1
|
The Study of a Novel Paeoniflorin-Converting Enzyme from Cunninghamella blakesleeana. Molecules 2023; 28:molecules28031289. [PMID: 36770956 PMCID: PMC9921665 DOI: 10.3390/molecules28031289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Paeoniflorin is a glycoside compound found in Paeonia lactiflora Pall that is used in traditional herbal medicine and shows various protective effects on the cardio-cerebral vascular system. It has been reported that the pharmacological effects of paeoniflorin might be generated by its metabolites. However, the bioavailability of paeoniflorin by oral administration is low, which greatly limits its clinical application. In this paper, a paeoniflorin-converting enzyme gene (G6046, GenBank accession numbers: OP856858) from Cunninghamella blakesleeana (AS 3.970) was identified by comparative analysis between MS analysis and transcriptomics. The expression, purification, enzyme activity, and structure of the conversion products produced by this paeoniflorin-converting enzyme were studied. The optimal conditions for the enzymatic activity were found to be pH 9, 45 °C, resulting in a specific enzyme activity of 14.56 U/mg. The products were separated and purified by high-performance counter-current chromatography (HPCCC). Two main components were isolated and identified, 2-amino-2-p-hydroxymethyl-methyl alcohol-benzoate (tirs-benzoate) and 1-benzoyloxy-2,3-propanediol (1-benzoyloxypropane-2,3-diol), via UPLC-Q-TOF-MS and NMR. Additionally, paeoniflorin demonstrated the ability to metabolize into benzoic acid via G6046 enzyme, which might exert antidepressant effects through the blood-brain barrier into the brain.
Collapse
|
2
|
Jalsrai A, Biswas A, Suslov NI, Martin JV. Neuropsychopharmacological profile of Astragalus membranaceous var. mongholicus. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2019. [DOI: 10.1016/j.jtcms.2019.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
3
|
Xu Y, Zhu X, Wang H, Sun S, Yue X, Tian J. In Vitro and In Vivo Characterization of PCC0104005, a Novel Modulator of Serotonin-Dopamine Activity, as an Atypical Antipsychotic Drug. Sci Rep 2018; 8:6892. [PMID: 29720711 PMCID: PMC5931996 DOI: 10.1038/s41598-018-25036-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/12/2018] [Indexed: 11/23/2022] Open
Abstract
PCC0104005 is a novel drug candidate for treating schizophrenia that displays high affinity for serotonin, dopamine, and noradrenaline receptors, including partial agonism at dopamine D2, D3, D4, serotonin 5-HT1A, and 5-HT2A receptors and antagonism at 5-HT2B, 5-HT6, and 5-HT7 receptors. PCC0104005 blocks MK-801-induced hyperactivity in rats, consistent with the reduction in dopamine D2 receptor stimulation and increased dopamine release in the medial prefrontal cortex. PCC0104005 inhibits 5-HTP-induced head twitches in rats, due to its moderate affinity for human 5-HT2A receptors (Ki = 5.1 nM). PCC0104005 significantly reduced the escape latency of rats and improved the MK-801-induced memory impairment. In the object recognition experiment, PCC0104005 significantly improved the recognition disorder induced by MK-801. PCC0104005 did not significantly increase the plasma prolactin level, which is thought to be related to the preferential affinity of PCC0104005 for dopamine D2 receptors compared with 5-HT1A receptors, as well as the relative antagonistic activity toward the D2 receptor. Due to its 5-HT1A agonism, PCC0104005 does not produce catalepsy in mice, a behaviour predictive of the occurrence of extra-pyramidal syndrome (EPS) in humans. PCC0104005 has unique affinities for dopamine receptors and serotonin receptors, which may lead to clinical advantages, as well as fewer adverse reactions.
Collapse
Affiliation(s)
- Yanan Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, P.R. China
| | - Xiaoyin Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, P.R. China.
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, P.R. China
| | - Shanyue Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, P.R. China
| | - Xin Yue
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, P.R. China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, P.R. China.
| |
Collapse
|
4
|
Subbaiah MAM. Triple Reuptake Inhibitors as Potential Therapeutics for Depression and Other Disorders: Design Paradigm and Developmental Challenges. J Med Chem 2017; 61:2133-2165. [DOI: 10.1021/acs.jmedchem.6b01827] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Murugaiah A. M. Subbaiah
- Department of Medicinal Chemistry, Biocon Bristol-Myers Squibb R&D Centre, Biocon Park, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| |
Collapse
|
5
|
Multi-target therapeutics for neuropsychiatric and neurodegenerative disorders. Drug Discov Today 2016; 21:1886-1914. [PMID: 27506871 DOI: 10.1016/j.drudis.2016.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/20/2016] [Accepted: 08/01/2016] [Indexed: 12/30/2022]
Abstract
Historically, neuropsychiatric and neurodegenerative disease treatments focused on the 'magic bullet' concept; however multi-targeted strategies are increasingly attractive gauging from the escalating research in this area. Because these diseases are typically co-morbid, multi-targeted drugs capable of interacting with multiple targets will expand treatment to the co-morbid disease condition. Despite their theoretical efficacy, there are significant impediments to clinical success (e.g., difficulty titrating individual aspects of the drug and inconclusive pathophysiological mechanisms). The new and revised diagnostic frameworks along with studies detailing the endophenotypic characteristics of the diseases promise to provide the foundation for the circumvention of these impediments. This review serves to evaluate the various marketed and nonmarketed multi-targeted drugs with particular emphasis on their design strategy.
Collapse
|