1
|
Su Y, Li H, Jiang S, Li Y, Li Y, Zhang G. The relationship between nighttime exercise and problematic smartphone use before sleep and associated health issues: a cross-sectional study. BMC Public Health 2024; 24:590. [PMID: 38395834 PMCID: PMC10893754 DOI: 10.1186/s12889-024-18100-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
OBJECTIVE Physical exercise has the potential to mitigate addictive behaviors and relevant health issues. However, the nighttime exercise has not been studied regarding this research topic. This study aims to explore the association between nocturnal physical exercise and problematic smartphone use before sleep, as well as related health issues. METHODS To explore the association between nighttime physical exercise and problematic smartphone use before sleep as well as related health issues, we conducted a cross-sectional survey among 1,334 college students. Their daily exercise behaviors (including timeframe, rationale, frequency, and duration), smartphone use before sleep, sleep quality, smartphone addiction, anxiety, and depression were measured by questionnaires. The associations were assessed using generalized linear models. RESULTS Our findings indicate that nearly 70% of participants chose to perform exercise at nighttime. Among these individuals who exercised at nighttime, the frequency and duration of nighttime exercise were significantly associated with decreased probabilities of smartphone use before sleep. Additionally, the frequency and duration of nighttime exercise were associated with lower levels of smartphone addiction and anxiety disorders. CONCLUSION Nighttime Exercise behaviors can effectively reduce sleep delays caused by problematic smartphone use before bedtime. These findings contribute to understanding the potential effects of nighttime exercise on problematic smartphone use and relevant health issues. Future research should employ more precise methodologies to examine these associations.
Collapse
Affiliation(s)
- Yuqin Su
- Institute of Sport Science, College of Physical Education, Southwest University, Chongqing, China
- College of Physical Education, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Hansen Li
- Institute of Sport Science, College of Physical Education, Southwest University, Chongqing, China
| | - Sijia Jiang
- College of Physical Education, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yaqi Li
- Institute of Sport Science, College of Physical Education, Southwest University, Chongqing, China
| | - Yun Li
- Institute of Sport Science, College of Physical Education, Southwest University, Chongqing, China
| | - Guodong Zhang
- Institute of Sport Science, College of Physical Education, Southwest University, Chongqing, China.
- International College, Krirk University, Bangkok, Thailand.
| |
Collapse
|
2
|
Melatonin and the Brain–Heart Crosstalk in Neurocritically Ill Patients—From Molecular Action to Clinical Practice. Int J Mol Sci 2022; 23:ijms23137094. [PMID: 35806098 PMCID: PMC9267006 DOI: 10.3390/ijms23137094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023] Open
Abstract
Brain injury, especially traumatic brain injury (TBI), may induce severe dysfunction of extracerebral organs. Cardiac dysfunction associated with TBI is common and well known as the brain–heart crosstalk, which broadly refers to different cardiac disorders such as cardiac arrhythmias, ischemia, hemodynamic insufficiency, and sudden cardiac death, which corresponds to acute disorders of brain function. TBI-related cardiac dysfunction can both worsen the brain damage and increase the risk of death. TBI-related cardiac disorders have been mainly treated symptomatically. However, the analysis of pathomechanisms of TBI-related cardiac dysfunction has highlighted an important role of melatonin in the prevention and treatment of such disorders. Melatonin is a neurohormone released by the pineal gland. It plays a crucial role in the coordination of the circadian rhythm. Additionally, melatonin possesses strong anti-inflammatory, antioxidative, and antiapoptotic properties and can modulate sympathetic and parasympathetic activities. Melatonin has a protective effect not only on the brain, by attenuating its injury, but on extracranial organs, including the heart. The aim of this study was to analyze the molecular activity of melatonin in terms of TBI-related cardiac disorders. Our article describes the benefits resulting from using melatonin as an adjuvant in protection and treatment of brain injury-induced cardiac dysfunction.
Collapse
|
3
|
Calderon-Jofre R, Moraga D, Moraga FA. The Effect of Chronic Intermittent Hypobaric Hypoxia on Sleep Quality and Melatonin Serum Levels in Chilean Miners. Front Physiol 2022; 12:809360. [PMID: 35222064 PMCID: PMC8864145 DOI: 10.3389/fphys.2021.809360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
High-altitude mining is an important economic resource for Chile. These workers are exposed to chronic intermittent hypobaric hypoxia (CIHH), which reduces their sleep quality and increases the risk of accidents and long-term illnesses. Melatonin, a hormone produced by the pineal gland, is a sleep inducer that regulates the circadian cycle and may be altered in populations subjected to CIHH. This work aimed to assess the relationship between altitude, sleep quality, and plasma melatonin concentrations in miners with CIHH exposure. 288 volunteers were recruited from five altitudes (0, 1,600, 2,500, 3,500, and 4,500 m). All volunteers worked for 7 days at altitude, followed by 7 days of rest at sea level. We performed anthropometric assessments, nocturnal oximetry, sleep quality and sleepiness surveys, and serum melatonin levels upon awakening. Although oxygen saturation progressively decreased and heart rate increased at higher altitudes, subjective perception of sleep quality was not significantly different, and sleepiness increased in all groups compared to population at sea level. Similarly, melatonin levels increased at all assessed altitudes compared to the population at sea level. These data confirm that sleep disturbances associated with CIHH increase morning melatonin levels. Therefore, this hormone and could potentially serve as a biomarker of sleep quality.
Collapse
Affiliation(s)
- Rodrigo Calderon-Jofre
- Laboratorio de Fisiología, Hipoxia y Función Vascular, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Daniel Moraga
- Departamento de Medicina, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Arica, Chile
| | - Fernando A. Moraga
- Departamento de Medicina, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Arica, Chile
- *Correspondence: Fernando A. Moraga,
| |
Collapse
|
4
|
Kruk J, Aboul-Enein BH, Duchnik E. Exercise-induced oxidative stress and melatonin supplementation: current evidence. J Physiol Sci 2021; 71:27. [PMID: 34470608 PMCID: PMC8409271 DOI: 10.1186/s12576-021-00812-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023]
Abstract
Melatonin possesses the indoleamine structure and exerts antioxidant and anti-inflammatory actions and other physiological properties. Physical exercise can influence secretion of melatonin. Melatonin is used as a natural supplement among athletes to regulate sleep cycles and protect muscles against oxidative damage. Despite decades of research, there is still a lack of a comprehensive and critical review on melatonin supplementation and physical activity relationship. The aim of this literature review is to examine the antioxidant, anti-inflammatory and other biological functions played by melatonin with reference to the effect of physical exercise on melatonin secretion and the effect of this compound supplementation on exercise-induced oxidative stress in athletes. Evidence shows that intense exercises disturb antioxidant status of competitive athletes, whereas supplementation with melatonin strengthens antioxidant status in trained athletes in various sports as the compound showed high potency in reduction of the oxidative stress and inflammation markers generated during intense and prolonged exercise.
Collapse
Affiliation(s)
- Joanna Kruk
- Faculty of Physical Culture and Health, University of Szczecin, Szczecin, Poland.
| | | | - Ewa Duchnik
- Department of Aesthetic Dermatology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
5
|
Pedemonte M, Brockmann PE, DelRosso LM, Andersen ML. Past, present, and future of sleep medicine research in Latin America. J Clin Sleep Med 2021; 17:1133-1139. [PMID: 33583492 DOI: 10.5664/jcsm.9152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
NONE Sleep medicine is a relatively young field with exponential growth in development and research in the last decades. Parallel to the advances in the United States, Latin America also had its beginnings in sleep medicine housed in neuroscience laboratories. Since the very first Latin American meeting in 1985, and the first sleep society in 1993, sleep research has undergone significant development in subsequent years. From contributions in animal research that allowed understanding of the activity of the brain during sleep to the studies that improved our knowledge of sleep disorders in humans, Latin America has become a scientific hub for expansion of sleep research. In this article, we present a historical account of the development of sleep medicine in Latin America, the current state of education and the achievements in research throughout history, and the latest advances in the trending areas of sleep science and medicine. These findings were presented during World Sleep Society meeting in Vancouver in 2019 and complement the work on sleep societies and training published by Vizcarra-Escobar et al in their article "Sleep societies and sleep training programs in Latin America" (J Clin Sleep Med. 2020;16(6):983-988).
Collapse
Affiliation(s)
| | - Pablo E Brockmann
- Pediatric Sleep Center, Division De Pediatria, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Lourdes M DelRosso
- Department of Pediatrics, University of Washington Seattle, Seattle, Washington
| | - Monica L Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
6
|
Caris AV, Thomatieli-Santos RV. Carbohydrate and Glutamine Supplementation Attenuates the Increase in Rating of Perceived Exertion during Intense Exercise in Hypoxia Similar to 4200 m. Nutrients 2020; 12:nu12123797. [PMID: 33322280 PMCID: PMC7763460 DOI: 10.3390/nu12123797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022] Open
Abstract
The rating of perceived exertion (RPE) indicates the feeling of fatigue. However, hypoxia worsens the condition and can worsen RPE. We evaluated whether carbohydrate and glutamine supplementation alters RPE and physiological markers in running at 70% peak oxygen uptake until exhaustion in a simulated altitude of 4500 m. Nine volunteers underwent three running tests at 70% peak oxygen uptake until exhaustion: (1) hypoxia and placebo, (2) hypoxia and 8% maltodextrin, and (3) hypoxia after six days of glutamine supplementation (20 g/day) and 8% maltodextrin. The exercise and supplementation were randomized and double-blinded. Lactate, heart rate, haemoglobin O2 saturation (SpO2%), and RPE (6-20 scale) were analyzed at the 15th and 30th min. The level of significance was set at p ≤ 0.05. SpO2% decreased at the 15th and 30th minutes compared to resting in placebo, carbohydrate, and glutamine supplementation. RPE increased at the 30th minute compared to the 15th minute in placebo and carbohydrate supplementation; however, there was no difference in the glutamine supplementation condition. Heart rate and lactate increased after the 15th and 30th minutes compared to resting, similar to the three conditions studied. We conclude that previous supplementation with glutamine and carbohydrate during intense exercise in hypoxia similar to 4500 m can attenuate the increase in RPE by the increase in glycemia and can be a useful strategy for people who exercise in these conditions.
Collapse
Affiliation(s)
- Aline V. Caris
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil;
| | - Ronaldo V. Thomatieli-Santos
- Department of Bioscience, Universidade Federal de São Paulo, São Paulo 11015-020, Brazil
- Correspondence: ; Tel.: +55-11-5572-0177
| |
Collapse
|
7
|
Kennaway DJ. Measuring melatonin by immunoassay. J Pineal Res 2020; 69:e12657. [PMID: 32281677 DOI: 10.1111/jpi.12657] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
Abstract
The pineal gland hormone melatonin continues to be of considerable interest to biomedical researchers. Of particular interest is the pattern of secretion of melatonin in relation to sleep timing as well as its potential role in certain diseases. Measuring melatonin in biological fluids such as blood and saliva presents particular methodological challenges since the production and secretion of the hormone are known to be extremely low during the light phase in almost all situations. Active secretion only occurs around the time of lights out in a wide range of species. The challenge then is to develop practical high-throughput assays that are sufficiently sensitive and accurate enough to detect levels of melatonin less than 1 pg/mL in biological fluids. Mass spectrometry assays have been developed that achieve the required sensitivity, but are really not practical or even widely available to most researchers. Melatonin radioimmunoassays and ELISA have been developed and are commercially available. But the quality of the results that are being published is very variable, partly not only because of poor experimental designs, but also because of poor assays. In this review, I discuss issues around the design of studies involving melatonin measurement. I then provide a critical assessment of 21 immunoassay kits marketed by 11 different companies with respect to validation, specificity and sensitivity. Technical managers of the companies were contacted in an attempt to obtain information not available online or in kit inserts. A search of the literature was also conducted to uncover papers that have reported the use of these assays, and where possible, both daytime and night-time plasma or saliva melatonin concentrations were extracted and tabulated. The results of the evaluations are disturbing, with many kits lacking any validation studies or using inadequate validation methods. Few assays have been properly assessed for specificity, while others report cross-reaction profiles that can be expected to result in over estimation of the melatonin levels. Some assays are not fit for purpose because they are not sensitive enough to determine plasma or saliva DLMO of 10 and 3 pg/mL, respectively. Finally, some assays produce unrealistically high daytime melatonin levels in humans and laboratory animals in the order of hundreds of pg/mL. In summary, this review provides a comprehensive and unique assessment of the current commercial melatonin immunoassays and their use in publications. It provides researchers new to the field with the information they need to design valid melatonin studies from both the perspective of experimental/clinical trial design and the best assay methodologies. It will also hopefully help journal editors and reviewers who may not be fully aware of the pitfalls of melatonin measurement make better informed decisions on publication acceptability.
Collapse
Affiliation(s)
- David J Kennaway
- Robinson Research Institute and Adelaide School of Medicine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
8
|
Stacchiotti A, Favero G, Rodella LF. Impact of Melatonin on Skeletal Muscle and Exercise. Cells 2020; 9:cells9020288. [PMID: 31991655 PMCID: PMC7072499 DOI: 10.3390/cells9020288] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle disorders are dramatically increasing with human aging with enormous sanitary costs and impact on the quality of life. Preventive and therapeutic tools to limit onset and progression of muscle frailty include nutrition and physical training. Melatonin, the indole produced at nighttime in pineal and extra-pineal sites in mammalians, has recognized anti-aging, anti-inflammatory, and anti-oxidant properties. Mitochondria are the favorite target of melatonin, which maintains them efficiently, scavenging free radicals and reducing oxidative damage. Here, we discuss the most recent evidence of dietary melatonin efficacy in age-related skeletal muscle disorders in cellular, preclinical, and clinical studies. Furthermore, we analyze the emerging impact of melatonin on physical activity. Finally, we consider the newest evidence of the gut-muscle axis and the influence of exercise and probably melatonin on the microbiota. In our opinion, this review reinforces the relevance of melatonin as a safe nutraceutical that limits skeletal muscle frailty and prolongs physical performance.
Collapse
Affiliation(s)
- Alessandra Stacchiotti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (G.F.); (L.F.R.)
- Interdepartmental University Center of Research “Adaptation and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Correspondence: ; Tel.: +39-030-3717478; Fax: +39-030-3717486
| | - Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (G.F.); (L.F.R.)
| | - Luigi Fabrizio Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (G.F.); (L.F.R.)
- Interdepartmental University Center of Research “Adaptation and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|