1
|
Zhuang Y, Xu J, Zheng K, Zhang H. Research progress of postoperative cognitive dysfunction in cardiac surgery under cardiopulmonary bypass. IBRAIN 2023; 10:290-304. [PMID: 39346790 PMCID: PMC11427806 DOI: 10.1002/ibra.12123] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 10/01/2024]
Abstract
Cardiopulmonary bypass (CPB) is often used in cardiothoracic surgery because its nonphysiological state causes pathophysiological changes in the body, causing multiorgan and multitissue damage to varying degrees. Postoperative cognitive dysfunction (POCD) is a common central nervous system complication after cardiac surgery. The etiology and mechanism of POCD are not clear. Neuroinflammation, brain mitochondrial dysfunction, cerebral embolism, ischemia, hypoxia, and other factors are related to the pathogenesis of POCD. There is a close relationship between CPB and POCD, as CPB can cause inflammation, hypoxia and reperfusion injury, and microemboli formation, all of which can trigger POCD. POCD increases medical costs, seriously affects patients' quality of life, and increases mortality. Currently, there is a lack of effective treatment methods for POCD. Commonly used methods include preoperative health management, reducing inflammation response during surgery, preventing microemboli formation, and implementing individualized rehabilitation programs after surgery. Strengthening preventive measures can minimize the occurrence of POCD and its adverse effects.
Collapse
Affiliation(s)
- Yi‐Ming Zhuang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Ji‐Yang Xu
- Department of AnesthesiologyJudicial Police Hospital of Guizhou ProvinceGuiyangChina
| | - Kun Zheng
- Department of AnesthesiologyGuizhou Provincial People's HospitalGuiyangChina
| | - Hong Zhang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
2
|
Wu X, You J, Chen X, Zhou M, Ma H, Zhang T, Huang C. An overview of hyperbaric oxygen preconditioning against ischemic stroke. Metab Brain Dis 2023; 38:855-872. [PMID: 36729260 PMCID: PMC10106353 DOI: 10.1007/s11011-023-01165-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/23/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
Ischemic stroke (IS) has become the second leading cause of morbidity and mortality worldwide, and the prevention of IS should be given high priority. Recent studies have indicated that hyperbaric oxygen preconditioning (HBO-PC) may be a protective nonpharmacological method, but its underlying mechanisms remain poorly defined. This study comprehensively reviewed the pathophysiology of IS and revealed the underlying mechanism of HBO-PC in protection against IS. The preventive effects of HBO-PC against IS may include inducing antioxidant, anti-inflammation, and anti-apoptosis capacity; activating autophagy and immune responses; upregulating heat shock proteins, hypoxia-inducible factor-1, and erythropoietin; and exerting protective effects upon the blood-brain barrier. In addition, HBO-PC may be considered a safe and effective method to prevent IS in combination with stem cell therapy. Although the benefits of HBO-PC on IS have been widely observed in recent research, the implementation of this technique is still controversial due to regimen differences. Transferring the results to clinical application needs to be taken carefully, and screening for the optimal regimen would be a daunting task. In addition, whether we should prescribe an individualized preconditioning regimen to each stroke patient needs further exploration.
Collapse
Affiliation(s)
- Xuyi Wu
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Jiuhong You
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xinxin Chen
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Mei Zhou
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Hui Ma
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Tianle Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Huang
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Mesenchymal Stem Cell-Derived Exosomes Ameliorate Delayed Neurocognitive Recovery in Aged Mice by Inhibiting Hippocampus Ferroptosis via Activating SIRT1/Nrf2/HO-1 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3593294. [PMID: 36238648 PMCID: PMC9553403 DOI: 10.1155/2022/3593294] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022]
Abstract
Delayed neurocognitive recovery (dNCR) is a prevalent perioperative neurological complication in older patients and has common characteristics such as acute cognitive dysfunction, impaired memory, and inattention. Mesenchymal stem cell-derived exosomes (MSCs-Exo) are enclosed by a lipid bilayer contain proteins, DNA, miRNA, and other components, which are important mediators of intercellular communication. It has been reported that exosomes could play an important role in the treatment of neurodegenerative diseases, nerve injury, and other neurological diseases. In this study, we examined the effects of MSCs-Exo on dNCR aged mice after exploratory laparotomy and evaluated their potential regulatory mechanisms. We found that MSCs-Exo treatment ameliorated cognitive impairment in dNCR aged mice. MSCs-Exo inhibit hippocampus ferroptosis and increase the expression of silent information regulator 1 (SIRT1), factor nuclear factor-erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) in dNCR aged mice. Interestingly, the above effects of MSCs-Exo on dNCR aged mice were abolished by SIRT1 selective inhibitor EX-527. In conclusion, these findings indicated that MSCs-Exo can ameliorate cognitive impairment by inhibiting hippocampus ferroptosis in dNCR aged mice via activating SIRT1/Nrf2/HO-1 signaling pathway, providing a potential avenue for the treatment of dNCR.
Collapse
|
4
|
Lindenmann J, Smolle C, Kamolz LP, Smolle-Juettner FM, Graier WF. Survey of Molecular Mechanisms of Hyperbaric Oxygen in Tissue Repair. Int J Mol Sci 2021; 22:11754. [PMID: 34769182 PMCID: PMC8584249 DOI: 10.3390/ijms222111754] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 01/08/2023] Open
Abstract
For more than six decades, hyperbaric oxygen (HBO) has been used for a variety of indications involving tissue repair. These indications comprise a wide range of diseases ranging from intoxications to ischemia-reperfusion injury, crush syndrome, central nervous injury, radiation-induced tissue damage, burn injury and chronic wounds. In a systematic review, the molecular mechanisms triggered by HBO described within the last two decades were compiled. They cover a wide range of pathways, including transcription, cell-to-cell contacts, structure, adhesion and transmigration, vascular signaling and response to oxidative stress, apoptosis, autophagy and cell death, as well as inflammatory processes. By analyzing 71 predominantly experimental publications, we established an overview of the current concepts regarding the molecular mechanisms underlying the effects of HBO. We considered both the abovementioned pathways and their role in various applications and indications.
Collapse
Affiliation(s)
- Joerg Lindenmann
- Division of Thoracic and Hyperbaric Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29/3, 8036 Graz, Austria;
| | - Christian Smolle
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29/2, 8036 Graz, Austria; (C.S.); (L.-P.K.)
| | - Lars-Peter Kamolz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29/2, 8036 Graz, Austria; (C.S.); (L.-P.K.)
| | - Freyja Maria Smolle-Juettner
- Division of Thoracic and Hyperbaric Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29/3, 8036 Graz, Austria;
| | - Wolfgang F. Graier
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria;
| |
Collapse
|
5
|
Gottfried I, Schottlender N, Ashery U. Hyperbaric Oxygen Treatment-From Mechanisms to Cognitive Improvement. Biomolecules 2021; 11:biom11101520. [PMID: 34680155 PMCID: PMC8533945 DOI: 10.3390/biom11101520] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 12/19/2022] Open
Abstract
Hyperbaric oxygen treatment (HBOT)—the medical use of oxygen at environmental pressure greater than one atmosphere absolute—is a very effective therapy for several approved clinical situations, such as carbon monoxide intoxication, incurable diabetes or radiation-injury wounds, and smoke inhalation. In recent years, it has also been used to improve cognition, neuro-wellness, and quality of life following brain trauma and stroke. This opens new avenues for the elderly, including the treatment of neurological and neurodegenerative diseases and improvement of cognition and brain metabolism in cases of mild cognitive impairment. Alongside its integration into clinics, basic research studies have elucidated HBOT’s mechanisms of action and its effects on cellular processes, transcription factors, mitochondrial function, oxidative stress, and inflammation. Therefore, HBOT is becoming a major player in 21st century research and clinical treatments. The following review will discuss the basic mechanisms of HBOT, and its effects on cellular processes, cognition, and brain disorders.
Collapse
Affiliation(s)
- Irit Gottfried
- School of Neurobiology, Biochemistry and Biophysics, Life Sciences Faculty, Tel Aviv University, Tel Aviv 6997801, Israel; (I.G.); (N.S.)
| | - Nofar Schottlender
- School of Neurobiology, Biochemistry and Biophysics, Life Sciences Faculty, Tel Aviv University, Tel Aviv 6997801, Israel; (I.G.); (N.S.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Uri Ashery
- School of Neurobiology, Biochemistry and Biophysics, Life Sciences Faculty, Tel Aviv University, Tel Aviv 6997801, Israel; (I.G.); (N.S.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: ; Tel.: +972-3-6409827
| |
Collapse
|
6
|
Role of SIRT1 in Isoflurane Conditioning-Induced Neurovascular Protection against Delayed Cerebral Ischemia Secondary to Subarachnoid Hemorrhage. Int J Mol Sci 2021; 22:ijms22084291. [PMID: 33924243 PMCID: PMC8074752 DOI: 10.3390/ijms22084291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/19/2022] Open
Abstract
We recently reported that isoflurane conditioning provided multifaceted protection against subarachnoid hemorrhage (SAH)-induced delayed cerebral ischemia (DCI), and this protection was through the upregulation of endothelial nitric oxide synthase (eNOS). SIRT1, an NAD-dependent deacetylase, was shown to be one of the critical regulators of eNOS. The aim of our current study is to examine the role of SIRT1 in isoflurane conditioning-induced neurovascular protection against SAH-induced DCI. Mice were divided into four groups: sham, SAH, or SAH with isoflurane conditioning (with and without EX-527). Experimental SAH via endovascular perforation was performed. Anesthetic conditioning was performed with isoflurane 2% for 1 h, 1 h after SAH. EX-527, a selective SIRT1 inhibitor, 10 mg/kg was injected intraperitoneally immediately after SAH in the EX-527 group. SIRT1 mRNA expression and activity levels were measured. Vasospasm, microvessel thrombosis, and neurological outcome were assessed. SIRT1 mRNA expression was downregulated, and no difference in SIRT1 activity was noted after isoflurane exposure. Isoflurane conditioning with and without EX-527 attenuated vasospasm, microvessel thrombosis and improved neurological outcomes. Our data validate our previous findings that isoflurane conditioning provides strong protection against both the macro and micro vascular deficits induced by SAH, but this protection is likely not mediated through the SIRT1 pathway.
Collapse
|
7
|
Fan J, Li L, Qu P, Diao Y, Sun Y. κ‑opioid receptor agonist U50488H attenuates postoperative cognitive dysfunction of cardiopulmonary bypass rats through the PI3K/AKT/Nrf2/HO‑1 pathway. Mol Med Rep 2021; 23:293. [PMID: 33649775 PMCID: PMC7931006 DOI: 10.3892/mmr.2021.11933] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 12/29/2020] [Indexed: 02/04/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication following cardiopulmonary bypass (CPB). U50488H, a κ‑opioid receptor (KOR) agonist, can specifically activate KORs on hippocampal nerve cells, resulting in neuroprotective effects. The present study established a CPB rat model, observed the protective effect of U50488H on CPB‑induced POCD and brain damage and explored the regulatory mechanism of the PI3K/AKT/nuclear factor erythroid 2‑related factor 2 (Nrf2)/heme oxygenase (HO)‑1 pathway. Sprague‑Dawley rats were divided into the following groups: Sham operation (Sham group), CPB (CPB group), KOR agonist (U50488H) + CPB (U50488H group), CPB + U50488H + HO‑1 antagonist (ZnPP‑IX; ZnPP group) and CPB + U50488H + PI3K antagonist (LY294002; LY294002 group), with 10 rats in each group. Neurological scores and the Morris water maze test were used to evaluate cognitive function; hematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick end labeling assays were performed to observe hippocampal neuron damage in rats. Immunofluorescence was used to detect reactive oxygen species, glial fibrillary acidic protein and Nrf2 expression in the hippocampus. Enzyme‑linked immunosorbent assays were used to detect inflammatory and oxidative stress factors. Western blotting was used to examine the expression of PI3K/AKT/Nrf2/HO‑1‑related proteins. It was demonstrated that U50488H significantly reduced the neural function score of rats with POCD induced by CPB, relieved cognitive dysfunction, reduced hippocampal neuron damage, inhibited the rate of apoptosis, repaired oxidative stress injury and protected against brain damage caused by CPB. In addition, U50488H could promote Nrf2 entry into the nucleus and upregulate HO‑1 and thioredoxin 1 (Trx1) expression. In CPB rats treated with PI3K inhibitors, less Nrf2 was detected in the nucleus and HO‑1 and Trx‑1 expression levels were reduced in the nucleus. Therefore, U50488H, a KOR agonist, can activate Nrf2/HO‑1 via the PI3K/AKT pathway to improve cognitive function and reduce brain damage in CPB rats.
Collapse
Affiliation(s)
- Jianing Fan
- Postgraduate Training Base of The General Hospital of Northern Theater Command, Jinzhou Medical University, Jinzhou, Liaoning 121013, P.R. China
- Department of Anesthesiology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Long Li
- Department of Anesthesiology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Pengxia Qu
- Department of Anesthesiology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Yugang Diao
- Department of Anesthesiology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Yingjie Sun
- Department of Anesthesiology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
8
|
He J, Chen Z, Kang X, Wu L, Jiang JM, Liu SM, Wei HJ, Chen YJ, Zou W, Wang CY, Zhang P. SIRT1 Mediates H 2S-Ameliorated Diabetes-Associated Cognitive Dysfunction in Rats: Possible Involvement of Inhibiting Hippocampal Endoplasmic Reticulum Stress and Synaptic Dysfunction. Neurochem Res 2021; 46:611-623. [PMID: 33534060 DOI: 10.1007/s11064-020-03196-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/27/2022]
Abstract
Diabetes-associated cognitive dysfunction (DACD) characterized by hippocampal injury increases the risk of major cerebrovascular events and death. Endoplasmic reticulum (ER) stress and synaptic dysfunction play vital roles in the pathological process. At present, no specific treatment exists for the prevention and/or the therapy of DACD. We have recently reported that hydrogen sulfide (H2S) exhibits therapeutic potential for DACD, but the underlying mechanism has not been fully elucidated. Silent information regulator 1 (SIRT1) has been shown to play a role in regulating the progression of diabetes and is also indispensable for memory formation and cognitive performance. Hence, the present study was performed to explore whether SIRT1 mediates the protective effect of H2S on streptozotocin (STZ)-induced cognitive deficits, an in vivo rat model of DACD, via inhibiting hippocampal ER stress and synaptic dysfunction. The results showed that administration of NaHS (an exogenous H2S donor) increased the expression of SIRT1 in the hippocampus of STZ-induced diabetic rats. Then, results proved that sirtinol, a special blocker of SIRT1, abrogated the inhibition of NaHS on STZ-induced cognitive deficits, as appraised by Morris water maze test, Y-maze test, and Novel object recognition behavioral test. In addition, administration of NaHS eliminated STZ-induced ER stress as evidenced by the decreases in the expressions of ER stress-related proteins including glucose-regulated protein 78, C/EBP homologous protein, and cleaved caspase-12 in the hippocampus, while these effects of NaHS were also reverted by sirtinol. Furthermore, the NaHS-induced up-regulation of hippocampal synapse-related protein (synapsin-1, SYN1) expression in STZ-induced diabetic rats was also abolished by sirtinol. Taken together, these results demonstrated that SIRT1 mediates the protection of H2S against cognitive dysfunction in STZ-diabetic rats partly via inhibiting hippocampal ER stress and synaptic dysfunction.
Collapse
Affiliation(s)
- Juan He
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Zhuo Chen
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Neurology, Yiyang Center Hospital, Yiyang, 413000, Hunan, People's Republic of China
| | - Xuan Kang
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Neurology, the First Affiliated Hospital, University of South China, No. 69 Chuanshan Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Lin Wu
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Jia-Mei Jiang
- Department of Neurology, the First Affiliated Hospital, University of South China, No. 69 Chuanshan Road, Hengyang, 421001, Hunan, People's Republic of China.
| | - Su-Mei Liu
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Hai-Jun Wei
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Neurology, the First Affiliated Hospital, University of South China, No. 69 Chuanshan Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Yong-Jun Chen
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Wei Zou
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Chun-Yan Wang
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Ping Zhang
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road, Hengyang, 421001, Hunan, People's Republic of China.
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
9
|
Shi J, Zou X, Jiang K, Wang F. SIRT1 mediates improvement of cardiac surgery-induced postoperative cognitive dysfunction via the TLR4/NF-κB pathway. World J Biol Psychiatry 2020; 21:757-765. [PMID: 31418620 DOI: 10.1080/15622975.2019.1656820] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Clinically, there is no effective therapy for postoperative cognitive dysfunction (POCD). Inflammation after surgery is closely associated with POCD. METHODS In this study, we explored the role of sirtuin 1 (SIRT1) in POCD. POCD in mice was induced by cardiac surgery. The mRNA and protein levels of related genes were determined by real-time polymerase chain reaction and western blot, respectively. Plasma concentrations of inflammatory factors were measured using an ELISA kit. Novel object and novel location recognition tests were carried out to measure recognition ability. The Morris water maze (MWM) test was performed to measure learning and memory ability. RESULTS There was a clear decrease in SIRT1 expression after POCD. The SIRT1 activator SRT1720 promoted recognition, learning, and memory ability of mice with POCD. Moreover, SRT1720 treatment greatly inhibited plasma inflammatory cytokine levels and TLR4 and P65 protein expression in the hippocampus of POCD mice. The effect of SRT1720 on POCD was in a TLR4-dependent manner. CONCLUSIONS SIRT1 mediates the improvement of cardiac surgery-induced postoperative cognitive dysfunction via the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Jing Shi
- The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaohua Zou
- The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ke Jiang
- The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Feng Wang
- The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
10
|
Baicalin Ameliorates Cognitive Impairment and Protects Microglia from LPS-Induced Neuroinflammation via the SIRT1/HMGB1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4751349. [PMID: 33029280 PMCID: PMC7527898 DOI: 10.1155/2020/4751349] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/20/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022]
Abstract
Systemic inflammation often induces neuroinflammation and disrupts neural functions, ultimately causing cognitive impairment. Furthermore, neuronal inflammation is the key cause of many neurological conditions. It is particularly important to develop effective neuroprotectants to prevent and control inflammatory brain diseases. Baicalin (BAI) has a wide variety of potent neuroprotective and cognitive enhancement properties in various models of neuronal injury through antioxidation, anti-inflammation, anti-apoptosis, and stimulating neurogenesis. Nevertheless, it remains unclear whether BAI can resolve neuroinflammation and cognitive decline triggered by systemic or distant inflammatory processes. In the present study, intraperitoneal lipopolysaccharide (LPS) administration was used to establish neuroinflammation to evaluate the potential neuroprotective and anti-inflammatory effects of BAI. Here, we report that BAI activated silent information regulator 1 (SIRT1) to deacetylate high-mobility group box 1 (HMGB1) protein in response to acute LPS-induced neuroinflammation and cognitive deficits. Furthermore, we demonstrated the anti-inflammatory and cognitive enhancement effects and the underlying molecular mechanisms of BAI in modulating microglial activation and systemic cytokine production, including tumor necrosis factor- (TNF-) α and interleukin- (IL-) 1β, after LPS exposure in mice and in the microglial cell line, BV2. In the hippocampus, BAI not only reduced reactive microglia and inflammatory cytokine production but also modulated SIRT1/HMGB1 signaling in microglia. Interestingly, pretreatment with SIRT1 inhibitor EX-527 abolished the beneficial effects of BAI against LPS exposure. Specifically, BAI treatment inhibited HMGB1 release via the SIRT1/HMGB1 pathway and reduced the nuclear translocation of HMGB1 in LPS-induced BV2 cells. These effects were reversed in BV2 cells by silencing endogenous SIRT1. Taken together, these findings indicated that BAI reduced microglia-associated neuroinflammation and improved acute neurocognitive deficits in LPS-induced mice via SIRT1-dependent downregulation of HMGB1, suggesting a possible novel protection against acute neurobehavioral deficits, such as delayed neurocognitive recovery after anesthesia and surgery challenges.
Collapse
|
11
|
Hadanny A, Efrati S. The Hyperoxic-Hypoxic Paradox. Biomolecules 2020; 10:biom10060958. [PMID: 32630465 PMCID: PMC7355982 DOI: 10.3390/biom10060958] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Effective metabolism is highly dependent on a narrow therapeutic range of oxygen. Accordingly, low levels of oxygen, or hypoxia, are one of the most powerful inducers of gene expression, metabolic changes, and regenerative processes, including angiogenesis and stimulation of stem cell proliferation, migration, and differentiation. The sensing of decreased oxygen levels (hypoxia) or increased oxygen levels (hyperoxia), occurs through specialized chemoreceptor cells and metabolic changes at the cellular level, which regulate the response. Interestingly, fluctuations in the free oxygen concentration rather than the absolute level of oxygen can be interpreted at the cellular level as a lack of oxygen. Thus, repeated intermittent hyperoxia can induce many of the mediators and cellular mechanisms that are usually induced during hypoxia. This is called the hyperoxic-hypoxic paradox (HHP). This article reviews oxygen physiology, the main cellular processes triggered by hypoxia, and the cascade of events triggered by the HHP.
Collapse
Affiliation(s)
- Amir Hadanny
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin 70300, Israel;
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
- Correspondence: ; Tel.: +972-544707381; Fax: +972-8-9779748
| | - Shai Efrati
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin 70300, Israel;
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 6997801, Israel
| |
Collapse
|
12
|
Hadanny A, Efrati S. The Hyperoxic-Hypoxic Paradox. Biomolecules 2020; 10:biom10060958. [PMID: 32630465 DOI: 10.3390/biom1006095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 05/21/2023] Open
Abstract
Effective metabolism is highly dependent on a narrow therapeutic range of oxygen. Accordingly, low levels of oxygen, or hypoxia, are one of the most powerful inducers of gene expression, metabolic changes, and regenerative processes, including angiogenesis and stimulation of stem cell proliferation, migration, and differentiation. The sensing of decreased oxygen levels (hypoxia) or increased oxygen levels (hyperoxia), occurs through specialized chemoreceptor cells and metabolic changes at the cellular level, which regulate the response. Interestingly, fluctuations in the free oxygen concentration rather than the absolute level of oxygen can be interpreted at the cellular level as a lack of oxygen. Thus, repeated intermittent hyperoxia can induce many of the mediators and cellular mechanisms that are usually induced during hypoxia. This is called the hyperoxic-hypoxic paradox (HHP). This article reviews oxygen physiology, the main cellular processes triggered by hypoxia, and the cascade of events triggered by the HHP.
Collapse
Affiliation(s)
- Amir Hadanny
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin 70300, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Shai Efrati
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin 70300, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 6997801, Israel
| |
Collapse
|
13
|
Eleutheroside E attenuates isoflurane-induced cognitive dysfunction by regulating the α7-nAChR-NMDAR pathway. Neuroreport 2019; 30:188-194. [PMID: 30585907 DOI: 10.1097/wnr.0000000000001182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is growing evidence that cognitive dysfunction induced by anesthetics is adversely affecting a large number of elderly surgical patients. Eleutheroside E (EE), a principal component of Eleutherococcus senticosus, exerts obvious protective effects on cognition. The aim of this study was to investigate the neuroprotective effect of EE on isoflurane (ISO)-induced cognitive dysfunction and explore the possible mechanisms. Learning and memory are assessed in novel object recognition and Morris water maze. We found that with ISO exposure, aged rats had a lower preference for the new object and spent less time in the target quarter. However, the amnesia can be alleviated by EE (50 mg/kg, intraperitoneally). Further research focused on the possible protective molecules associated with learning and memory, such as acetylcholine (ACh) and choline acetyltransferase (ChAT), nicotinic acetylcholine receptors (α7-nAChR), and NR2B, is required. The ACh in the hippocampus and serum was decreased after ISO exposure; meanwhile, the expression of ChAT, α7-nAChRs, and NR2B was downregulated. This abnormal state can be reversed by the administration of EE. Here, our results suggested that EE may be a potential therapeutic agent against ISO-induced cognitive dysfunction. The possible mechanism can be attributed to its neuroprotection through enhancing ChAT, which promotes the synthesis of ACh, further influencing the expression of the α7-nAChR-NR2B complex.
Collapse
|