1
|
de Ávila C, Gugula A, Trenk A, Intorcia AJ, Suazo C, Nolz J, Plamondon J, Khatri D, Tallant L, Caron A, Blasiak A, Serrano GE, Beach TG, Gundlach AL, Mastroeni DF. Unveiling a novel memory center in human brain: neurochemical identification of the nucleus incertus, a key pontine locus implicated in stress and neuropathology. Biol Res 2024; 57:46. [PMID: 39014514 PMCID: PMC11253401 DOI: 10.1186/s40659-024-00523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 06/07/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND The nucleus incertus (NI) was originally described by Streeter in 1903, as a midline region in the floor of the fourth ventricle of the human brain with an 'unknown' function. More than a century later, the neuroanatomy of the NI has been described in lower vertebrates, but not in humans. Therefore, we examined the neurochemical anatomy of the human NI using markers, including the neuropeptide, relaxin-3 (RLN3), and began to explore the distribution of the NI-related RLN3 innervation of the hippocampus. METHODS Histochemical staining of serial, coronal sections of control human postmortem pons was conducted to reveal the presence of the NI by detection of immunoreactivity (IR) for the neuronal markers, microtubule-associated protein-2 (MAP2), glutamic acid dehydrogenase (GAD)-65/67 and corticotrophin-releasing hormone receptor 1 (CRHR1), and RLN3, which is highly expressed in NI neurons in diverse species. RLN3 and vesicular GABA transporter 1 (vGAT1) mRNA were detected by fluorescent in situ hybridization. Pons sections containing the NI from an AD case were immunostained for phosphorylated-tau, to explore potential relevance to neurodegenerative diseases. Lastly, sections of the human hippocampus were stained to detect RLN3-IR and somatostatin (SST)-IR. RESULTS In the dorsal, anterior-medial region of the human pons, neurons containing RLN3- and MAP2-IR, and RLN3/vGAT1 mRNA-positive neurons were observed in an anatomical pattern consistent with that of the NI in other species. GAD65/67- and CRHR1-immunopositive neurons were also detected within this area. Furthermore, RLN3- and AT8-IR were co-localized within NI neurons of an AD subject. Lastly, RLN3-IR was detected in neurons within the CA1, CA2, CA3 and DG areas of the hippocampus, in the absence of RLN3 mRNA. In the DG, RLN3- and SST-IR were co-localized in a small population of neurons. CONCLUSIONS Aspects of the anatomy of the human NI are shared across species, including a population of stress-responsive, RLN3-expressing neurons and a RLN3 innervation of the hippocampus. Accumulation of phosphorylated-tau in the NI suggests its possible involvement in AD pathology. Further characterization of the neurochemistry of the human NI will increase our understanding of its functional role in health and disease.
Collapse
Affiliation(s)
- Camila de Ávila
- Arizona State University-Banner Neurodegenerative Disease Research Center, Tempe, AZ, USA.
| | - Anna Gugula
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Aleksandra Trenk
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Anthony J Intorcia
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Crystal Suazo
- Arizona State University-Banner Neurodegenerative Disease Research Center, Tempe, AZ, USA
| | - Jennifer Nolz
- Arizona State University-Banner Neurodegenerative Disease Research Center, Tempe, AZ, USA
| | | | - Divyanshi Khatri
- Arizona State University-Banner Neurodegenerative Disease Research Center, Tempe, AZ, USA
| | - Lauren Tallant
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ, USA
| | - Alexandre Caron
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
| | - Anna Blasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Geidy E Serrano
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Thomas G Beach
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Andrew L Gundlach
- Florey Department of Neuroscience and Mental Health and Department of Anatomy and Physiology and The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Diego F Mastroeni
- Arizona State University-Banner Neurodegenerative Disease Research Center, Tempe, AZ, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| |
Collapse
|
2
|
Szlaga A, Sambak P, Gugula A, Trenk A, Gundlach AL, Blasiak A. Catecholaminergic innervation and D2-like dopamine receptor-mediated modulation of brainstem nucleus incertus neurons in the rat. Neuropharmacology 2022; 218:109216. [PMID: 35973599 DOI: 10.1016/j.neuropharm.2022.109216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022]
Abstract
Nucleus incertus (NI) is a brainstem structure involved in the control of arousal, stress responses and locomotor activity. It was reported recently that NI neurons express the dopamine type 2 (D2) receptor that belongs to the D2-like receptor (D2R) family, and that D2R activation in the NI decreased locomotor activity. In this study, using multiplex in situ hybridization, we observed that GABAergic and glutamatergic NI neurons express D2 receptor mRNA, and that D2 receptor mRNA-positive neurons belong to partially overlapping relaxin-3- and cholecystokinin-positive NI neuronal populations. Our immunohistochemical and viral-based retrograde tract-tracing studies revealed a dense innervation of the NI area by fibers containing the catecholaminergic biosynthesis enzymes, tyrosine hydroxylase (TH) and dopamine β-hydroxylase (DBH), and indicated the major sources of the catecholaminergic innervation of the NI as the Darkschewitsch, raphe and hypothalamic A13 nuclei. Furthermore, using whole-cell patch clamp recordings, we demonstrated that D2R activation by quinpirole produced excitatory and inhibitory influences on neuronal activity in the NI, and that both effects were postsynaptic in nature. Moreover, the observed effects were cell-type specific, as type I NI neurons were either excited or inhibited, whereas type II NI neurons were mainly excited by D2R activation. Our results reveal that rat NI receives a strong catecholaminergic innervation and suggest that catecholamines acting within the NI are involved in the control of diverse processes, including locomotor activity, social interaction and nociceptive signaling. Our data also strengthen the hypothesis that the NI acts as a hub integrating arousal-related neuronal information.
Collapse
Affiliation(s)
- Agata Szlaga
- Department of Neurophysiology and Chronobiology, Jagiellonian University, Krakow, Poland
| | - Patryk Sambak
- Department of Neurophysiology and Chronobiology, Jagiellonian University, Krakow, Poland
| | - Anna Gugula
- Department of Neurophysiology and Chronobiology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Trenk
- Department of Neurophysiology and Chronobiology, Jagiellonian University, Krakow, Poland
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Florey Department of Neuroscience and Mental Health and Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Anna Blasiak
- Department of Neurophysiology and Chronobiology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
3
|
García-Díaz C, Gil-Miravet I, Albert-Gasco H, Mañas-Ojeda A, Ros-Bernal F, Castillo-Gómez E, Gundlach AL, Olucha-Bordonau FE. Relaxin-3 Innervation From the Nucleus Incertus to the Parahippocampal Cortex of the Rat. Front Neuroanat 2021; 15:674649. [PMID: 34239421 PMCID: PMC8258164 DOI: 10.3389/fnana.2021.674649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Spatial learning and memory processes depend on anatomical and functional interactions between the hippocampus and the entorhinal cortex. A key neurophysiological component of these processes is hippocampal theta rhythm, which can be driven from subcortical areas including the pontine nucleus incertus (NI). The NI contains the largest population of neurons that produce and presumably release the neuropeptide, relaxin-3, which acts via the G i/o -protein-coupled receptor, relaxin-family peptide 3 receptor (RXFP3). NI activation induces general arousal including hippocampal theta, and inactivation induces impairment of spatial memory acquisition or retrieval. The primary aim of this study was to map the NI/relaxin-3 innervation of the parahippocampal cortex (PHC), including the medial and lateral entorhinal cortex, endopiriform cortex, perirhinal, postrhinal, and ectorhinal cortex, the amygdalohippocampal transition area and posteromedial cortical amygdala. Retrograde tracer injections were placed in different parts of the medial and lateral entorhinal cortex, which produced prominent retrograde labeling in the ipsilateral NI and some labeling in the contralateral NI. Anterograde tracer injections into the NI and immunostaining for relaxin-3 produced fiber labeling in deep layers of all parahippocampal areas and some dispersed fibers in superficial layers. Double-labeling studies revealed that both hippocampal projecting and calcium-binding protein-positive (presumed GABAergic) neurons received a relaxin-3 NI innervation. Some of these fibers also displayed synaptophysin (Syn) immunoreactivity, consistent with the presence of the peptide at synapses; and relaxin-3-positive fibers containing Syn bouton-like staining were frequently observed in contact with hippocampal-projecting or calcium-binding protein-positive neuronal somata and more distal elements. Finally, in situ hybridization studies revealed that entorhinal neurons in the superficial layers, and to a lesser extent in deep layers, contain RXFP3 mRNA. Together, our data support functional actions of the NI/relaxin-3-parahippocampal innervation on processes related to memory, spatial navigation and contextual analysis.
Collapse
Affiliation(s)
- Cristina García-Díaz
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castellón de la Plana, Spain
| | - Isis Gil-Miravet
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castellón de la Plana, Spain
| | - Hector Albert-Gasco
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castellón de la Plana, Spain.,UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Aroa Mañas-Ojeda
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castellón de la Plana, Spain
| | - Francisco Ros-Bernal
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castellón de la Plana, Spain
| | - Esther Castillo-Gómez
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castellón de la Plana, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Francisco E Olucha-Bordonau
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castellón de la Plana, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| |
Collapse
|
4
|
Lu L, Ren Y, Yu T, Liu Z, Wang S, Tan L, Zeng J, Feng Q, Lin R, Liu Y, Guo Q, Luo M. Control of locomotor speed, arousal, and hippocampal theta rhythms by the nucleus incertus. Nat Commun 2020; 11:262. [PMID: 31937768 PMCID: PMC6959274 DOI: 10.1038/s41467-019-14116-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 12/13/2019] [Indexed: 01/06/2023] Open
Abstract
Navigation requires not only the execution of locomotor programs but also high arousal and real-time retrieval of spatial memory that is often associated with hippocampal theta oscillations. However, the neural circuits for coordinately controlling these important processes remain to be fully dissected. Here we show that the activity of the neuromedin B (NMB) neurons in the nucleus incertus (NI) is tightly correlated with mouse locomotor speed, arousal level, and hippocampal theta power. These processes are reversibly suppressed by optogenetic inhibition and rapidly promoted by optogenetic stimulation of NI NMB neurons. These neurons form reciprocal connections with several subcortical areas associated with arousal, theta oscillation, and premotor processing. Their projections to multiple downstream stations regulate locomotion and hippocampal theta, with the projection to the medial septum being particularly important for promoting arousal. Therefore, NI NMB neurons functionally impact the neural circuit for navigation control according to particular brains states. In addition to activation of locomotor circuits, navigation also requires regulation of arousal and spatial memory processes. Here the authors identify neuromedin B neurons in the nucleus incertus and their subcortical projections in controlling these various processes during navigation.
Collapse
Affiliation(s)
- Lihui Lu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China.,National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Yuqi Ren
- School of Life Sciences, Peking University, Beijing, 100871, China.,Peking University-Tsinghua University-NIBS Joint Graduate Program, Beijing, 102206, China
| | - Tao Yu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.,National Institute of Biological Sciences (NIBS), Beijing, 102206, China.,Peking University-Tsinghua University-NIBS Joint Graduate Program, Beijing, 102206, China
| | - Zhixiang Liu
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Sice Wang
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China.,School of Life Sciences, Peking University, Beijing, 100871, China.,Peking University-Tsinghua University-NIBS Joint Graduate Program, Beijing, 102206, China
| | - Lubin Tan
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Jiawei Zeng
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Qiru Feng
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.,National Institute of Biological Sciences (NIBS), Beijing, 102206, China.,Peking University-Tsinghua University-NIBS Joint Graduate Program, Beijing, 102206, China
| | - Rui Lin
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Yang Liu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China.,National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Qingchun Guo
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Minmin Luo
- School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China. .,National Institute of Biological Sciences (NIBS), Beijing, 102206, China. .,Peking University-Tsinghua University-NIBS Joint Graduate Program, Beijing, 102206, China. .,Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
5
|
Wykes AD, Ma S, Bathgate RAD, Gundlach AL. Targeted viral vector transduction of relaxin-3 neurons in the rat nucleus incertus using a novel cell-type specific promoter. IBRO Rep 2019; 8:1-10. [PMID: 31890981 PMCID: PMC6928288 DOI: 10.1016/j.ibror.2019.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022] Open
Abstract
Extensive, ascending relaxin-3-containing neural networks are present throughout the rat forebrain. Relaxin-3 signalling modulates complex behaviours and cognitive processes including feeding, anxiety and memory. We tested a 1736 bp promoter sequence for specific transgene expression in relaxin-3 neurons of rat nucleus incertus (NI). This promoter restricted m-Cherry marker expression to NI relaxin-3 neurons with 98% specificity. This targeted transgene delivery offers a versatile method for ongoing preclinical studies of relaxin-3 circuitry.
Modern neuroscience utilizes transgenic techniques extensively to study the activity and function of brain neural networks. A key feature of this approach is its compatibility with molecular methods for selective transgene expression in neuronal circuits of interest. Until now, such targeted transgenic approaches have not been applied to the extensive circuitry involving the neuropeptide, relaxin-3. Pharmacological and gene knock-out studies have revealed relaxin-3 signalling modulates interrelated behaviours and cognitive processes, including stress and anxiety, food and alcohol consumption, and spatial and social memory, highlighting the potential of this system as a therapeutic target. In the present study, we aimed to identify a promoter sequence capable of regulating cell-type specific transgene expression from an adeno-associated viral (AAV) vector in relaxin-3 neurons of the rat nucleus incertus (NI). In parallel to relaxin-3 promoter sequences, we also tested an AAV vector containing promoter elements for the tropomyosin receptor kinase A (TrkA) gene, as TrkA is co-expressed with relaxin-3 in rat NI neurons. Stereotaxic injection of an mCherry-expressing AAV vector revealed widespread non-specific TrkA promoter (880 bp) activity in and adjacent to the NI at 8 weeks post-treatment. In contrast, mCherry expression was successfully restricted to relaxin-3 NI neurons with 98% specificity using a 1736 bp relaxin-3 promoter. In addition to detailed anatomical mapping of NI relaxin-3 networks, illustrated here in association with GABAergic medial septum neurons, this method for targeted transgene delivery offers a versatile tool for ongoing preclinical studies of relaxin-3 circuitry.
Collapse
Affiliation(s)
- Alexander D Wykes
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Victoria, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Marwari S, Poulsen A, Shih N, Lakshminarayanan R, Kini RM, Johannes CW, Dymock BW, Dawe GS. Intranasal administration of a stapled relaxin-3 mimetic has anxiolytic- and antidepressant-like activity in rats. Br J Pharmacol 2019; 176:3899-3923. [PMID: 31220339 PMCID: PMC6811745 DOI: 10.1111/bph.14774] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022] Open
Abstract
Background and Purpose Depression and anxiety are common causes of disability, and innovative tools and potential pharmacological targets are actively sought for prevention and treatment. Therapeutic strategies targeting the relaxin‐3 peptide or its primary endogenous receptor, RXFP3, for the treatment of major depression and anxiety disorders have been limited by a lack of compounds with drug‐like properties. We proposed that a hydrocarbon‐stapled mimetic of relaxin‐3, when administered intranasally, might be uniquely applicable to the treatment of these disorders. Experimental Approach We designed a series of hydrocarbon‐stapled relaxin‐3 mimetics and identified the most potent compound using in vitro receptor binding and activation assays. Further, we assessed the effect of intranasal delivery of relaxin‐3 and the lead stapled mimetic in rat models of anxiety and depression. Key Results We developed an i,i+7 stapled relaxin‐3 mimetic that manifested a stabilized α‐helical structure, proteolytic resistance, and confirmed agonist activity in receptor binding and activation in vitro assays. The stapled peptide agonist enhanced food intake after intracerebral infusion in rats, confirming in vivo activity. We showed that intranasal delivery of the lead i,i+7 stapled peptide or relaxin‐3 had orexigenic effects in rats, indicating a potential clinically translatable route of delivery. Further, intranasal administration of the lead i,i+7 stapled peptide exerted anxiolytic and antidepressant‐like activity in anxiety‐ and depression‐related behaviour paradigms. Conclusions and Implications Our preclinical findings demonstrate that targeting the relaxin‐3/RXFP3 receptor system via intranasal delivery of an i,i+7 stapled relaxin‐3 mimetic may represent an effective treatment approach for depression, anxiety, and related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Subhi Marwari
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Anders Poulsen
- Department of Medicinal Chemistry, Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Norrapat Shih
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Rajamani Lakshminarayanan
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - R Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Charles William Johannes
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Brian William Dymock
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Gavin Stewart Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
7
|
Leng H, Zhang X, Wang Q, Luan X, Sun X, Guo F, Gao S, Liu X, Xu L. Regulation of stress-induced gastric ulcers via central oxytocin and a potential mechanism through the VTA-NAc dopamine pathway. Neurogastroenterol Motil 2019; 31:e13655. [PMID: 31172654 DOI: 10.1111/nmo.13655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/29/2019] [Accepted: 05/24/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Oxytocin (OT) plays an important role in regulating gastric function. How OT regulates stress-induced gastric ulcers is not understood. We investigated OT's protective role in stress-induced gastric ulcers, with a focus on OT's interaction with the ventral tegmental area (VTA) to nucleus accumbens (NAc) dopamine pathway. METHODS Drugs administration into the rats brain nuclei by brain stereotaxic apparatus, to examine related changes in gastric ulcer index, pH of gastric content, and mucus secretion, and to determine complex interactions between OT and DA systems in the regulation of stress and gastric functions. KEY RESULTS Neurons in the VTA were co-immunoreactive for the OT receptor (OTR) and DA. In a rat model of stress-induced ulcer, water-immersion restricted stress, direct administration of OT into the VTA significantly reduced gastric ulcer index and increased the pH of gastric content and mucus secretion. OT's effects were eliminated by pretreatment with the OTR antagonist atosiban in the VTA and weakened with pretreatment of the DA D2 receptor (DA D2R) antagonist raclopride in the NAc. In OTR gene knockout (Oxtr-/- ) mice, OT's protective effect was lost. OT administered to the VTA of dorsal motor nucleus of the vagus (DMV)-lesioned rats had minimal protective effects on gastric mucosa. CONCLUSIONS AND INFERENCES This study provides important data necessary for a deeper understanding of the complex interactions between OT and DA systems in the regulation of stress and gastric functions. It provides relevant mechanistic clues into OT's role as a protective factor against stress-induced changes to gastric function.
Collapse
Affiliation(s)
- Hui Leng
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, China
| | - Xiaoqian Zhang
- Doctoral School of Biomedical Sciences, Leuven, Belgium.,Family Medicine Department, Qingdao United Family Hospital, Qingdao, China
| | - Qian Wang
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, China
| | - Xiao Luan
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, China
| | - Xiangrong Sun
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, China
| | - Feifei Guo
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, China
| | - Shengli Gao
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, China
| | - Xuehuan Liu
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, China
| | - Luo Xu
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Sabetghadam A, Grabowiecka-Nowak A, Kania A, Gugula A, Blasiak E, Blasiak T, Ma S, Gundlach AL, Blasiak A. Melanin-concentrating hormone and orexin systems in rat nucleus incertus: Dual innervation, bidirectional effects on neuron activity, and differential influences on arousal and feeding. Neuropharmacology 2018; 139:238-256. [DOI: 10.1016/j.neuropharm.2018.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/20/2018] [Accepted: 07/04/2018] [Indexed: 12/24/2022]
|
9
|
Ma S, Hangya B, Leonard CS, Wisden W, Gundlach AL. Dual-transmitter systems regulating arousal, attention, learning and memory. Neurosci Biobehav Rev 2018; 85:21-33. [PMID: 28757457 PMCID: PMC5747977 DOI: 10.1016/j.neubiorev.2017.07.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/16/2017] [Indexed: 01/12/2023]
Abstract
An array of neuromodulators, including monoamines and neuropeptides, regulate most behavioural and physiological traits. In the past decade, dramatic progress has been made in mapping neuromodulatory circuits, in analysing circuit dynamics, and interrogating circuit function using pharmacogenetic, optogenetic and imaging methods This review will focus on several distinct neural networks (acetylcholine/GABA/glutamate; histamine/GABA; orexin/glutamate; and relaxin-3/GABA) that originate from neural hubs that regulate wakefulness and related attentional and cognitive processes, and highlight approaches that have identified dual transmitter roles in these behavioural functions. Modulation of these different neural networks might be effective treatments of diseases related to arousal/sleep dysfunction and of cognitive dysfunction in psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| | - Balázs Hangya
- 'Lendület' Laboratory of Systems Neuroscience, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - William Wisden
- Department of Life Sciences, Imperial College London, London, UK
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
10
|
Wiet S. Origins of Addiction Predictably Embedded in Childhood Trauma: A Neurobiological Review. Soa Chongsonyon Chongsin Uihak 2017. [DOI: 10.5765/jkacap.2017.28.1.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Susie Wiet
- General, Child and Adolescent Psychiatrist, Addiction Medicine, Holistic Treament for Psychiatry Trauma Addiction, University of Utah-Adjunct Volunteer Faculty, Salt Lake City, UT, USA
| |
Collapse
|
11
|
Ma S, Smith CM, Blasiak A, Gundlach AL. Distribution, physiology and pharmacology of relaxin-3/RXFP3 systems in brain. Br J Pharmacol 2016; 174:1034-1048. [PMID: 27774604 DOI: 10.1111/bph.13659] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 01/29/2023] Open
Abstract
Relaxin-3 is a member of a superfamily of structurally-related peptides that includes relaxin and insulin-like peptide hormones. Soon after the discovery of the relaxin-3 gene, relaxin-3 was identified as an abundant neuropeptide in brain with a distinctive topographical distribution within a small number of GABAergic neuron populations that is well conserved across species. Relaxin-3 is thought to exert its biological actions through a single class-A GPCR - relaxin-family peptide receptor 3 (RXFP3). Class-A comprises GPCRs for relaxin-3 and insulin-like peptide-5 and other peptides such as orexin and the monoamine transmitters. The RXFP3 receptor is selectively activated by relaxin-3, whereas insulin-like peptide-5 is the cognate ligand for the related RXFP4 receptor. Anatomical and pharmacological evidence obtained over the last decade supports a function of relaxin-3/RXFP3 systems in modulating responses to stress, anxiety-related and motivated behaviours, circadian rhythms, and learning and memory. Electrophysiological studies have identified the ability of RXFP3 agonists to directly hyperpolarise thalamic neurons in vitro, but there are no reports of direct cell signalling effects in vivo. This article provides an overview of earlier studies and highlights more recent research that implicates relaxin-3/RXFP3 neural network signalling in the integration of arousal, motivation, emotion and related cognition, and that has begun to identify the associated neural substrates and mechanisms. Future research directions to better elucidate the connectivity and function of different relaxin-3 neuron populations and their RXFP3-positive target neurons in major experimental species and humans are also identified. LINKED ARTICLES This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.
Collapse
Affiliation(s)
- Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Craig M Smith
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Anna Blasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Kumar JR, Rajkumar R, Jayakody T, Marwari S, Hong JM, Ma S, Gundlach AL, Lai MKP, Dawe GS. Relaxin' the brain: a case for targeting the nucleus incertus network and relaxin-3/RXFP3 system in neuropsychiatric disorders. Br J Pharmacol 2016; 174:1061-1076. [PMID: 27597467 PMCID: PMC5406295 DOI: 10.1111/bph.13564] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 07/15/2016] [Indexed: 12/14/2022] Open
Abstract
Relaxin‐3 has been proposed to modulate emotional–behavioural functions such as arousal and behavioural activation, appetite regulation, stress responses, anxiety, memory, sleep and circadian rhythm. The nucleus incertus (NI), in the midline tegmentum close to the fourth ventricle, projects widely throughout the brain and is the primary site of relaxin‐3 neurons. Over recent years, a number of preclinical studies have explored the function of the NI and relaxin‐3 signalling, including reports of mRNA or peptide expression changes in the NI in response to behavioural or pharmacological manipulations, effects of lesions or electrical or pharmacological manipulations of the NI, effects of central microinfusions of relaxin‐3 or related agonist or antagonist ligands on physiology and behaviour, and the impact of relaxin‐3 gene deletion or knockdown. Although these individual studies reveal facets of the likely functional relevance of the NI and relaxin‐3 systems for human physiology and behaviour, the differences observed in responses between species (e.g. rat vs. mouse), the clearly identified heterogeneity of NI neurons and procedural differences between laboratories are some of the factors that have prevented a precise understanding of their function. This review aims to draw attention to the current preclinical evidence available that suggests the relevance of the NI/relaxin‐3 system to the pathology and/or symptoms of certain neuropsychiatric disorders and to provide cognizant directions for future research to effectively and efficiently uncover its therapeutic potential. Linked Articles This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc
Collapse
Affiliation(s)
- Jigna Rajesh Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), Singapore.,NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore
| | - Ramamoorthy Rajkumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), Singapore
| | - Tharindunee Jayakody
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), Singapore
| | - Subhi Marwari
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), Singapore
| | - Jia Mei Hong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), Singapore.,NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore
| | - Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gavin S Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), Singapore.,NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore
| |
Collapse
|
13
|
Kumar JR, Rajkumar R, Lee LC, Dawe GS. Nucleus incertus contributes to an anxiogenic effect of buspirone in rats: Involvement of 5-HT1A receptors. Neuropharmacology 2016; 110:1-14. [PMID: 27436722 DOI: 10.1016/j.neuropharm.2016.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/12/2016] [Accepted: 07/16/2016] [Indexed: 12/16/2022]
Abstract
The nucleus incertus (NI), a brainstem structure with diverse anatomical connections, is implicated in anxiety, arousal, hippocampal theta modulation, and stress responses. It expresses a variety of neurotransmitters, neuropeptides and receptors such as 5-HT1A, D2 and CRF1 receptors. We hypothesized that the NI may play a role in the neuropharmacology of buspirone, a clinical anxiolytic which is a 5-HT1A receptor partial agonist and a D2 receptor antagonist. Several preclinical studies have reported a biphasic anxiety-modulating effect of buspirone but the precise mechanism and structures underlying this effect are not well-understood. The present study implicates the NI in the anxiogenic effects of a high dose of buspirone. Systemic buspirone (3 mg/kg) induced anxiogenic effects in elevated plus maze, light-dark box and open field exploration paradigms in rats and strongly activated the NI, as reflected by c-Fos expression. This anxiogenic effect was reproduced by direct infusion of buspirone (5 μg) into the NI, but was abolished in NI-CRF-saporin-lesioned rats, indicating that the NI is present in neural circuits driving anxiogenic behaviour. Pharmacological studies with NAD 299, a selective 5-HT1A antagonist, or quinpirole, a D2/D3 agonist, were conducted to examine the receptor system in the NI involved in this anxiogenic effect. Opposing the 5-HT1A agonism but not the D2 antagonism of buspirone in the NI attenuated the anxiogenic effects of systemic buspirone. In conclusion, 5-HT1A receptors in the NI contribute to the anxiogenic effect of an acute high dose of buspirone in rats and may be functionally relevant to physiological anxiety.
Collapse
Affiliation(s)
- Jigna Rajesh Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 117600, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore; Singapore Institute for Neurotechnology (SINAPSE), 117456, Singapore; NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, 117456, Singapore
| | - Ramamoorthy Rajkumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 117600, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore; Singapore Institute for Neurotechnology (SINAPSE), 117456, Singapore
| | - Liying Corinne Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 117600, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore; Singapore Institute for Neurotechnology (SINAPSE), 117456, Singapore
| | - Gavin S Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 117600, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore; Singapore Institute for Neurotechnology (SINAPSE), 117456, Singapore; NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, 117456, Singapore.
| |
Collapse
|
14
|
Farooq U, Kumar JR, Rajkumar R, Dawe GS. Electrical microstimulation of the nucleus incertus induces forward locomotion and rotation in rats. Physiol Behav 2016; 160:50-8. [PMID: 27049117 DOI: 10.1016/j.physbeh.2016.03.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/01/2016] [Accepted: 03/29/2016] [Indexed: 12/27/2022]
Abstract
Locomotion is essential for goal-oriented behavior. Theta frequency oscillations in the hippocampus have been associated with behavioral activation and initiation of movement. Recently, the nucleus incertus, a brainstem nucleus with widespread cortical and subcortical projections, has been reported to modulate the septo-hippocampal axis triggering theta activity in the hippocampus. This suggests that activation of the nucleus incertus would induce movement. In this study, we investigated the effects of electrical microstimulation of the nucleus incertus on locomotion in conscious rats. Rats chronically implanted with microelectrodes targeting the nucleus incertus were electrically stimulated while their behavior was tracked. High frequency electrical microstimulation of the nucleus incertus was sufficient to induce forward locomotion and rotation. The latencies of evoked locomotion were consistent with a role of the nucleus incertus in modulating premotor areas, possibly the septo-hippocampal axis. Electrical microstimulation of the nucleus incertus increased velocity, mobility and rotations during stimulation and post-stimulation. These results suggest that the nucleus incertus plays a role in behavioral activation and locomotion.
Collapse
Affiliation(s)
- Usman Farooq
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, 117600, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore; Singapore Institute for Neurotechnology (SINAPSE), 117456, Singapore.
| | - Jigna Rajesh Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, 117600, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore; Singapore Institute for Neurotechnology (SINAPSE), 117456, Singapore
| | - Ramamoorthy Rajkumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, 117600, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore; Singapore Institute for Neurotechnology (SINAPSE), 117456, Singapore
| | - Gavin S Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, 117600, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore; Singapore Institute for Neurotechnology (SINAPSE), 117456, Singapore.
| |
Collapse
|