1
|
Mashahadi Z, Saadati H, Ghaheri Fard S. Early-life manipulation of the serotonergic system exacerbates the harmful effects of sleep deprivation on cognitive functions. Int J Dev Neurosci 2024; 84:670-678. [PMID: 38984677 DOI: 10.1002/jdn.10363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Serotonin is a monoamine neurotransmitter that plays a main role in regulating physiological and cognitive functions. Serotonergic system dysfunction is involved in the etiology of various psychiatric and neurological disorders. Therefore, the present study was designed to investigate the effects of early-life serotonin depletion on cognitive disorders caused by sleep deprivation. Serotonin was depleted by para-chlorophenylalanine (PCPA, 100 mg/kg, s.c.) at postnatal days 10-20, followed by sleep deprivation-induced through the multiple platform apparatus for 24 h at PND 60. After the examination of the novel object recognition and passive avoidance memories, the hippocampi and prefrontal cortex were dissected to examine the brain-derived neurotrophic factor (BDNF) mRNA expression by PCR. Our findings showed that postnatal serotonin depletion and sleep deprivation impaired the novel object recognition and passive avoidance memories and changed the BDNF levels. In the same way, the serotonin depletion in early life before sleep deprivation exacerbated the harmful effects of sleep deprivation on cognitive function and BDNF levels. It can be claimed that the serotonergic system plays a main role in the modulation of sleep and cognitive functions.
Collapse
Affiliation(s)
- Zahra Mashahadi
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hakimeh Saadati
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Safa Ghaheri Fard
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
2
|
Jiang J, Li D, Huang T, Huang S, Tan H, Xia Z. Antioxidants and the risk of sleep disorders: results from NHANES and two-sample Mendelian randomization study. Front Nutr 2024; 11:1453064. [PMID: 39416650 PMCID: PMC11480095 DOI: 10.3389/fnut.2024.1453064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Background Sleep disorders have emerged as a major public health concern. Observational research indicates that antioxidants might mitigate the risk of sleep disturbances, yet the causal relationship remains uncertain. Materials and methods This study utilized data from the National Health and Nutrition Examination Survey (NHANES) spanning 2011 to 2018, focusing on adults who reported sleep disorders. The analysis included 25,178 American adults. We examined the association between the Composite Dietary Antioxidant Index (CDAI) and the prevalence of sleep disorders. Additionally, a two-sample Mendelian randomization analysis was conducted to explore the potential causal link between CDAI and the risk of sleep disorders. Results Analysis of data from the 2011-2018 NHANES survey revealed a significant negative association between CDAI and sleep disorders (OR = 0.854, 95% CI 0.821-0.888, P < 0.001). A multivariable logistic regression model showed that each unit increase in CDAI corresponded to a 14.6% reduction in sleep disorder risk, exhibiting a nonlinear trend where the risk decreased until reaching the inflection point of -0.134. Additionally, MR analysis demonstrated that genetically determined selenium reduces the risk of OSA (OR = 0.992, 95% CI 0.860-0.989, P = 0.023). Furthermore, vitamin E (γ-tocopherol) and vitamin C were protective against sleep-wake disorders (OR = 0.016, 95% CI 0.001-0.674, P = 0.03) and (OR = 0.049, 95% CI 0.007-0.346, P = 0.002), respectively. Conclusion Dietary antioxidants may help prevent sleep disorders. However, further studies are required to clarify the pathways through which antioxidants exert this protective effect.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhongfang Xia
- Department of Otolaryngology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Gonçalves LDS, Rusch G, Alves AG, Krüger LD, Paim MP, Martins CC, da Motta KP, Neto JSS, Luchese C, Wilhelm EA, Brüning CA, Bortolatto CF. Acute 2-phenyl-3-(phenylselanyl)benzofuran treatment reverses the neurobehavioral alterations induced by sleep deprivation in mice. Biochem Pharmacol 2024; 226:116339. [PMID: 38848781 DOI: 10.1016/j.bcp.2024.116339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/05/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Sleep is a fundamental state for maintaining the organism homeostasis. Disruptions in sleep patterns predispose to the appearance of memory impairments and mental disorders, including depression. Recent pre-clinical studies have highlighted the antidepressant-like properties of the synthetic compound 2-phenyl-3-(phenylselanyl)benzofuran (SeBZF1). To further investigate the neuromodulatory effects of SeBZF1, this study aimed to assess its therapeutic efficacy in ameliorating neurobehavioral impairments induced by sleep deprivation (SD) in mice. For this purpose, a method known as multiple platforms over water was used to induce rapid eye movement (REM) SD. Two hours after acute SD (24 h), male Swiss mice received a single treatment of SeBZF1 (5 mg/kg, intragastric route) or fluoxetine (a positive control, 20 mg/kg, intraperitoneal route). Subsequently, behavioral tests were conducted to assess spontaneous motor function (open-field test), depressive-like behavior (tail suspension test), and memory deficits (Y-maze test). Brain structures were utilized to evaluate oxidative stress markers, monoamine oxidase (MAO) and acetylcholinesterase (AChE) activities. Our findings revealed that SD animals displayed depressive-like behavior and memory impairments, which were reverted by SeBZF1 and fluoxetine treatments. SeBZF1 also reverted the increase in lipoperoxidation levels and glutathione peroxidase activity in the pre-frontal cortex in mice exposed to SD. Besides, the increase in hippocampal AChE activity induced by SD was overturned by SeBZF1. Lastly, cortical MAO-B activity was reestablished by SeBZF1 in mice that underwent SD. Based on the main findings of this study, it can be inferred that the compound SeBZF1 reverses the neurobehavioral alterations induced by sleep deprivation in male Swiss mice.
Collapse
Affiliation(s)
- Luciane da Silva Gonçalves
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brasil
| | - Gabriela Rusch
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brasil
| | - Amália Gonçalves Alves
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brasil
| | - Letícia Devantier Krüger
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brasil
| | - Mariana Parron Paim
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brasil
| | - Carolina Cristóvão Martins
- Laboratório de Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brasil
| | - Ketlyn Pereira da Motta
- Laboratório de Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brasil
| | | | - Cristiane Luchese
- Laboratório de Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brasil
| | - Ethel Antunes Wilhelm
- Laboratório de Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brasil
| | - César Augusto Brüning
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brasil.
| | - Cristiani Folharini Bortolatto
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brasil.
| |
Collapse
|
4
|
Lutfy RH, Salam SA, Mohammed HS, Shakweer MM, Essawy AE. Photomodulatory effects in the hypothalamus of sleep-deprived young and aged rats. Behav Brain Res 2024; 458:114731. [PMID: 37898350 DOI: 10.1016/j.bbr.2023.114731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Insufficient sleep is associated with impaired hypothalamic activity and declined attentional performance. In this study, alterations in the hypothalamus of REM sleep-deprived (SD) young and aged rats, and the modulatory effect of near-infrared (NIR) laser were investigated. Forty-eight male Wistar rats (24 young at 2 months and 24 senile at 14 months) were divided into three groups: the control, the SD group subjected to 72 hr of sleep deprivation, and the transcranial-NIR laser-treated (TLT) group subjected to SD for 72 hr and irradiated with 830 nm laser. The hypothalamic levels of oxidative stress, inflammatory biomarkers, antioxidant enzymes, mitochondrial cytochrome C oxidase (CCO), apoptotic markers (BAX, BCL-2), and neuronal survival-associated genes (BDNF, GLP-1) were evaluated. Furthermore, the hypothalamic tissue alterations were analyzed via histological examination. The results revealed that TLT treatment has enhanced the antioxidant status, prevented oxidative insults, suppressed neuroinflammation, regulated CCO activity, reduced apoptotic markers, and tuned the survival genes (BDNF & GLP-1) in hypothalamic tissue of SD young and aged rats. Microscopically, TLT treatment has ameliorated the SD-induced alterations and restored the normal histological features of hypothalamus tissue. Moreover, the obtained data showed that SD and NIR laser therapy are age-dependent. Altogether, our findings emphasize the age-dependent adverse effects of SD on the hypothalamus and suggest the use of low-laser NIR radiation as a potential non-invasive and therapeutic approach against SD-induced adverse effects in young and aged animals.
Collapse
Affiliation(s)
- Radwa H Lutfy
- Zoology Department, Faculty of Science, Alexandria University, Egypt; School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | | | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Marwa M Shakweer
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Department of Pathology, Faculty of Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Amina E Essawy
- Zoology Department, Faculty of Science, Alexandria University, Egypt
| |
Collapse
|
5
|
Al-Nemrawi N, Wahsheh Y, Alzoubi KH. Transdermal Delivery of Methotrexate Loaded in Chitosan Nanoparticles to Treat Rheumatoid Arthritis. Curr Drug Deliv 2024; 21:451-460. [PMID: 37132147 DOI: 10.2174/1567201820666230428124346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/21/2023] [Accepted: 03/13/2023] [Indexed: 05/04/2023]
Abstract
INTRODUCTION Methotrexate shows high efficiency in the treatment of Rheumatoid arthritis, but its adverse effects cannot be tolerated by many patients. Additionally, Methotrexate suffers from rapid clearance from blood. Polymeric nanoparticles were used to solve these problems including chitosan. METHODS Herein, a new nanoparticulate system to deliver Methotrexate (MTX) using chitosan nanoparticles (CS NPs) was developed to be used transdermally. CS NPs were prepared and characterized. The drug release was studied in vitro and ex vivo using rat skin. The drug performance in vivo was investigated on rats. Formulations were applied topically once a day on the paws and knee joints of arthritis rats for 6 weeks. Paw thickness was measured and synovial fluid samples were collected. RESULTS The results showed that CS NPs were monodispersed, and spherical with a size of 279.9 nm and a charge above ± 30mV. Further, 88.02% of MTX was entrapped in the NPs. CS NPs prolonged MTX release and enhanced its permeation (apparent permeability ⁓35.00cm/h) and retention (retention capacity ⁓12.01%) through rats' skin. The transdermal delivery of MTX-CS NPs improves the progress of the disease compared to free MTX, as reflected by the lower arthritic index values, lower proinflammatory cytokines (TNF-α and IL-6), and higher anti-inflammatory cytokine (IL-10) in the synovial fluid. Further, the oxidative stress activities were significantly higher in the group treated with the MTX-CS NPs, as indicated by GSH. Finally, MTX-CS NPs were more effective in reducing lipid peroxidation in synovial fluid. CONCLUSION In conclusion, loading Methotrexate in chitosan nanoparticles controlled its release and enhance its effectiveness against rheumatoid when applied dermally.
Collapse
Affiliation(s)
- Nusaiba Al-Nemrawi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Yazan Wahsheh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
6
|
Diao H, Li Y, Sun W, Zhang J, Wang M, Chen Y, Zhou F, Li X. REM sleep deprivation induced by the modified multi-platform method has detrimental effects on memory: A systematic review and meta-analysis. Behav Brain Res 2023; 454:114652. [PMID: 37652237 DOI: 10.1016/j.bbr.2023.114652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023]
Abstract
The modified multi-platform method (MMPM) is used to induce animal models of paradoxical sleep deprivation and impairs memory in rodents. However, variations in MMPM protocols have contributed to inconsistent conclusions across studies. This meta-analysis aimed to assess the variations of the MMPM and their effects on memory in rats and mice. A comprehensive search identified 60 studies, and 50 were included in our meta-analysis. Overall, the meta-analysis showed that the MMPM significantly reduced the percentage of time spent in target quadrants (I2 = 54 %, 95 % confidence interval [CI] = [-1.83, -1.18]) and the number of platform-area crossings (I2 = 26 %, 95 % CI = [-1.71, -1.07]) in the Morris water maze (MWM) and shortened the latency to entering the dark compartment in the passive avoidance task (I2 = 68 %, 95 % CI = [-1.36, -0.57]), but it increased the number of errors in the radial arm water maze (RAWM) (I2 = 59 %, 95 % CI = [1.29, 2.07]). Additionally, mice performed worse on the MWM, whereas rats performed worse on the passive avoidance task. More significant memory deficits were found in cross-learning and post-learning MMPM in the MWM and RAWM, respectively. This study provided evidence that the MMPM can be used in preclinical studies of memory deficits induced by paradoxical sleep deprivation.
Collapse
Affiliation(s)
- Huaqiong Diao
- Department of Encephalopathy, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yiming Li
- Department of Chinese Medicine, Zibo Central Hospital, Shandong, China
| | - Wenjun Sun
- Department of Encephalopathy, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Zhang
- Department of Encephalopathy, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Min Wang
- Department of Encephalopathy, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yufei Chen
- Department of Encephalopathy, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fen Zhou
- School of Nursing, Beijing University of Chinese Medicine, Beijing, China.
| | - Xiaoli Li
- Department of Encephalopathy, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
7
|
Neculicioiu VS, Colosi IA, Costache C, Toc DA, Sevastre-Berghian A, Colosi HA, Clichici S. Sleep Deprivation-Induced Oxidative Stress in Rat Models: A Scoping Systematic Review. Antioxidants (Basel) 2023; 12:1600. [PMID: 37627596 PMCID: PMC10451248 DOI: 10.3390/antiox12081600] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Sleep deprivation is highly prevalent in the modern world, possibly reaching epidemic proportions. While multiple theories regarding the roles of sleep exist (inactivity, energy conservation, restoration, brain plasticity and antioxidant), multiple unknowns still remain regarding the proposed antioxidant roles of sleep. The existing experimental evidence is often contradicting, with studies pointing both toward and against the presence of oxidative stress after sleep deprivation. The main goals of this review were to analyze the existing experimental data regarding the relationship between sleep deprivation and oxidative stress, to attempt to further clarify multiple aspects surrounding this relationship and to identify current knowledge gaps. Systematic searches were conducted in three major online databases for experimental studies performed on rat models with oxidative stress measurements, published between 2015 and 2022. A total of 54 studies were included in the review. Most results seem to point to changes in oxidative stress parameters after sleep deprivation, further suggesting an antioxidant role of sleep. Alterations in these parameters were observed in both paradoxical and total sleep deprivation protocols and in multiple rat strains. Furthermore, the effects of sleep deprivation seem to extend beyond the central nervous system, affecting multiple other body sites in the periphery. Sleep recovery seems to be characterized by an increased variability, with the presence of both normalizations in some parameters and long-lasting changes after sleep deprivation. Surprisingly, most studies revealed the presence of a stress response following sleep deprivation. However, the origin and the impact of the stress response during sleep deprivation remain somewhat unclear. While a definitive exclusion of the influence of the sleep deprivation protocol on the stress response is not possible, the available data seem to suggest that the observed stress response may be determined by sleep deprivation itself as opposed to the experimental conditions. Due to this fact, the observed oxidative changes could be attributed directly to sleep deprivation.
Collapse
Affiliation(s)
- Vlad Sever Neculicioiu
- Department of Microbiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Ioana Alina Colosi
- Department of Microbiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Carmen Costache
- Department of Microbiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Dan Alexandru Toc
- Department of Microbiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Alexandra Sevastre-Berghian
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Horațiu Alexandru Colosi
- Division of Medical Informatics and Biostatistics, Department of Medical Education, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Simona Clichici
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Chen P, Ban W, Wang W, You Y, Yang Z. The Devastating Effects of Sleep Deprivation on Memory: Lessons from Rodent Models. Clocks Sleep 2023; 5:276-294. [PMID: 37218868 DOI: 10.3390/clockssleep5020022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
In this narrative review article, we discuss the role of sleep deprivation (SD) in memory processing in rodent models. Numerous studies have examined the effects of SD on memory, with the majority showing that sleep disorders negatively affect memory. Currently, a consensus has not been established on which damage mechanism is the most appropriate. This critical issue in the neuroscience of sleep remains largely unknown. This review article aims to elucidate the mechanisms that underlie the damaging effects of SD on memory. It also proposes a scientific solution that might explain some findings. We have chosen to summarize literature that is both representative and comprehensive, as well as innovative in its approach. We examined the effects of SD on memory, including synaptic plasticity, neuritis, oxidative stress, and neurotransmitters. Results provide valuable insights into the mechanisms by which SD impairs memory function.
Collapse
Affiliation(s)
- Pinqiu Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Weikang Ban
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Wenyan Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yuyang You
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| | - Zhihong Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
9
|
Kholghi G, Alipour V, Rezaie M, Zarrindast MR, Vaseghi S. The Interaction Effect of Sleep Deprivation and Treadmill Exercise in Various Durations on Spatial Memory with Respect to the Oxidative Status of Rats. Neurochem Res 2023; 48:2077-2092. [PMID: 36786943 DOI: 10.1007/s11064-023-03890-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/15/2023]
Abstract
Sleep deprivation (SD) has deleterious effects on cognitive functions including learning and memory. However, some studies have shown that SD can improve cognitive functions. Interestingly, treadmill exercise has both impairment and improvement effects on memory function. In this study, we aimed to investigate the effect of SD for 4 (short-term) and 24 (long-term) hours, and two protocols of treadmill exercise (mild short-term and moderate long-term) on spatial memory performance, and oxidative and antioxidant markers in the serum of rats. Morris Water Maze apparatus was used to assess spatial memory performance. Also, SD was done using gentle handling method. In addition, the serum level of catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) was measured. The results showed that 24 h SD (but not 4 h) had negative effect on spatial memory performance, decreased SOD, CAT, and GSH-Px level, and increased MDA level. Long-term moderate (but not short-term mild) treadmill exercise had also negative effect on spatial memory performance, decreased SOD, CAT, and GSH-Px level, and increased MDA level. Interestingly, both protocols of treadmill exercise reversed spatial memory impairment and oxidative stress induced by 24 h SD. In conclusion, it seems that SD and treadmill exercise interact with each other, and moderate long-term exercise can reverse the negative effects of long-term SD on memory and oxidative status; although, it disrupted memory function and increased oxidative stress by itself.
Collapse
Affiliation(s)
- Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Vahide Alipour
- Department of Physical Education and Sport Sciences, Faculty of Humanities, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Maede Rezaie
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O. Box: 1419815477, Karaj, Iran.
| |
Collapse
|
10
|
Arjmandi-rad S, Zarrindast MR, Shadfar S, Nasehi M. The role of sleep deprivation in streptozotocin-induced Alzheimer’s disease-like sporadic dementia in rats with respect to the serum level of oxidative and inflammatory markers. Exp Brain Res 2022; 240:3259-3270. [DOI: 10.1007/s00221-022-06471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/22/2022] [Indexed: 11/04/2022]
|
11
|
Intervention Effects of Okra Extract on Brain-Gut Peptides and Intestinal Microorganisms in Sleep Deprivation Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9855411. [PMID: 36193125 PMCID: PMC9526647 DOI: 10.1155/2022/9855411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/13/2022] [Indexed: 11/18/2022]
Abstract
Objective Okra, possessing various bioactive components, is used to treat different diseases. This study sought to estimate the intervention effects of okra extract (OE) on brain-gut peptides (BGPs) and intestinal microorganisms in sleep deprivation (SD) rats. Methods SD rat models were established using the modified multiple platform method and then treated with normal saline, diazepam tablets, or different doses of OE. Body weight and average daily water consumption of rats were recorded. Depressive behaviors of rats were assessed by the open field test and sucrose preference test. Serum levels of noradrenaline, melatonin, inflammatory factors (IL-1β/IL-6/TNF-α/IL-4/IL-10), and BGP indexes, including gastrin (GAS), motilin (MTL), 5-hydroxytryptamine (5-HT), cholecystokinin (CCK), and vasoactive intestinal peptide (VIP) were measured by ELISA. Additionally, the DNA relative contents of representative intestinal microorganisms in the collected rat feces were determined using RT-qPCR. Results SD decreased body weight and average daily water consumption and induced depressive behaviors as well as stress and inflammatory responses in rats. SD rats exhibited lowered GAS, MTL, 5-HT, and VIP but elevated CCK and showed diminished DNA relative contents of Bacteroidetes and probiotics (Bifidobacteria and Lactobacilli) but increased Clostridium perfringens. OE at different doses ameliorated the depressive behaviors and mitigated the stress and inflammatory responses in SD rats, raised the serum contents of GAS, MTL, 5-HT, and VIP, reduced CCK level, elevated the DNA relative contents of Bacteroidetes and probiotics, but diminished Clostridium perfringens. OE exhibited similar intervention effects to diazepam tablets (positive control). Conclusion OE exerts intervention effects on BGPs and intestinal microorganisms in SD rats.
Collapse
|