1
|
Passeri A, Municchi D, Cavalieri G, Babicola L, Ventura R, Di Segni M. Linking drug and food addiction: an overview of the shared neural circuits and behavioral phenotype. Front Behav Neurosci 2023; 17:1240748. [PMID: 37767338 PMCID: PMC10520727 DOI: 10.3389/fnbeh.2023.1240748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Despite a lack of agreement on its definition and inclusion as a specific diagnosable disturbance, the food addiction construct is supported by several neurobiological and behavioral clinical and preclinical findings. Recognizing food addiction is critical to understanding how and why it manifests. In this overview, we focused on those as follows: 1. the hyperpalatable food effects in food addiction development; 2. specific brain regions involved in both food and drug addiction; and 3. animal models highlighting commonalities between substance use disorders and food addiction. Although results collected through animal studies emerged from protocols differing in several ways, they clearly highlight commonalities in behavioral manifestations and neurobiological alterations between substance use disorders and food addiction characteristics. To develop improved food addiction models, this heterogeneity should be acknowledged and embraced so that research can systematically investigate the role of specific variables in the development of the different behavioral features of addiction-like behavior in preclinical models.
Collapse
Affiliation(s)
- Alice Passeri
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | - Diana Municchi
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | - Giulia Cavalieri
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | | | - Rossella Ventura
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
- IRCCS San Raffaele, Rome, Italy
| | - Matteo Di Segni
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| |
Collapse
|
2
|
Cuesta S, Burdisso P, Segev A, Kourrich S, Sperandio V. Gut colonization by Proteobacteria alters host metabolism and modulates cocaine neurobehavioral responses. Cell Host Microbe 2022; 30:1615-1629.e5. [PMID: 36323315 PMCID: PMC9669251 DOI: 10.1016/j.chom.2022.09.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/22/2022] [Accepted: 09/14/2022] [Indexed: 11/11/2022]
Abstract
Gut-microbiota membership is associated with diverse neuropsychological outcomes, including substance use disorders (SUDs). Here, we use mice colonized with Citrobacter rodentium or the human γ-Proteobacteria commensal Escherichia coli HS as a model to examine the mechanistic interactions between gut microbes and host responses to cocaine. We find that cocaine exposure increases intestinal norepinephrine levels that are sensed through the bacterial adrenergic receptor QseC to promote intestinal colonization of γ-Proteobacteria. Colonized mice show enhanced host cocaine-induced behaviors. The neuroactive metabolite glycine, a bacterial nitrogen source, is depleted in the gut and cerebrospinal fluid of colonized mice. Systemic glycine repletion reversed, and γ-Proteobacteria mutated for glycine uptake did not alter the host response to cocaine. γ-Proteobacteria modulated glycine levels are linked to cocaine-induced transcriptional plasticity in the nucleus accumbens through glutamatergic transmission. The mechanism outline here could potentially be exploited to modulate reward-related brain circuits that contribute to SUDs.
Collapse
Affiliation(s)
- Santiago Cuesta
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Paula Burdisso
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR) and Plataforma Argentina de Biología Estructural y Metabolómica (PLABEM), Rosario, Santa Fe, Argentina
| | - Amir Segev
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | - Saïd Kourrich
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Canada; The Center of Excellence in Research on Orphan Diseases - Foundation Courtois, Université du Québec à Montréal, Montréal, QC, Canada; Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| | - Vanessa Sperandio
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
3
|
Neurobiological Mechanisms Modulating Emotionality, Cognition and Reward-Related Behaviour in High-Fat Diet-Fed Rodents. Int J Mol Sci 2022; 23:ijms23147952. [PMID: 35887310 PMCID: PMC9317076 DOI: 10.3390/ijms23147952] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 01/27/2023] Open
Abstract
Affective and substance-use disorders are associated with overweight and obesity-related complications, which are often due to the overconsumption of palatable food. Both high-fat diets (HFDs) and psychostimulant drugs modulate the neuro-circuitry regulating emotional processing and metabolic functions. However, it is not known how they interact at the behavioural level, and whether they lead to overlapping changes in neurobiological endpoints. In this literature review, we describe the impact of HFDs on emotionality, cognition, and reward-related behaviour in rodents. We also outline the effects of HFD on brain metabolism and plasticity involving mitochondria. Moreover, the possible overlap of the neurobiological mechanisms produced by HFDs and psychostimulants is discussed. Our in-depth analysis of published results revealed that HFDs have a clear impact on behaviour and underlying brain processes, which are largely dependent on the developmental period. However, apart from the studies investigating maternal exposure to HFDs, most of the published results involve only male rodents. Future research should also examine the biological impact of HFDs in female rodents. Further knowledge about the molecular mechanisms linking stress and obesity is a crucial requirement of translational research and using rodent models can significantly advance the important search for risk-related biomarkers and the development of clinical intervention strategies.
Collapse
|
4
|
Espinosa-Velasco M, Reguilón MD, Bellot M, Nadal-Gratacós N, Berzosa X, Gómez-Canela C, Rodríguez-Arias M, Camarasa J, Escubedo E, Pubill D, López-Arnau R. Repeated administration of N-ethyl-pentedrone induces increased aggression and impairs social exploration after withdrawal in mice. Prog Neuropsychopharmacol Biol Psychiatry 2022; 117:110562. [PMID: 35500841 DOI: 10.1016/j.pnpbp.2022.110562] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023]
Abstract
N-ethyl-pentedrone (NEPD, 2-(ethylamino)-1-phenyl-1-pentanone) is one of the latest synthetic cathinone derivatives that emerged into the illicit drug market. This drug has psychostimulant properties and has been related with several intoxications and even fatalities. However, information about the consequences of its acute and repeated consumption is lacking. Thus, the aim of our study was to investigate the behavioral effects after both acute and repeated NEPD exposure as well as the neurochemical changes. Male OF1 mice were treated with an acute dose (1, 3 or 10 mg/kg, i.p.) or received repeated injections of these doses (twice/day, 5 days) of NEPD. Shortly after drug-exposure or during drug-withdrawal, anxiety-like behavior, aggressiveness, social interaction, depressive-like symptoms, body weight and temperature were assessed. Also, monoamine synthesis enzymes, levels of neurotransmitters and their precursors and main metabolites, as well as ΔFosB, were determined in striatum and prefrontal cortex from post-mortem tissue. Acute administration of NEPD induced anxiolytic effects and reduced social exploration whereas during withdrawal after repeated administration the anxiolytic effect had vanished, and the reduced social exploration was still present and accompanied with increased aggressive behavior. Moreover, NEPD (10 mg/kg) induced slight hyperthermia and reduced weight gain during the repeated administration, whereas increased locomotor activity and lack of depressive symptoms were found during withdrawal. This was accompanied by increased plasma corticosterone and decrease in striatal dopamine. Finally, the long-lasting and robust increase in ΔFosB levels found in striatum after NEPD chronic exposure suggests a high risk of dependence. The increased aggressivity and locomotor activity, together with this potential of inducing dependence justify a warning about the risks of consumption of NEPD if translated to humans.
Collapse
Affiliation(s)
- María Espinosa-Velasco
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain
| | - Marina D Reguilón
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Marina Bellot
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià - Universitat Ramon Llull, Barcelona, Spain
| | - Núria Nadal-Gratacós
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain; Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Xavier Berzosa
- Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Cristian Gómez-Canela
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià - Universitat Ramon Llull, Barcelona, Spain
| | - Marta Rodríguez-Arias
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Jordi Camarasa
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain
| | - Elena Escubedo
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain
| | - David Pubill
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain.
| | - Raúl López-Arnau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain
| |
Collapse
|
5
|
Espinosa-Velasco M, Reguilón MD, Bellot M, Nadal-Gratacós N, Berzosa X, Puigseslloses P, Gómez-Canela C, Rodríguez-Arias M, Pubill D, Camarasa J, Escubedo E, López-Arnau R. Behavioural and neurochemical effects after repeated administration of N-ethylpentylone (ephylone) in mice. J Neurochem 2021; 160:218-233. [PMID: 34816436 DOI: 10.1111/jnc.15542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/04/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022]
Abstract
N-ethyl-pentylone (NEP), also known as 'ephylone' and N-ethylnorpentylone, has been identified as one of the most recent novel psychostimulants to emerge into the illicit drug market and it has been associated with some intoxications and even fatalities. However, little is known about the consequences of its repeated consumption as well as the role of the monoaminergic system in such consequences. Thus, the aim of our study was to investigate the neurochemical profile and the behavioural effects after both acute and repeated NEP exposure. Male OF1 mice were acutely (1, 3, 10 mg/kg, i.p.) or repeatedly (1, 3, 10 mg/kg, i.p., 5 days, twice/day) exposed to NEP, and anxiety-like behaviour, aggressiveness, social interaction, depressive-like symptoms, body temperature, changes in monoaminergic enzymes and neurotransmitters levels as well as ΔFosB in striatum and prefrontal cortex (PFC) from post-mortem tissue were analysed short after drug-exposure or during drug-withdrawal. Acute administration of NEP induced anxiolytic effects but also an aggressive behaviour and social exploration deficits in mice, which persist during NEP-withdrawal. Moreover, NEP induced hyperthermia as well as depressive-like symptoms after repeated administrations that may be related to the decrease in serotonin and noradrenaline levels observed in striatum and PFC. Finally, the long-term increase in ΔFosB levels in striatum after NEP chronic exposure points to a high risk of dependence. Altogether indicates that NEP consumption induces different neurological and neuropsychiatric disorders accompanied by changes in the monoaminergic system, posing a threat to public health.
Collapse
Affiliation(s)
- María Espinosa-Velasco
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Marina D Reguilón
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Marina Bellot
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià - Universitat Ramon Llull, Barcelona, Spain
| | - Núria Nadal-Gratacós
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain.,Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Xavier Berzosa
- Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Pol Puigseslloses
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain.,Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Cristian Gómez-Canela
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià - Universitat Ramon Llull, Barcelona, Spain
| | - Marta Rodríguez-Arias
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - David Pubill
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Jordi Camarasa
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Elena Escubedo
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Raúl López-Arnau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Converging vulnerability factors for compulsive food and drug use. Neuropharmacology 2021; 196:108556. [PMID: 33862029 DOI: 10.1016/j.neuropharm.2021.108556] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 12/12/2022]
Abstract
Highly palatable foods and substance of abuse have intersecting neurobiological, metabolic and behavioral effects relevant for understanding vulnerability to conditions related to food (e.g., obesity, binge eating disorder) and drug (e.g., substance use disorder) misuse. Here, we review data from animal models, clinical populations and epidemiological evidence in behavioral, genetic, pathophysiologic and therapeutic domains. Results suggest that consumption of highly palatable food and drugs of abuse both impact and conversely are regulated by metabolic hormones and metabolic status. Palatable foods high in fat and/or sugar can elicit adaptation in brain reward and withdrawal circuitry akin to substances of abuse. Intake of or withdrawal from palatable food can impact behavioral sensitivity to drugs of abuse and vice versa. A robust literature suggests common substrates and roles for negative reinforcement, negative affect, negative urgency, and impulse control deficits, with both highly palatable foods and substances of abuse. Candidate genetic risk loci shared by obesity and alcohol use disorders have been identified in molecules classically associated with both metabolic and motivational functions. Finally, certain drugs may have overlapping therapeutic potential to treat obesity, diabetes, binge-related eating disorders and substance use disorders. Taken together, data are consistent with the hypotheses that compulsive food and substance use share overlapping, interacting substrates at neurobiological and metabolic levels and that motivated behavior associated with feeding or substance use might constitute vulnerability factors for one another. This article is part of the special issue on 'Vulnerabilities to Substance Abuse'.
Collapse
|
7
|
Noschang C, Lampert C, Krolow R, de Almeida RMM. Social isolation at adolescence: a systematic review on behaviour related to cocaine, amphetamine and nicotine use in rats and mice. Psychopharmacology (Berl) 2021; 238:927-947. [PMID: 33606060 DOI: 10.1007/s00213-021-05777-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
Adolescence is known for its high level of risk-taking, and neurobiological alterations during this period may predispose to psychoactive drug initiation and progression into more severe use patterns. Stress is a risk factor for drug consumption, and post-weaning social isolation increases drug self-administration in rodents. This review aimed to provide an overview of the effects of adolescent social isolation on cocaine, amphetamine and nicotine use-related behaviours, highlighting the specific period when animals were submitted to stress and these drugs. We wondered if there was a specific period during adolescence that isolation stress would increase drug use vulnerability. A total of 323 publications from the Scopus, Web of Science and PubMed (Medline) electronic databases were identified using the words "social isolation" and "adolescence" and "drug" or "cocaine" or "amphetamine" or "nicotine", resulting in 24 articles after analyses criteria following the PRISMA statement. The main points raised were social isolation during adolescence increased cocaine self-administration, amphetamine and nicotine locomotor activity. We did not observe a pattern of a specific moment during the adolescent period that could lead to an increased vulnerability to drug use. The precise conditions under which adolescent social stress alters drug use parameters are complex and likely depend on several factors.
Collapse
Affiliation(s)
- C Noschang
- Institute of Psychology, Laboratory of Experimental Psychology, Neuroscience and Behavior, Federal University of Rio Grande do Sul (UFRGS), 2600 Ramiro Barcelos St., Room 216, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.
- Biochemistry Department, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - C Lampert
- Institute of Psychology, Laboratory of Experimental Psychology, Neuroscience and Behavior, Federal University of Rio Grande do Sul (UFRGS), 2600 Ramiro Barcelos St., Room 216, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
- Biochemistry Department, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - R Krolow
- Biochemistry Department, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - R M M de Almeida
- Institute of Psychology, Laboratory of Experimental Psychology, Neuroscience and Behavior, Federal University of Rio Grande do Sul (UFRGS), 2600 Ramiro Barcelos St., Room 216, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| |
Collapse
|
8
|
Angoa-Pérez M, Kuhn DM. Evidence for Modulation of Substance Use Disorders by the Gut Microbiome: Hidden in Plain Sight. Pharmacol Rev 2021; 73:571-596. [PMID: 33597276 PMCID: PMC7896134 DOI: 10.1124/pharmrev.120.000144] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The gut microbiome modulates neurochemical function and behavior and has been implicated in numerous central nervous system (CNS) diseases, including developmental, neurodegenerative, and psychiatric disorders. Substance use disorders (SUDs) remain a serious threat to the public well-being, yet gut microbiome involvement in drug abuse has received very little attention. Studies of the mechanisms underlying SUDs have naturally focused on CNS reward circuits. However, a significant body of research has accumulated over the past decade that has unwittingly provided strong support for gut microbiome participation in drug reward. β-Lactam antibiotics have been employed to increase glutamate transporter expression to reverse relapse-induced release of glutamate. Sodium butyrate has been used as a histone deacetylase inhibitor to prevent drug-induced epigenetic alterations. High-fat diets have been used to alter drug reward because of the extensive overlap of the circuitry mediating them. This review article casts these approaches in a different light and makes a compelling case for gut microbiome modulation of SUDs. Few factors alter the structure and composition of the gut microbiome more than antibiotics and a high-fat diet, and butyrate is an endogenous product of bacterial fermentation. Drugs such as cocaine, alcohol, opiates, and psychostimulants also modify the gut microbiome. Therefore, their effects must be viewed on a complex background of cotreatment-induced dysbiosis. Consideration of the gut microbiome in SUDs should have the beneficial effects of expanding the understanding of SUDs and aiding in the design of new therapies based on opposing the effects of abused drugs on the host's commensal bacterial community. SIGNIFICANCE STATEMENT: Proposed mechanisms underlying substance use disorders fail to acknowledge the impact of drugs of abuse on the gut microbiome. β-Lactam antibiotics, sodium butyrate, and high-fat diets are used to modify drug seeking and reward, overlooking the notable capacity of these treatments to alter the gut microbiome. This review aims to stimulate research on substance abuse-gut microbiome interactions by illustrating how drugs of abuse share with antibiotics, sodium butyrate, and fat-laden diets the ability to modify the host microbial community.
Collapse
Affiliation(s)
- Mariana Angoa-Pérez
- Research and Development Service, John D. Dingell VA Medical Center, and Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Donald M Kuhn
- Research and Development Service, John D. Dingell VA Medical Center, and Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
9
|
Clasen MM, Riley AL, Davidson TL. Hippocampal-Dependent Inhibitory Learning and Memory Processes in the Control of Eating and Drug Taking. Curr Pharm Des 2020; 26:2334-2352. [PMID: 32026771 DOI: 10.2174/1381612826666200206091447] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
Abstract
As manifestations of excessive and uncontrolled intake, obesity and drug addiction have generated much research aimed at identifying common neuroadaptations that could underlie both disorders. Much work has focused on changes in brain reward and motivational circuitry that can overexcite eating and drug-taking behaviors. We suggest that the regulation of both behaviors depends on balancing excitation produced by stimuli associated with food and drug rewards with the behavioral inhibition produced by physiological "satiety" and other stimuli that signal when those rewards are unavailable. Our main hypothesis is that dysregulated eating and drug use are consequences of diet- and drug-induced degradations in this inhibitory power. We first outline a learning and memory mechanism that could underlie the inhibition of both food and drug-intake, and we describe data that identifies the hippocampus as a brain substrate for this mechanism. We then present evidence that obesitypromoting western diets (WD) impair the operation of this process and generate pathophysiologies that disrupt hippocampal functioning. Next, we present parallel evidence that drugs of abuse also impair this same learning and memory process and generate similar hippocampal pathophysiologies. We also describe recent findings that prior WD intake elevates drug self-administration, and the implications of using drugs (i.e., glucagon-like peptide- 1 agonists) that enhance hippocampal functioning to treat both obesity and addiction are also considered. We conclude with a description of how both WD and drugs of abuse could initiate a "vicious-cycle" of hippocampal pathophysiology and impaired hippocampal-dependent behavioral inhibition.
Collapse
Affiliation(s)
- Matthew M Clasen
- Department of Psychology, Program in Neuroscience, Williams College, Williamstown, MA 01267, United States
| | - Anthony L Riley
- Department of Neuroscience, Center for Behavioral Neuroscience, American University, Washington, DC 20016, United States
| | - Terry L Davidson
- Department of Neuroscience, Center for Behavioral Neuroscience, American University, Washington, DC 20016, United States
| |
Collapse
|
10
|
Lalanza JF, Snoeren EMS. The cafeteria diet: A standardized protocol and its effects on behavior. Neurosci Biobehav Rev 2020; 122:92-119. [PMID: 33309818 DOI: 10.1016/j.neubiorev.2020.11.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
Obesity is a major health risk, with junk food consumption playing a central role in weight gain, because of its high palatability and high-energy nutrients. The Cafeteria (CAF) diet model for animal experiments consists of the same tasty but unhealthy food products that people eat (e.g. hot dogs and muffins), and considers variety, novelty and secondary food features, such as smell and texture. This model, therefore, mimics human eating patterns better than other models. In this paper, we systematically review studies that have used a CAF diet in behavioral experiments and propose a standardized CAF diet protocol. The proposed diet is ad libitum and voluntary; combines different textures, nutrients and tastes, including salty and sweet products; and it is rotated and varied. Our summary of the behavioral effects of CAF diet show that it alters meal patterns, reduces the hedonic value of other rewards, and tends to reduce stress and spatial memory. So far, no clear effects of CAF diet were found on locomotor activity, impulsivity, coping and social behavior.
Collapse
Affiliation(s)
- Jaume F Lalanza
- Department of Psychology, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Eelke M S Snoeren
- Department of Psychology, UiT The Arctic University of Norway, Tromsø, Norway; Regional Health Authority of North Norway, Norway.
| |
Collapse
|
11
|
Ferrer-Pérez C, Reguilón MD, Manzanedo C, Miñarro J, Rodríguez-Arias M. Social Housing Conditions Modulate the Long-Lasting Increase in Cocaine Reward Induced by Intermittent Social Defeat. Front Behav Neurosci 2019; 13:148. [PMID: 31333427 PMCID: PMC6622358 DOI: 10.3389/fnbeh.2019.00148] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
Social defeat is considered the most representative animal model for studying the consequences of social stress. Intermittent social defeat (ISD) has proved to enhance the response to cocaine hedonic properties. In the present research, we evaluated if different social housing conditions, as housing with a familiar conspecific or with a female, exert a protective effect modulating the negative consequences of ISD as the increased sensitivity to cocaine and the induction of anxiety-like behavior. To achieve this objective, non-stressed or ISD OF1 male mice were divided into five different experimental groups according to their social environment: standard housing (four adult males per cage); male adolescent or adult in pairs (two males per cage); and adult males housed with a female for a short or long period (3 days vs. the whole duration of the study). Anxiety-like behavior was evaluated 19 days after the last episode of ISD using an elevated plus maze (EPM), and 24 h later the animals underwent a conditioned place preference paradigm (CPP) induced by a sub-threshold dose of cocaine (1 mg/kg). Following CPP, biological samples were taken to measure striatal levels of interleukin 6 (IL-6) and plasmatic levels of oxytocin (OT). Our results confirmed that ISD animals housed in standard condition displayed an anxious phenotype, developed CPP and had increased levels of IL-6 in the striatum. However, animals housed with a female or with a familiar male since adolescence did not develop CPP and were protected against the anxiogenic and neuroinflammatory potential of ISD stress. In the group of animals paired with a female throughout the experimental procedure, an increase in OT levels may have underlain this buffering effect, while the protective effect of being housed with a familiar male mouse seems to be related with a better resolution of the stress response. The present results expand our knowledge of the neurobiology of vulnerability to drug addiction and highlight the benefit of social support for recovery from the adverse effects of social stress.
Collapse
Affiliation(s)
- Carmen Ferrer-Pérez
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Marina D Reguilón
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Carmen Manzanedo
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - José Miñarro
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| |
Collapse
|