1
|
Gladen-Kolarsky N, Neff CJ, Hack W, Brandes MS, Wiedrick J, Meza-Romero R, Lockwood DR, Quinn JF, Offner H, Vandenbark AA, Gray NE. The CD74 inhibitor DRhQ improves short-term memory and mitochondrial function in 5xFAD mouse model of Aβ accumulation. Metab Brain Dis 2025; 40:95. [PMID: 39808341 DOI: 10.1007/s11011-024-01433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/29/2024] [Indexed: 01/16/2025]
Abstract
Neuroinflammation and mitochondrial dysfunction are early events in Alzheimer's disease (AD) and contribute to neurodegeneration and cognitive impairment. Evidence suggests that the inflammatory axis mediated by macrophage migration inhibitory factor (MIF) binding to its receptor, CD74, plays an important role in many central nervous system (CNS) disorders such as AD. Our group has developed DRhQ, a novel CD74 binding construct which competitively inhibits MIF binding, blocks macrophage activation and migration into the CNS, enhances anti-inflammatory microglia cell numbers and reduces pro-inflammatory gene expression. Here, we evaluate its effects in amyloid-β (Aβ) overexpressing mice. 5xFAD mice and their wild type littermates were treated with DRhQ (100 µg) or vehicle for 4 weeks. DRhQ improved cognition and cortical mitochondrial function in both male and female 5xFAD mice. Aβ plaque burden in 5xFAD animals was not robustly impacted by DRhQ treatment in either the hippocampus or the cortex. Cortical microglial activation was similarly not apparently affected by DRhQ treatment, although in the hippocampus there was evidence of a reduction in activated microglia for female 5xFAD mice. Future studies are needed to confirm this possible sex-dependent response on microglial activation, as well as to optimize the dose and timing of DRhQ treatment and gain a better understanding of its mechanism of action in AD.
Collapse
Affiliation(s)
- Noah Gladen-Kolarsky
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Cody J Neff
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Wyatt Hack
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Mikah S Brandes
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Jack Wiedrick
- Biostatistics & Design Program, OHSU-PSU School of Public Health, Portland, OR, 97201, USA
| | - Roberto Meza-Romero
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Neuroimmunology Research, VA Portland Healthcare System, Portland, OR, 97239, USA
| | - Denesa R Lockwood
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Neuroimmunology Research, VA Portland Healthcare System, Portland, OR, 97239, USA
| | - Joseph F Quinn
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Department of Neurology and Parkinson's Disease Research Education and Clinical Care Center (PADRECC), VA Portland Healthcare System, Portland, OR, 97239, USA
| | - Halina Offner
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Neuroimmunology Research, VA Portland Healthcare System, Portland, OR, 97239, USA
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Arthur A Vandenbark
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Neuroimmunology Research, VA Portland Healthcare System, Portland, OR, 97239, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Nora E Gray
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| |
Collapse
|
2
|
Sheppard PAS, Oomen CA, Bussey TJ, Saksida LM. The Granular Retrosplenial Cortex Is Necessary in Male Rats for Object-Location Associative Learning and Memory, But Not Spatial Working Memory or Visual Discrimination and Reversal, in the Touchscreen Operant Chamber. eNeuro 2024; 11:ENEURO.0120-24.2024. [PMID: 38844347 PMCID: PMC11208985 DOI: 10.1523/eneuro.0120-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
The retrosplenial cortex (RSC) is a hub of diverse afferent and efferent projections thought to be involved in associative learning. RSC shows early pathology in mild cognitive impairment and Alzheimer's disease (AD), which impairs associative learning. To understand and develop therapies for diseases such as AD, animal models are essential. Given the importance of human RSC in object-location associative learning and the success of object-location associative paradigms in human studies and in the clinic, it would be of considerable value to establish a translational model of object-location learning for the rodent. For this reason, we sought to test the role of RSC in object-location learning in male rats using the object-location paired-associates learning (PAL) touchscreen task. First, increased cFos immunoreactivity was observed in granular RSC following PAL training when compared with extended pretraining controls. Following this, RSC lesions following PAL acquisition were used to explore the necessity of the RSC in object-location associative learning and memory and two tasks involving only one modality: trial-unique nonmatching-to-location for spatial working memory and pairwise visual discrimination/reversal. RSC lesions impaired both memory for learned paired-associates and learning of new object-location associations but did not affect performance in either the spatial or visual single-modality tasks. These findings provide evidence that RSC is necessary for object-location learning and less so for learning and memory involving the individual modalities therein.
Collapse
Affiliation(s)
- Paul A S Sheppard
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5B7, Canada
| | - Charlotte A Oomen
- Department of Experimental Psychology, University of Cambridge, Cambridge CB2 1TN, United Kingdom
- MRC and Wellcome Trust Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Timothy J Bussey
- Department of Experimental Psychology, University of Cambridge, Cambridge CB2 1TN, United Kingdom
- MRC and Wellcome Trust Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Lisa M Saksida
- Department of Experimental Psychology, University of Cambridge, Cambridge CB2 1TN, United Kingdom
- MRC and Wellcome Trust Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| |
Collapse
|
3
|
Bellio TA, Laguna-Torres JY, Campion MS, Chou J, Yee S, Blusztajn JK, Mellott TJ. Perinatal choline supplementation prevents learning and memory deficits and reduces brain amyloid Aβ42 deposition in AppNL-G-F Alzheimer's disease model mice. PLoS One 2024; 19:e0297289. [PMID: 38315685 PMCID: PMC10843108 DOI: 10.1371/journal.pone.0297289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by cognitive and memory impairments and neuropathological abnormalities. AD has no cure, inadequate treatment options, and a limited understanding of possible prevention measures. Previous studies have demonstrated that AD model mice that received a diet high in the essential nutrient choline had reduced amyloidosis, cholinergic deficits, and gliosis, and increased neurogenesis. In this study, we investigated the lifelong effects of perinatal choline supplementation on behavior, cognitive function, and amyloidosis in AppNL-G-F AD model mice. Pregnant and lactating mice were given a diet containing either 1.1 g/kg (control) or 5 g/kg (supplemented) of choline chloride until weaning and subsequently, all offspring received the control diet throughout their life. At 3, 6, 9, and 12 months of age, animals were behaviorally tested in the Open Field Test, Elevated Plus Maze, Barnes Maze, and in a contextual fear conditioning paradigm. Immunohistochemical analysis of Aβ42 was also conducted on the brains of these mice. AppNL-G-F mice displayed hippocampal-dependent spatial learning deficits starting at 3-months-old that persisted until 12-months-old. These spatial learning deficits were fully prevented by perinatal choline supplementation at young ages (3 and 6 months) but not in older mice (12 months). AppNL-G-F mice also had impaired fearful learning and memory at 9- and 12-months-old that were diminished by choline supplementation. Perinatal choline supplementation reduced Aβ42 deposition in the amygdala, cortex, and hippocampus of AppNL-G-F mice. Together, these results demonstrate that perinatal choline supplementation is capable of preventing cognitive deficits and dampening amyloidosis in AppNL-G-F mice and suggest that ensuring adequate choline consumption during early life may be a valuable method to prevent or reduce AD dementia and neuropathology.
Collapse
Affiliation(s)
- Thomas A. Bellio
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America
| | - Jessenia Y. Laguna-Torres
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America
| | - Mary S. Campion
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America
| | - Jay Chou
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America
| | - Sheila Yee
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America
| | - Jan K. Blusztajn
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America
| | - Tiffany J. Mellott
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
4
|
Xin Y, Chu T, Zhou S, Xu A. α5GABA A receptor: A potential therapeutic target for perioperative neurocognitive disorders, a review of preclinical studies. Brain Res Bull 2023; 205:110821. [PMID: 37984621 DOI: 10.1016/j.brainresbull.2023.110821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Perioperative neurocognitive disorders (PND) are a common complication in elderly patients following surgery, which not only prolongs the recovery period but also affects their future quality of life and imposes a significant burden on their family and society. Multiple factors, including aging, vulnerability, anesthetic drugs, cerebral oxygen desaturation, and severe pain, have been associated with PND. Unfortunately, no effective drug is currently available to prevent PND. α5 γ-aminobutyric acid subtype A (α5GABAA) receptors have been implicated in cognitive function modulation. Positive or negative allosteric modulators of α5GABAA receptors have been found to improve cognitive impairment under different conditions. Therefore, targeting α5GABAA receptors may represent a promising treatment strategy for PND. This review focuses on preclinical studies of α5GABAA receptors and the risk factors associated with PND, primarily including aging, anesthetics, and neuroinflammation. Specifically, positive allosteric modulators of α5GABAA receptors have improved cognitive function in aged experimental animals. In contrast, negative allosteric modulators of α5GABAA receptors have been found to facilitate cognitive recovery in aged or adult experimental animals undergoing anesthesia and surgery but not in aged experimental animals under anesthesia alone. The reasons for the discordant findings have yet to be elucidated. In preclinical studies, different strategies of drug administration, as well as various behavioral tests, may influence the stability of the results. These issues need to be carefully considered in future studies.
Collapse
Affiliation(s)
- Yueyang Xin
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Tiantian Chu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Siqi Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Aijun Xu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|