1
|
McDonald CF, Serginson J, AlShareef S, Buchan C, Davies H, Miller BR, Munsif M, Smallwood N, Troy L, Khor YH. Thoracic Society of Australia and New Zealand clinical practice guideline on adult home oxygen therapy. Respirology 2024; 29:765-784. [PMID: 39009413 DOI: 10.1111/resp.14793] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/27/2024] [Indexed: 07/17/2024]
Abstract
This Thoracic Society of Australia and New Zealand Guideline on the provision of home oxygen therapy in adults updates a previous Guideline from 2015. The Guideline is based upon a systematic review and meta-analysis of literature to September 2022 and the strength of recommendations is based on GRADE methodology. Long-term oxygen therapy (LTOT) is recommended for its mortality benefit for patients with COPD and other chronic respiratory diseases who have consistent evidence of significant hypoxaemia at rest (PaO2 ≤ 55 mm Hg or PaO2 ≤59 mm Hg in the presence of hypoxaemic sequalae) while in a stable state. Evidence does not support the use of LTOT for patients with COPD who have moderate hypoxaemia or isolated nocturnal hypoxaemia. In the absence of hypoxaemia, there is no evidence that oxygen provides greater palliation of breathlessness than air. Evidence does not support the use of supplemental oxygen therapy during pulmonary rehabilitation in those with COPD and exertional desaturation but normal resting arterial blood gases. Both positive and negative effects of LTOT have been described, including on quality of life. Education about how and when to use oxygen therapy in order to maximize its benefits, including the use of different delivery devices, expectations and limitations of therapy and information about hazards and risks associated with its use are key when embarking upon this treatment.
Collapse
Affiliation(s)
- Christine F McDonald
- Department of Respiratory and Sleep Medicine, Austin Health, Heidelberg, Victoria, Australia
- Institute for Breathing and Sleep, Heidelberg, Victoria, Australia
- Faculty of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - John Serginson
- Department of Respiratory Medicine, Sunshine Coast Health, Birtinya, Queensland, Australia
- School of Nursing, Midwifery & Social Work, University of Queensland, St Lucia, Queensland, Australia
| | - Saad AlShareef
- Department of Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Catherine Buchan
- Respiratory Research@Alfred, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Respiratory Medicine, Alfred Health, Melbourne, Victoria, Australia
| | - Huw Davies
- Respiratory and Sleep Services, Flinders Medical Centre, Southern Adelaide Local Health Network, South Australia, Australia
| | - Belinda R Miller
- Department of Respiratory Medicine, Alfred Health, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Maitri Munsif
- Department of Respiratory and Sleep Medicine, Austin Health, Heidelberg, Victoria, Australia
- Institute for Breathing and Sleep, Heidelberg, Victoria, Australia
- Faculty of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Natasha Smallwood
- Respiratory Research@Alfred, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Respiratory Medicine, Alfred Health, Melbourne, Victoria, Australia
| | - Lauren Troy
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Institute for Academic Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Yet Hong Khor
- Department of Respiratory and Sleep Medicine, Austin Health, Heidelberg, Victoria, Australia
- Institute for Breathing and Sleep, Heidelberg, Victoria, Australia
- Faculty of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Respiratory Research@Alfred, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Singh SJ, Puhan MA, Andrianopoulos V, Hernandes NA, Mitchell KE, Hill CJ, Lee AL, Camillo CA, Troosters T, Spruit MA, Carlin BW, Wanger J, Pepin V, Saey D, Pitta F, Kaminsky DA, McCormack MC, MacIntyre N, Culver BH, Sciurba FC, Revill SM, Delafosse V, Holland AE. An official systematic review of the European Respiratory Society/American Thoracic Society: measurement properties of field walking tests in chronic respiratory disease. Eur Respir J 2014; 44:1447-78. [DOI: 10.1183/09031936.00150414] [Citation(s) in RCA: 493] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This systematic review examined the measurement properties of the 6-min walk test (6MWT), incremental shuttle walk test (ISWT) and endurance shuttle walk test (ESWT) in adults with chronic respiratory disease.Studies that report the evaluation or use of the 6MWT, ISWT or ESWT were included. We searched electronic databases for studies published between January 2000 and September 2013.The 6-min walking distance (6MWD) is a reliable measure (intra-class correlation coefficients ranged from 0.82 to 0.99 in seven studies). There is a learning effect, with greater distance walked on the second test (pooled mean improvement of 26 m in 13 studies). Reliability was similar for ISWT and ESWT, with a learning effect also evident for ISWT (pooled mean improvement of 20 m in six studies). The 6MWD correlates more strongly with peak work capacity (r=0.59–0.93) and physical activity (r=0.40–0.85) than with respiratory function (r=0.10–0.59). Methodological factors affecting 6MWD include track length, encouragement, supplemental oxygen and walking aids. Supplemental oxygen also affects ISWT and ESWT performance. Responsiveness was moderate to high for all tests, with greater responsiveness to interventions that included exercise training.The findings of this review demonstrate that the 6MWT, ISWT and ESWT are robust tests of functional exercise capacity in adults with chronic respiratory disease.
Collapse
|