1
|
Franczak E, Maurer A, Drummond VC, Kugler BA, Wells E, Wenger M, Peelor FF, Crosswhite A, McCoin CS, Koch LG, Britton SL, Miller BF, Thyfault JP. Divergence in aerobic capacity and energy expenditure influence metabolic tissue mitochondrial protein synthesis rates in aged rats. GeroScience 2024; 46:2207-2222. [PMID: 37880490 PMCID: PMC10828174 DOI: 10.1007/s11357-023-00985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/14/2023] [Indexed: 10/27/2023] Open
Abstract
Age-associated declines in aerobic capacity promote the development of various metabolic diseases. In rats selectively bred for high/low intrinsic aerobic capacity, greater aerobic capacity reduces susceptibility to metabolic disease while increasing longevity. However, little remains known how intrinsic aerobic capacity protects against metabolic disease, particularly with aging. Here, we tested the effects of aging and intrinsic aerobic capacity on systemic energy expenditure, metabolic flexibility and mitochondrial protein synthesis rates using 24-month-old low-capacity (LCR) or high-capacity runner (HCR) rats. Rats were fed low-fat diet (LFD) or high-fat diet (HFD) for eight weeks, with energy expenditure (EE) and metabolic flexibility assessed utilizing indirect calorimetry during a 48 h fast/re-feeding metabolic challenge. Deuterium oxide (D2O) labeling was used to assess mitochondrial protein fraction synthesis rates (FSR) over a 7-day period. HCR rats possessed greater EE during the metabolic challenge. Interestingly, HFD induced changes in respiratory exchange ratio (RER) in male and female rats, while HCR female rat RER was largely unaffected by diet. In addition, analysis of protein FSR in skeletal muscle, brain, and liver mitochondria showed tissue-specific adaptations between HCR and LCR rats. While brain and liver protein FSR were altered by aerobic capacity and diet, these effects were less apparent in skeletal muscle. Overall, we provide evidence that greater aerobic capacity promotes elevated EE in an aged state, while also regulating metabolic flexibility in a sex-dependent manner. Modulation of mitochondrial protein FSR by aerobic capacity is tissue-specific with aging, likely due to differential energetic requirements by each tissue.
Collapse
Affiliation(s)
- Edziu Franczak
- Department of Cell Biology and Physiology, Medical Center, The University of Kansas, Kansas City, KS, 66160, USA
- Kansas City Veterans Affairs Medical Center, Kansas City, MO, 64128, USA
| | - Adrianna Maurer
- Department of Cell Biology and Physiology, Medical Center, The University of Kansas, Kansas City, KS, 66160, USA
| | - Vivien Csikos Drummond
- Department of Cell Biology and Physiology, Medical Center, The University of Kansas, Kansas City, KS, 66160, USA
| | - Benjamin A Kugler
- Department of Cell Biology and Physiology, Medical Center, The University of Kansas, Kansas City, KS, 66160, USA
- Kansas Center for Metabolism and Obesity Research, Kansas City, MO, 64128, USA
- KU Diabetes Institute and Department of Internal Medicine-Division of Endocrinology and Metabolism, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Hemenway Life Sciences Innovation Center, Mailstop 3043, Kansas City, KS, 66160, USA
| | - Emily Wells
- Department of Cell Biology and Physiology, Medical Center, The University of Kansas, Kansas City, KS, 66160, USA
| | - Madi Wenger
- Department of Cell Biology and Physiology, Medical Center, The University of Kansas, Kansas City, KS, 66160, USA
- Kansas Center for Metabolism and Obesity Research, Kansas City, MO, 64128, USA
- KU Diabetes Institute and Department of Internal Medicine-Division of Endocrinology and Metabolism, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Hemenway Life Sciences Innovation Center, Mailstop 3043, Kansas City, KS, 66160, USA
| | | | - Abby Crosswhite
- Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Colin S McCoin
- Department of Cell Biology and Physiology, Medical Center, The University of Kansas, Kansas City, KS, 66160, USA
- Kansas City Veterans Affairs Medical Center, Kansas City, MO, 64128, USA
- Kansas Center for Metabolism and Obesity Research, Kansas City, MO, 64128, USA
- KU Diabetes Institute and Department of Internal Medicine-Division of Endocrinology and Metabolism, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Hemenway Life Sciences Innovation Center, Mailstop 3043, Kansas City, KS, 66160, USA
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43606, USA
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Benjamin F Miller
- KU Diabetes Institute and Department of Internal Medicine-Division of Endocrinology and Metabolism, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Hemenway Life Sciences Innovation Center, Mailstop 3043, Kansas City, KS, 66160, USA
| | - John P Thyfault
- Department of Cell Biology and Physiology, Medical Center, The University of Kansas, Kansas City, KS, 66160, USA.
- Kansas City Veterans Affairs Medical Center, Kansas City, MO, 64128, USA.
- Kansas Center for Metabolism and Obesity Research, Kansas City, MO, 64128, USA.
- KU Diabetes Institute and Department of Internal Medicine-Division of Endocrinology and Metabolism, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Hemenway Life Sciences Innovation Center, Mailstop 3043, Kansas City, KS, 66160, USA.
| |
Collapse
|
2
|
Fleischman JY, Qi NR, Treutelaar MK, Britton SL, Koch LG, Li JZ, Burant CF. Intrinsic cardiorespiratory fitness modulates clinical and molecular response to caloric restriction. Mol Metab 2023; 68:101668. [PMID: 36642218 PMCID: PMC9938335 DOI: 10.1016/j.molmet.2023.101668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE Caloric restriction (CR) is one extrinsic intervention that can improve metabolic health, and it shares many phenotypical parallels with intrinsic high cardiorespiratory fitness (CRF), including reduced adiposity, increased cardiometabolic health, and increased longevity. CRF is a highly heritable trait in humans and has been established in a genetic rat model selectively bred for high (HCR) and low (LCR) CRF, in which the HCR live longer and have reduced body weight compared to LCR. This study addresses whether the inherited high CRF phenotype occurs through similar mechanisms by which CR promotes health and longevity. METHODS We compared HCR and LCR male rats fed ad libitum (AL) or calorically restricted (CR) for multiple physiological, metabolic, and molecular traits, including running capacity at 2, 8, and 12 months; per-hour metabolic cage activity over daily cycles at 6 and 12 months; and plasma lipidomics, liver and muscle transcriptomics, and body composition after 12 months of treatment. RESULTS LCR-CR developed a physiological profile that mirrors the high-CRF phenotype in HCR-AL, including reduced adiposity and increased insulin sensitivity. HCR show higher spontaneous activity than LCR. Temporal modeling of hourly energy expenditure (EE) dynamics during the day, adjusted for body weight and hourly activity levels, suggest that CR has an EE-suppressing effect, and high-CRF has an EE-enhancing effect. Pathway analysis of gene transcripts indicates that HCR and LCR both show a response to CR that is similar in the muscle and different in the liver. CONCLUSIONS CR provides LCR a health-associated positive effect on physiological parameters that strongly resemble HCR. Analysis of whole-body EE and transcriptomics suggests that HCR and LCR show line-dependent responses to CR that may be accreditable to difference in genetic makeup. The results do not preclude the possibility that CRF and CR pathways may converge.
Collapse
Affiliation(s)
- Johanna Y Fleischman
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Nathan R Qi
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Michigan Mouse Metabolic Phenotyping Center, University of Michigan, Ann Arbor, MI, USA
| | - Mary K Treutelaar
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Steven L Britton
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA; Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo, Toledo, OH, USA
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Charles F Burant
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Davis AE, Smyers ME, Beltz L, Mehta DM, Britton SL, Koch LG, Novak CM. Differential weight loss with intermittent fasting or daily calorie restriction in low- and high-fitness phenotypes. Exp Physiol 2021; 106:1731-1742. [PMID: 34086376 DOI: 10.1113/ep089434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/02/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? How does intrinsic aerobic capacity impact weight loss with 50% daily caloric restriction and alternate-day fasting? What is the main finding and its importance? Intermittent fasting is effective for weight loss in rats with low fitness, which highlights the importance of how intermittent fasting interacts with aerobic fitness. ABSTRACT Recent interest has focused on the benefits of time-restricted feeding strategies, including intermittent fasting, for weight loss. It is not yet known whether intermittent fasting is more effective than daily caloric restriction at stimulating weight loss and how each is subject to individual differences. Here, rat models of leanness and obesity, artificially selected for intrinsically high (HCR) and low (LCR) aerobic capacity, were subjected to intermittent fasting and 50% calorie restrictive diets in two separate experiments using male rats. The lean, high-fitness HCR and obesity-prone, low-fitness LCR rats underwent 50% caloric restriction while body weight and composition were monitored. The low-fitness LCR rats were better able to retain lean mass than the high-fitness HCR rats, without significantly different proportional loss of weight or fat. In a separate experiment using intermittent fasting in male HCR and LCR rats, alternate-day fasting induced significantly greater loss of weight and fat mass in LCR compared with HCR rats, although the HCR rats had a more marked reduction in ad libitum daily food intake. Altogether, this suggests that intermittent fasting is an effective weight-loss strategy for those with low intrinsic aerobic fitness; however, direct comparison of caloric restriction and intermittent fasting is warranted to determine any differential effects on energy expenditure in lean and obesity-prone phenotypes.
Collapse
Affiliation(s)
- Ashley E Davis
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - Mark E Smyers
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - Lisa Beltz
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Devanshi M Mehta
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Colleen M Novak
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA.,Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| |
Collapse
|