kg) aggravated scopolamine- and diabetes-induced learning and memory deficit was significantly reversed by TAD (20 mg/kg). The results of the present study revealed that tadalafil by inhibiting PDE5 possibly elevated the cGMP level that through a diversity of its substrates produced neuropharmacological effects in cognitive dysfunction.
Collapse
Affiliation(s)
- Kishor Vasant Otari
- Department of Pharmacology, Navsahyadri Institute of Pharmacy, Naigaon (Nasrapur), Tal. Bhor, Dist. Pune, India
| | - Rupesh J Patil
- Navsahyadri Group of Institutes, Naigaon (Nasrapur), Tal. Bhor, Dist. Pune, India
| | | |
Collapse
|
3
|
Coppola DM, Parrish Waters R. The olfactory bulbectomy disease model: A Re-evaluation. Physiol Behav 2021; 240:113548. [PMID: 34371022 DOI: 10.1016/j.physbeh.2021.113548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/23/2021] [Accepted: 08/02/2021] [Indexed: 11/15/2022]
Abstract
The olfactory bulbectomized rodent has long been one of the preferred animal models of depression and certain other neuropsychiatric diseases. In fact, it is considered unparalleled, by some, in the search for antidepressant medication and the literature generated about the model is prodigious. We have revisited the "syndrome" of behavioral sequela following bulbectomy choosing ecologically valid tests likely to be underpinned with evolutionarily preserved neural circuits. Our test battery included measurements of activity, intermale aggression, pleasure seeking, stress/fear and non-spatial memory. The emphasis was on the timetable of syndrome emergence, since this has been understudied and bears on the widely held belief that non-olfactory effects dominate. Our results largely agree with previous reports describing the behavioral syndrome in that we document bulbectomized mice as hyperactive, non-aggressive and fearless. However, we did not find deficits in memory as have frequently been reported in previous studies. Notably, our results revealed that some syndrome behaviors-including the hallmark of hyperactivity-appear immediately or soon after surgery. This rapid appearance casts doubt on the widely held view that compensatory reorganization of limbic and prefrontal cortical areas following bulbectomy underlies the syndrome. Rather, hyperactivity, non-aggressiveness, reduced fear and diminished sucrose preference in the olfactory bulbectomized mouse find ready explanations in the loss of smell that is the immediate and irreversible outcome of bulbectomy. Finally, after a critical consideration of the literature and our results, we conclude that the olfactory bulbectomy model lacks the validity and simplicity previously credited to it. Indeed, we deem this lesion unsuitable as a model of most neuropsychiatric diseases since its effects are at least as complex and misunderstood as the disorders it is purported to model.
Collapse
Affiliation(s)
- David M Coppola
- Department of Biology, Randolph Macon College, Ashland, VA, United States.
| | - R Parrish Waters
- Department of Biology, University of Mary Washington, Fredericksburg, VA, United States
| |
Collapse
|
4
|
Jin Y, Cui R, Zhao L, Fan J, Li B. Mechanisms of Panax ginseng action as an antidepressant. Cell Prolif 2019; 52:e12696. [PMID: 31599060 PMCID: PMC6869450 DOI: 10.1111/cpr.12696] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/27/2019] [Accepted: 08/02/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Panax ginseng, a well-known traditional Chinese medicine with multiple pharmacological activities, plays a crucial role in modulating mood disorders. Several recent studies have identified an underlying role of Panax ginseng in the prevention and treatment of depression. However, the cellular and molecular mechanisms remain unclear. MATERIALS AND METHODS In this review, we summarized the recent progress of antidepressant effects and underlying mechanisms of Panax ginseng and its representative herbal formulae. RESULTS The molecular and cellular mechanisms of Panax ginseng and its herbal formulae include modulating monoamine neurotransmitter system, upregulating the expression of neurotrophic factors, regulating the function of HPA axis, and anti-inflammatory action. CONCLUSIONS Therefore, this review may provide theoretical bases and clinical applications for the treatment of depression by Panax ginseng and its representative herbal formulae.
Collapse
Affiliation(s)
- Yang Jin
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Lihong Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Jie Fan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Kucera J, Ruda-Kucerova J, Zlamal F, Kuruczova D, Babinska Z, Tomandl J, Tomandlova M, Bienertova-Vasku J. Oral administration of BDNF and/or GDNF normalizes serum BDNF level in the olfactory bulbectomized rats: A proof of concept study. Pharmacol Rep 2019; 71:669-675. [DOI: 10.1016/j.pharep.2019.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/08/2019] [Accepted: 03/11/2019] [Indexed: 12/13/2022]
|
6
|
Thakare VN, Patil RR, Suralkar AA, Dhakane VD, Patel BM. Protocatechuic acid attenuate depressive-like behavior in olfactory bulbectomized rat model: behavioral and neurobiochemical investigations. Metab Brain Dis 2019; 34:775-787. [PMID: 30848471 DOI: 10.1007/s11011-019-00401-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 02/25/2019] [Indexed: 12/13/2022]
Abstract
The main objective of the present study is to investigate potential effects of PCA in OBX induced depressive-like behavior in rat model. PCA was administered at a dose of 100 mg/kg and 200 mg/kg, by per oral in OBX and sham operated rats. Behavioral (ambulatory and rearing activity and immobility time), neurochemical [serotonin (5-HT), dopamine (DA), norepinephrine (NE) and brain derived neurotrophic factor (BDNF) expression], biochemical (MDA formation, IL-6, TNF-α and antioxidants) changes in hippocampus and cerebral cortex along with serum corticosterone were investigated. Experimental findings reveals that OBX subjected rats showed alteration in behaviors like, increase in immobility time, ambulatory and rearing behaviors significantly, reduced BDNF level, 5-HT, DA,NE and antioxidant parameters along with increased serum corticosterone, MDA formation, IL-6, and TNF-α in hippocampus and cerebral cortex compared to sham operated rats. Administration of PCA significantly attenuated behavioral and neurobiochemical alterations, thus, its antidepressant-like activity is largely mediated through modulation of neurotransmitter, endocrine and immunologic systems, mainly by improvements of BDNF, 5-HT, DA, NE, reduced MDA, IL-6, and TNF-α in hippocampus and cerebral cortex.
Collapse
Affiliation(s)
- Vishnu N Thakare
- Department of Pharmacology, Sinhgad Institute of Pharmaceutical Sciences, Lonavala, Maharashtra, 410401, India
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India
| | - Rajesh R Patil
- Department of Pharmacology, Sinhgad Institute of Pharmaceutical Sciences, Lonavala, Maharashtra, 410401, India
| | - Anupama A Suralkar
- Department of Pharmacology, Smt. Kashibai Navale College of Pharmacy, Kondhawa, Pune, Maharashtra, 411048, India
| | - Valmik D Dhakane
- Research and Development, Astec Life Sciences, Mumbai, Maharashtra, India
| | - Bhoomika M Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India.
| |
Collapse
|
7
|
Thakare VN, Aswar MK, Kulkarni YP, Patil RR, Patel BM. Silymarin ameliorates experimentally induced depressive like behavior in rats: Involvement of hippocampal BDNF signaling, inflammatory cytokines and oxidative stress response. Physiol Behav 2017; 179:401-410. [PMID: 28711395 DOI: 10.1016/j.physbeh.2017.07.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 05/05/2017] [Accepted: 07/06/2017] [Indexed: 12/12/2022]
Abstract
Silymarin is a polyphenolic flavonoid of Silybum marianum, exhibited neuroprotection and antidepressant like activity in acute restraint stressed mice. The main objective of the present study is to investigate possible antidepressant like activity of silymarin in experimentally induced depressive behavior in rats. The depressive behaviors were induced in rats by olfactory bulbectomized (OBX) technique. Wistar rats were administered with silymarin at a dose of 100mg/kg and 200mg/kg, by per oral in OBX and sham operated rats. Behavioral (ambulatory and rearing activity and immobility time), neurochemical [serotonin (5-HT), dopamine (DA), norepinephrine (NE) and brain derived neurotrophic factor (BDNF) level], biochemical (MDA formation, IL-6, TNF-α and antioxidants) changes in hippocampus and cerebral cortex along with serum corticosterone were investigated. Rats subjected to OBX elicited significant increase in immobility time, ambulatory and rearing behaviors, reduced BDNF level, 5-HT, DA, NE and antioxidant parameters along with increased serum corticosterone, MDA formation, IL-6, and TNF-α in hippocampus and cerebral cortex compared to sham operated rats. Administration of with silymarin significantly attenuated immobility time, ambulatory and rearing behaviors, serum corticosterone and improved BDNF expression, 5-HT, DA, NE and antioxidant paradigms in cerebral cortex as well as hippocampus. In addition, silymarin attenuated IL-6, and TNF-α significantly in hippocampus and cerebral cortex in OBX rats. Thus, silymarin exhibits anti-depressant-like activity in OBX rats due to alterations in several neurotransmitters, endocrine and immunologic systems, including BDNF, 5-HT, DA, NE, MDA formation, IL-6, and TNF-α in hippocampus and cerebral cortex as well as serum corticosterone.
Collapse
Affiliation(s)
- Vishnu N Thakare
- Department of Pharmacology, Sinhgad Institute of Pharmaceutical Sciences, Lonavala 410401, Maharashtra, India; Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382 481, Gujarat, India
| | - Manoj K Aswar
- Department of Pharmacology, Sinhgad Institute of Pharmacy, Nerhe, Pune, Maharashtra, India
| | - Yogesh P Kulkarni
- Department of Pharmacology, Sinhgad Institute of Pharmaceutical Sciences, Lonavala 410401, Maharashtra, India
| | - Rajesh R Patil
- Department of Pharmacology, Sinhgad Institute of Pharmaceutical Sciences, Lonavala 410401, Maharashtra, India
| | - Bhoomika M Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382 481, Gujarat, India.
| |
Collapse
|
8
|
Shin MS, Park SS, Lee JM, Kim TW, Kim YP. Treadmill exercise improves depression-like symptoms by enhancing serotonergic function through upregulation of 5-HT 1A expression in the olfactory bulbectomized rats. J Exerc Rehabil 2017; 13:36-42. [PMID: 28349031 PMCID: PMC5331997 DOI: 10.12965/jer.1734918.459] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/01/2017] [Indexed: 11/24/2022] Open
Abstract
The olfactory bulbectomy (OBX) is a well-known method inducing animal model of depression. Depression is associated with dysfunction of serotonin (5-hydroxytryptamine, 5-HT) system. In the present study, antidepressive effect of treadmill exercise was investigated using olfactory bulbectomized rats. After bilateral bulbectomy, the rats in the treadmill exercise groups were subjected to run on a treadmill for 30 min once a day during 28 days. Increased immobility time and decreased fast time in the forced swim test were observed in the olfactory bulbectomized rats. Sucrose preference in the sucrose preference test was decreased and activity in the open field test was also increased in the olfactory bulbectomized rats. Treadmill exercise decreased immobility time and activity and increased fast time and sucrose preference in the olfactory bulbectomized rats. Expressions of 5-HT and tryptophan hydroxylase (TPH) in the dorsal raphe of rats were suppressed by OBX and treadmill exercise increased the expressions of 5-HT and TPH in the olfactory bulbectomized rats. Serotonin receptor type 1A (5-HT1A) expression in the dorsal raphe was reduced by OBX and treadmill exercise increased 5-HT1A expression in the olfactory bulbectomized rats. In the present study, treadmill exercise ameliorated OBX-induced depressive symptoms. The antidepressive effect of treadmill exercise might be ascribed to the enhancement of serotonergic function through upregulation of 5-HT1A expression in the dorsal raphe.
Collapse
Affiliation(s)
- Mal-Soon Shin
- School of Global Sport Studies, Korea University, Sejong, Korea
| | - Sang-Seo Park
- School of Global Sport Studies, Korea University, Sejong, Korea
| | - Jae-Min Lee
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Tae-Woon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Young-Pyo Kim
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| |
Collapse
|
9
|
Otari KV, Upasani CD. Antidepressant-like effect of tadalafil, a phosphodiesterase type 5 inhibitor, in the forced swim test: Dose and duration of treatment dependence. NEUROCHEM J+ 2015. [DOI: 10.1134/s1819712415040121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|