1
|
Zare Z, Shafia S, Mohammadi M. Thyroid hormone deficiency affects anxiety-related behaviors and expression of hippocampal glutamate transporters in male congenital hypothyroid rat offspring. Horm Behav 2024; 162:105548. [PMID: 38636205 DOI: 10.1016/j.yhbeh.2024.105548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Thyroid hormones are crucial for brain development and their deficiency during fetal and postnatal periods can lead to mood and cognitive disorders. We aimed to examine the consequences of thyroid hormone deficiency on anxiety-related behaviors and protein expression of hippocampal glutamate transporters in congenital hypothyroid male offspring rats. Possible beneficial effects of treadmill exercise have also been examined. Congenital hypothyroidism was induced by adding propylthiouracil (PTU) to drinking water of pregnant Wistar rats from gestational day 6 until the end of the weaning period (postnatal day 28). Next, following 4 weeks of treadmill exercise (5 days per week), anxiety-related behaviors were examined using elevated plus maze (EPM) and light/dark box tests. Thereafter, protein expression of astrocytic (GLAST and GLT-1) and neuronal (EAAC1) glutamate transporters were measured in the hippocampus by immunoblotting. Hypothyroid rats showed decreased anxiety-like behavior, as measured by longer time spent in the open arms of the EPM and in the light area of the light/dark box, compared to control rats. Hypothyroid rats had significantly higher GLAST and GLT-1 and lower EAAC1 protein levels in the hippocampus than did the euthyroid rats. Following exercise, anxiety levels decreased in the euthyroid group while protein expression of EAAC1 increased and returned to normal levels in the hypothyroid group. Our findings indicate that thyroid hormone deficiency was associated with alterations in protein expression of glutamate transporters in the hippocampus. Up-regulation of hippocampal GLAST and GLT-1 could be at least one of the mechanisms associated with the anxiolytic effects of congenital hypothyroidism.
Collapse
Affiliation(s)
- Zohreh Zare
- Department of Anatomical Sciences, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sakineh Shafia
- Department of Physiology, Immunogenetic Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Moslem Mohammadi
- Department of Physiology, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
2
|
Akkaya EC, Koc B, Dalkiran B, Calis G, Dayi A, Kayatekin BM. High-intensity interval training ameliorates spatial and recognition memory impairments, reduces hippocampal TNF-alpha levels, and amyloid-beta peptide load in male hypothyroid rats. Behav Brain Res 2024; 458:114752. [PMID: 37944564 DOI: 10.1016/j.bbr.2023.114752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Thyroid hormones are critical for healthy brain functions at every stage of life. Hypothyroidism can cause severe cognitive dysfunction in patients who do not receive adequate treatment. Although thyroid hormone replacement alleviates cognitive decline in hypothyroid patients, there are studies showing that there is no complete recovery. The aim of this study was to investigate the effects of high-intensity interval training (HIIT) in hypothyroid rats on spatial and recognition memory, neuroinflammation, amyloid-beta load and compare these effects with T3 replacement. Hypothyroidism was induced and maintained by administration of 6-n-propyl-2-thiouracil (PTU) with their drinking water to 6-weeks-old male Sprague-Dawley rats for 7 weeks. The animals exercised in the treadmill according to the HIIT protocol for four weeks. T3 was injected intraperitoneally daily during the last two weeks of the study. All animals performed in the elevated plus maze test, Morris water maze test, novel object recognition test, and rotarod motor performance test in the last week of the study and then the animals were sacrificed. Amyloid beta (1-42) and TNFα levels were measured in the prefrontal cortex and hippocampus by ELISA. Anxiety-like behaviors did not significantly differ between groups. T3 replacement with or without HIIT increased motor performance in PTU-treated rats. HIIT and/or T3 replacement increased the exercise performance. HIIT and/or T3 replacement alleviated spatial and recognition memory impairments and normalized TNFα and amyloid-beta levels in the hippocampus in hypothyroid rats. In summary, regular physical exercise may have potential benefits in preserving cognitive functions in hypothyroid patients.
Collapse
Affiliation(s)
- Erhan Caner Akkaya
- Dokuz Eylul University, Department of Physiology, School of Medicine, Izmir, Turkey.
| | - Basar Koc
- Dokuz Eylul University, Department of Physiology, School of Medicine, Izmir, Turkey
| | - Bahar Dalkiran
- Dokuz Eylul University, Department of Physiology, Institute of Health Sciences, Izmir, Turkey
| | - Guner Calis
- Dokuz Eylul University, Department of Physiology, School of Medicine, Izmir, Turkey
| | - Ayfer Dayi
- Dokuz Eylul University, Department of Physiology, School of Medicine, Izmir, Turkey
| | | |
Collapse
|
3
|
Sabatino L, Lapi D, Del Seppia C. Factors and Mechanisms of Thyroid Hormone Activity in the Brain: Possible Role in Recovery and Protection. Biomolecules 2024; 14:198. [PMID: 38397435 PMCID: PMC10886502 DOI: 10.3390/biom14020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Thyroid hormones (THs) are essential in normal brain development, and cognitive and emotional functions. THs act through a cascade of events including uptake by the target cells by specific cell membrane transporters, activation or inactivation by deiodinase enzymes, and interaction with nuclear thyroid hormone receptors. Several thyroid responsive genes have been described in the developing and in the adult brain and many studies have demonstrated a systemic or local reduction in TH availability in neurologic disease and after brain injury. In this review, the main factors and mechanisms associated with the THs in the normal and damaged brain will be evaluated in different regions and cellular contexts. Furthermore, the most common animal models used to study the role of THs in brain damage and cognitive impairment will be described and the use of THs as a potential recovery strategy from neuropathological conditions will be evaluated. Finally, particular attention will be given to the link observed between TH alterations and increased risk of Alzheimer's Disease (AD), the most prevalent neurodegenerative and dementing condition worldwide.
Collapse
Affiliation(s)
- Laura Sabatino
- Institute of Clinical Physiology, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy;
| | - Dominga Lapi
- Department of Biology, University of Pisa, 56127 Pisa, Italy;
| | - Cristina Del Seppia
- Institute of Clinical Physiology, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy;
| |
Collapse
|
4
|
Cardoso-Vera JD, Gómez-Oliván LM, Islas-Flores H, García-Medina S, Elizalde-Velázquez GA, Orozco-Hernández JM, Heredia-García G, Rosales-Pérez KE, Galar-Martínez M. Multi-biomarker approach to evaluate the neurotoxic effects of environmentally relevant concentrations of phenytoin on adult zebrafish Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155359. [PMID: 35460791 DOI: 10.1016/j.scitotenv.2022.155359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Several studies have reported the presence of phenytoin (PHE) in wastewater treatment plant effluents, hospital effluents, surface water, and even drinking water. However, published studies on the toxic effects of PHE at environmentally relevant concentrations in aquatic organisms are scarce. The present study aimed to determine the effect of three environmentally relevant concentrations of PHE (25, 282, and 1500 ng L-1) on behavioral parameters using the novel tank test. Moreover, we also aimed to determine whether or not these concentrations of PHE may impair acetylcholinesterase (AChE) activity and oxidative status in the brain of Danio rerio adults. Behavioral responses suggested an anxiolytic effect in PHE-exposed organisms, mainly observed in organisms exposed to 1500 ng L-1, with a significant decrease in fish mobility and a significant increase in activity at the top of the tank. Besides the behavioral impairment, PHE-exposed fish also showed a significant increase in the levels of lipid peroxidation, hydroperoxides, and protein carbonyl content compared to the control group. Moreover, a significant increase in brain AChE levels was observed in fish exposed to 282 and 1500 ng L-1. The results obtained in the present study show that PHE triggers a harmful response in the brain of fish, which in turn generates fish have an anxiety-like behavior.
Collapse
Affiliation(s)
- Jesús Daniel Cardoso-Vera
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Gerardo Heredia-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Karina Elisa Rosales-Pérez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| |
Collapse
|
5
|
Yonekawa MKA, Penteado BDB, Dal'Ongaro Rodrigues A, Lourenço EMG, Barbosa EG, das Neves SC, de Oliveira RJ, Marques MR, Silva DB, de Lima DP, Beatriz A, Oses JP, Dos S Jaques JA, Santos EDAD. l-Hypaphorine and d-hypaphorine: Specific antiacetylcholinesterase activity in rat brain tissue. Bioorg Med Chem Lett 2021; 47:128206. [PMID: 34146704 DOI: 10.1016/j.bmcl.2021.128206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/07/2021] [Accepted: 06/13/2021] [Indexed: 11/20/2022]
Abstract
Acetylcholinesterase (AChEis) inhibitors are used to treat neurodegenerative diseases like Alzheimer's disease (AD). l-Hypaphorine (l-HYP) is a natural indole alkaloid that has been shown to have effects on the central nervous system (CNS). The goal of this research was to synthesize l-HYP and d-HYP and test their anticholinesterasic properties in rat brain regions. l-HYP suppressed acetylcholinesterase (AChE) activity only in the cerebellum, whereas d-HYP inhibited AChE activity in all CNS regions studied. No cytotoxic effect on normal human cells (HaCaT) was observed in the case of l-HYP and d-HYP although an increase in cell proliferation. Molecular modeling studies revealed that d-HYP and l-HYP have significant differences in their binding mode positions and interact stereospecifically with AChE's amino acid residues.
Collapse
Affiliation(s)
- Murilo K A Yonekawa
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Bruna de B Penteado
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Amanda Dal'Ongaro Rodrigues
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Estela M G Lourenço
- Laboratório de Pesquisa 4, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Euzébio G Barbosa
- Departamento de Farmácia, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Silvia C das Neves
- Centro de Estudos e Células Tronco, Terapia Celular e Genética Toxicológica, Universidade Federal de Mato Grosso do Sul, NHU, Campo Grande, MS, Brazil
| | - Rodrigo J de Oliveira
- Centro de Estudos e Células Tronco, Terapia Celular e Genética Toxicológica, Universidade Federal de Mato Grosso do Sul, NHU, Campo Grande, MS, Brazil
| | - Maria R Marques
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Denise B Silva
- Laboratório de Produtos Naturais e Espectrometria de Massas, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal do Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Dênis P de Lima
- Laboratório de Pesquisa 4, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Adilson Beatriz
- Laboratório de Pesquisa 4, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Jean P Oses
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Jeandre A Dos S Jaques
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Edson Dos A Dos Santos
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil.
| |
Collapse
|
6
|
Bortolotto VC, Araujo SM, Pinheiro FC, Poetini MR, de Paula MT, Meichtry LB, de Almeida FP, Musachio EAS, Guerra GP, Prigol M. Modulation of glutamate levels and Na +,K +-ATPase activity contributes to the chrysin memory recovery in hypothyroidism mice. Physiol Behav 2020; 222:112892. [PMID: 32302609 DOI: 10.1016/j.physbeh.2020.112892] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/27/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022]
Abstract
Abnormalities in the thyroid hormones, like in hypothyroidism, are closely related to dementia and Alzheimer's disease demonstrating the main symptom of these disorders: memory deficit. In this study we evaluated the effect of chrysin on deficit spatial and aversive memories and the contribution of glutamatergic, cholinergic pathways and Na+, K+-ATPase activity on hippocampus and prefrontal cortex in hypothyroid adult female mice C57BL/6. Hypothyroidism was induced by the continuous exposure to 0.1% methimazole (MTZ) in drinking water for 31 days. The exposure to MTZ was associated to low plasma levels of thyroid hormones (TH) compared to the control group on the 32nd. Subsequently, euthyroid and MTZ-induced hypothyroid mice received (intragastrically) either vehicle or chrysin (20 mg/kg) once a day for 28 consecutive days. After treatments mice performed the following behavioral assessments: open-field test (OFT), morris water maze (MWM) and passive avoidance test. Additionally, plasma TH levels were measured again, as well as glutamate levels, Na+,K+-ATPase and acetylcholinesterase (AChE) activities were analyzed in the hippocampus and prefrontal cortex of mice. Mice with hypothyroidism showed a deficit of spatial and aversive memory and chrysin treatment reversed these deficits. It also reduced the levels of glutamate and decreased Na+,K+-ATPase activity in both cerebral structures in the hypothyroid mice compared with the euthyroid ones, with the exception of glutamate in the hippocampus, which was a partial reversal. AChE activity was not altered by treatments. Together, our results demonstrate that chrysin normalized hippocampal glutamate levels and Na+,K+-ATPase activity, which could be involved in the reversal of memory deficit.
Collapse
Affiliation(s)
- Vandreza Cardoso Bortolotto
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui 97650-000, RS, Brazil
| | - Stífani Machado Araujo
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui 97650-000, RS, Brazil
| | - Franciane Cabral Pinheiro
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui 97650-000, RS, Brazil
| | - Márcia Rósula Poetini
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui 97650-000, RS, Brazil
| | - Mariane Trindade de Paula
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui 97650-000, RS, Brazil
| | - Luana Barreto Meichtry
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui 97650-000, RS, Brazil
| | - Francielli Polet de Almeida
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui 97650-000, RS, Brazil
| | - Elize Aparecida Santos Musachio
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui 97650-000, RS, Brazil
| | - Gustavo Petri Guerra
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui 97650-000, RS, Brazil
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui 97650-000, RS, Brazil.
| |
Collapse
|
7
|
Effect of rutin on anxiety-like behavior and activity of acetylcholinesterase isoforms in specific brain regions of pentylenetetrazol-treated mice. Epilepsy Behav 2020; 102:106632. [PMID: 31747631 DOI: 10.1016/j.yebeh.2019.106632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 11/20/2022]
Abstract
The aim of the present study was to investigate the effect of rutin administration (100 mg/kg/day) to pentylenetetrazol (PTZ)-treated Balb-c mice (60 mg/kg/day), with respect to anxiety-like behavior using both open-field and elevated plus-maze (EPM) tests, and acetylcholinesterase (AChE) activity in salt-soluble (SS) fraction and detergent-soluble (DS) fraction of the cerebral cortex, hippocampus, striatum, midbrain, and diencephalon. Our results demonstrated that the administration of PTZ in 3 doses and the induction of seizures increased significantly anxiety behavior of mice and reduced significantly DS-AChE activity in all brain regions examined, while the reduction in the SS fraction was brain region-specific. Rutin administration to normal mice did not affect their behavior, while it induced a brain region-specific reduction in SS-AChE and a significant decrease in DS-AChE in all brain regions. We demonstrated for the first time that pretreatment of PTZ-mice with rutin (PTZ + Rutin group) prevented the manifestation of anxiety and induced interestingly a further significant reduction on the SS- and DS-AChE activities only in the cerebral cortex and striatum, in comparison with PTZ group. Our results show that rutin exhibits an important anxiolytic effect and an anticholinesterase activity in specific brain areas in the seizure model of PTZ.
Collapse
|
8
|
Kerp H, Engels K, Kramer F, Doycheva D, Sebastian Hönes G, Zwanziger D, Christian Moeller L, Heuer H, Führer D. Age effect on thyroid hormone brain response in male mice. Endocrine 2019; 66:596-606. [PMID: 31494803 DOI: 10.1007/s12020-019-02078-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/29/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE Thyroid hormones (TH) are important for brain development and central nervous system (CNS) function. Disturbances of thyroid function occur with higher prevalence in the ageing population and may negatively impact brain function. METHODS We investigated the age impact on behavior in young adult and old male mice (5 vs. 20 months) with chronic hypo- or hyper-thyroidism as well as in sham-treated controls. Expression of TH transporters and TH responsive genes was studied in CNS and pituitary by in situ hybridization and qRT-PCR, whereas TH serum concentrations were determined by immunoassay. RESULTS Serum TH levels were lower in old compared with young hyperthyroid mice, suggesting a milder hyperthyroid phenotype in the aged group. Likewise, elevated plus maze activity was reduced in old hyperthyroid animals. Under hypothyroid conditions, thyroxine serum concentrations did not differ in young and old mice. Both groups showed a comparable decline in activity and elevated anxiety levels. However, an attenuated increase in hypothalamic thyrotropin releasing hormone and pituitary thyroid stimulating hormone transcript expression was found in old hypothyroid mice. Brain expression of monocarboxylate transporter 8 and organic anion transporting polypeptide 1c1 was not affected by age or TH status. CONCLUSIONS In summary, ageing attenuates neurological phenotypes in hyperthyroid but not hypothyroid mice, which fits with age effects on TH serum levels in the animals. In contrast no changes in TH transporter expression were found in aged mouse brains with hyper- or hypo-thyroid state.
Collapse
Affiliation(s)
- Helena Kerp
- Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, 45122, Essen, Germany
| | - Kathrin Engels
- Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, 45122, Essen, Germany
| | - Frederike Kramer
- Leibniz Institute on Aging/Fritz Lipmann Institute (FLI), 07745, Jena, Germany
| | - Denica Doycheva
- Leibniz Institute on Aging/Fritz Lipmann Institute (FLI), 07745, Jena, Germany
| | - Georg Sebastian Hönes
- Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, 45122, Essen, Germany
| | - Denise Zwanziger
- Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, 45122, Essen, Germany
| | - Lars Christian Moeller
- Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, 45122, Essen, Germany
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, 45122, Essen, Germany
- Leibniz Institute on Aging/Fritz Lipmann Institute (FLI), 07745, Jena, Germany
| | - Dagmar Führer
- Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, 45122, Essen, Germany.
| |
Collapse
|
9
|
Raymaekers SR, Darras VM. Thyroid hormones and learning-associated neuroplasticity. Gen Comp Endocrinol 2017; 247:26-33. [PMID: 28390960 DOI: 10.1016/j.ygcen.2017.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 12/11/2022]
Abstract
Thyroid hormones (THs) are crucial for brain development and maturation in all vertebrates. Especially during pre- and perinatal development, disruption of TH signaling leads to a multitude of neurological deficits. Many animal models provided insight in the role of THs in brain development, but specific data on how they affect the brain's ability to learn and adapt depending on environmental stimuli are rather limited. In this review, we focus on a number of learning processes like spatial learning, fear conditioning, vocal learning and imprinting behavior and on how abnormal TH signaling during development shapes subsequent performance. It is clear from multiple studies that TH deprivation leads to defects in learning on all fronts, and interestingly, changes in local expression of the TH activator deiodinase type 2 seem to have an important role. Taking into account that THs are regulated in a very space-specific manner, there is thus increasing pressure to investigate more local TH regulators as potential factors involved in neuroplasticity. As these learning processes are also important for proper adult human functioning, further elucidating the role of THs in developmental neuroplasticity in various animal models is an important field for advancing both fundamental and applied knowledge on human brain function.
Collapse
Affiliation(s)
- Sander R Raymaekers
- Laboratory of Comparative Endocrinology, Biology Department, KU Leuven, Naamsestraat 61, 3000 Leuven, Belgium
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Biology Department, KU Leuven, Naamsestraat 61, 3000 Leuven, Belgium.
| |
Collapse
|