1
|
Zhao L, Li P, Wang L, Tang Y. Allenamide‐Initiated Cascade [2+2+2] Annulation Enabling the Divergent Total Synthesis of (−)‐Deoxoapodine, (−)‐Kopsifoline D and (±)‐Melotenine A. Angew Chem Int Ed Engl 2022; 61:e202207360. [DOI: 10.1002/anie.202207360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Liu‐Peng Zhao
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Peng‐Juan Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Department of Chemistry East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Lijia Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Department of Chemistry East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Yong Tang
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
2
|
Hop NQ, Son NT. A comprehensive review on phytochemistry and pharmacology of genus Kopsia: monoterpene alkaloids - major secondary metabolites. RSC Adv 2022; 12:19171-19208. [PMID: 35865593 PMCID: PMC9253876 DOI: 10.1039/d2ra01791a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022] Open
Abstract
Kopsia belongs to the family Apocynaceae, which was originally classified as a genus in 1823. Kopsia consists of medicinal plants that can be traditionally used to treat rheumatoid arthritis, pharyngitis, tonsillitis, and dropsy. More than one hundred and twenty-five publications have been documented relating to the phytochemical and pharmacological results, but a systematic review is not available. The goal of this study is to compile almost all of the secondary metabolites from the plants of genus Kopsia, as well as the coverage of their pharmacological research. The document findings were conducted via reliable sources, including Web of Science, Sci-Finder, Science Direct, PubMed, Google Scholar, and publishers, while four words "Kopsia", "monoterpene alkaloids", "Phytochemistry" and "Pharmacology" are key factors to search for references. Most Kopsia secondary metabolites were collected. A total of four hundred and seventy-two, including four hundred and sixty-six monoterpene alkaloids, five triterpenoids, and one sterol, were summarized, along with their resource. Kopsia monoterpene alkaloids presented in various skeletons, but aspidofractinines, eburnamines, and chanofruticosinates are the three major backbones. Mersinines and pauciflorines are new chemical classes of monoterpene alkaloids. With the rich content of monoterpene alkaloids, Kopsia constituents were also the main objects in pharmacological studies since the plant extracts and isolated compounds were proposed for anti-microbial, anti-inflammatory, anti-allergic, anti-diabetic, anti-manic, anti-nociceptive, acetylcholinesterase (AChE) inhibitory, cardiovascular, and vasorelaxant activities, especially cytotoxicity.
Collapse
Affiliation(s)
- Nguyen Quang Hop
- Faculty of Chemistry, Hanoi Pedagogical University 2 (HPU2) Nguyen Van Linh, Xuanhoa Phucyen Vinhphuc Vietnam
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet, Caugiay Hanoi Vietnam
- Graduate University of Science and Technology, VAST Vietnam
| |
Collapse
|
3
|
Zhao LP, Li PJ, Wang L, Tang Y. Allenamide Initiated Cascade [2+2+2] Annulation Enabling the Divergent Total Synthesis of (‐)‐Deoxoapodine, (‐)‐Kopsifoline D and (±)‐Melotenine A. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liu-Peng Zhao
- Shanghai Institute of Organic Chemistry State Key Laboratory of Organometallic Chemistry CHINA
| | - Peng-Juan Li
- East China Normal University Department of Chemistry CHINA
| | - Lijia Wang
- East China Normal University School of Chemistry and Molecular Engineering 500 Dongchuan Rd. 200241 Shanghai CHINA
| | - Yong Tang
- Shanghai Institute of Organic Chemistry State Key Laboratory of Organometallic Chemistry 345 Lingling Rd. 200032 Shanghai CHINA
| |
Collapse
|
4
|
A Catharanthus roseus Fe(II)/α-ketoglutarate-dependent dioxygenase catalyzes a redox-neutral reaction responsible for vindolinine biosynthesis. Nat Commun 2022; 13:3335. [PMID: 35680936 PMCID: PMC9184523 DOI: 10.1038/s41467-022-31100-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/03/2022] [Indexed: 11/08/2022] Open
Abstract
The Madagascar's periwinkle is the model plant for studies of plant specialized metabolism and monoterpenoid indole alkaloids (MIAs), and an important source for the anticancer medicine vinblastine. The elucidation of entire 28-step biosynthesis of vinblastine allowed further investigations for the formation of other remarkably complex bioactive MIAs. In this study, we describe the discovery and characterization of vindolinine synthase, a Fe(II)/α-ketoglutarate-dependent (Fe/2OG) dioxygenase, that diverts assembly of tabersonine to vinblastine toward the formation of three alternatively cyclized MIAs: 19S-vindolinine, 19R-vindolinine, and venalstonine. Vindolinine synthase catalyzes a highly unusual, redox-neutral reaction to form a radical from dehydrosecodine, which is further cyclized by hydrolase 2 to form the three MIA isomers. We further show the biosynthesis of vindolinine epimers from tabersonine using hydrolase 2 catalyzed reverse cycloaddition. While the occurrence of vindolinines is rare in nature, the more widely found venalstonine derivatives are likely formed from similar redox-neutral reactions by homologous Fe/2OG dioxygenases.
Collapse
|
5
|
Abstract
We report the first total synthesis of (-)-kopsifoline A and (+)-kopsifoline E. Our synthetic strategy features a biogenetically inspired regioselective C17-functionalization of a versatile intermediate containing the pentacyclic core of aspidosperma alkaloids. The vinylogous urethane substructure of this intermediate affords (-)-kopsifoline D via C3-C21 bond formation under the Mitsunobu reaction conditions, while it enables selective C17-functionalization en route to (-)-kopsifoline A and (+)-kopsifoline E.
Collapse
Affiliation(s)
- In-Soo Myeong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nadide Hazal Avci
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mohammad Movassaghi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Mu X, Li Y, Zheng N, Long J, Chen S, Liu B, Zhao C, Yang Z. Stereoselective Synthesis of Cyclohepta[
b
]indoles by Visible‐Light‐Induced [2+2]‐Cycloaddition/retro‐Mannich‐type Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xin‐Peng Mu
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Yuan‐He Li
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS) Peking-Tsinghua Center for Life Sciences Peking University Beijing 100871 P. R. China
| | - Nan Zheng
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Jian‐Yu Long
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Si‐Jia Chen
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Bing‐Yan Liu
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Chun‐Bo Zhao
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS) Peking-Tsinghua Center for Life Sciences Peking University Beijing 100871 P. R. China
- Shenzhen Bay Laboratory Shenzhen 518055 P. R. China
| |
Collapse
|
7
|
Mu XP, Li YH, Zheng N, Long JY, Chen SJ, Liu BY, Zhao CB, Yang Z. Stereoselective Synthesis of Cyclohepta[b]indoles by Visible-Light-Induced [2+2]-Cycloaddition/retro-Mannich-type Reactions. Angew Chem Int Ed Engl 2021; 60:11211-11216. [PMID: 33683807 DOI: 10.1002/anie.202101104] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/27/2021] [Indexed: 12/12/2022]
Abstract
A novel method for the concise synthesis of cyclohepta[b]indoles in high yields was developed. The method involves a visible-light-induced, photocatalyzed [2+2]-cycloaddition/ retro-Mannich-type reaction of enaminones. Experimental and computational studies suggested that the reaction is a photoredox process initiated by single-electron oxidation of an enaminone moiety, which undergoes subsequent cyclobutane formation and rapidly fragmentation in a radical-cation state to form cyclohepta[b]indoles.
Collapse
Affiliation(s)
- Xin-Peng Mu
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Yuan-He Li
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, P. R. China
| | - Nan Zheng
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Jian-Yu Long
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Si-Jia Chen
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Bing-Yan Liu
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Chun-Bo Zhao
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China.,Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, P. R. China.,Shenzhen Bay Laboratory, Shenzhen, 518055, P. R. China
| |
Collapse
|
8
|
Mauger A, Jarret M, Kouklovsky C, Poupon E, Evanno L, Vincent G. The chemistry of mavacurane alkaloids: a rich source of bis-indole alkaloids. Nat Prod Rep 2021; 38:1852-1886. [PMID: 33666614 DOI: 10.1039/d0np00088d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: since early reports up to the end of 2020This review presents a complete coverage of the mavacuranes alkaloids since early reports till date. Mavacuranes alkaloids are a restrictive sub-group of monoterpene indole alkaloids (MIAs), which are represented by their two emblematic congeners, namely, C-mavacurine and pleiocarpamine. Their skeleton is defined by a bond between the indolic N1 nitrogen and the C16 carbon of the tetracyclic scaffold of the corynanthe group in MIA. A limited number of congeners is known as this skeleton can be considered as a cul-de-sac in main MIA biosynthetic routes. Thanks to the enhanced enamine-type reactivity, mavacuranes are frequently involved in the formation of multimeric MIA scaffolds. This review covers isolation aspects and synthetic approaches towards the mavacurane core and bisindole assemblies. To access the mavacurane core, only a few strategies are reported and the main synthetic difficulties usually originate from the important rigidity of the pentacyclic system. For the bisindole assemblies, biomimetic routes are privileged and deliver complex structures using smooth conditions.
Collapse
Affiliation(s)
- Audrey Mauger
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 91405 Orsay, France.
| | - Maxime Jarret
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 91405 Orsay, France.
| | - Cyrille Kouklovsky
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 91405 Orsay, France.
| | - Erwan Poupon
- Biomolécules: Conception, Isolement et Synthèse (BioCIS), Université Paris-Saclay, CNRS, 92290 Châtenay-Malabry, France.
| | - Laurent Evanno
- Biomolécules: Conception, Isolement et Synthèse (BioCIS), Université Paris-Saclay, CNRS, 92290 Châtenay-Malabry, France.
| | - Guillaume Vincent
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 91405 Orsay, France.
| |
Collapse
|
9
|
He T, Wang YD, Li FR, He SY, Cui QM, Liu YP, Zhao TR, Cheng GG. Monoterpenoid indole alkaloids from Kopsia hainanensis Tsiang. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Zhou YG, Wong HNC, Peng XS. Total Syntheses of (-)-Deoxoapodine, (-)-Kopsifoline D, and (-)-Beninine. J Org Chem 2019; 85:967-976. [PMID: 31830791 DOI: 10.1021/acs.joc.9b02918] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The total syntheses of Aspidosperma and Kopsia alkaloids (-)-deoxoapodine, (-)-kopsifoline D, and (-)-beninine are described through a domino deprotection-Michael addition-nucleophilic substitution protocol to assemble the core framework in efficient steps. Corey-Bakshi-Shibata reduction was employed to afford the enantioenriched intermediate for the total syntheses of the aforementioned alkaloids. The chirality was shown to completely transfer to the backbone using Johnson-Claisen rearrangement. The enantioselective total syntheses of (-)-kopsifoline D and (-)-beninine were accomplished for the first time. Our strategy opens up practical avenues for the total synthesis of structurally similar alkaloids.
Collapse
Affiliation(s)
- Yi-Guo Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The Chinese University of Hong Kong , Shatin 100051 , New Territories , Hong Kong SAR, China
| | - Henry N C Wong
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The Chinese University of Hong Kong , Shatin 100051 , New Territories , Hong Kong SAR, China.,School of Science and Engineering , The Chinese University of Hong Kong (Shenzhen) , Shenzhen 518172 , China.,Shenzhen Municipal Key Laboratory of Chemical Synthesis of Medicinal Organic Molecules, Shenzhen Research Institute , The Chinese University of Hong Kong , Shenzhen 518507 , China
| | - Xiao-Shui Peng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The Chinese University of Hong Kong , Shatin 100051 , New Territories , Hong Kong SAR, China.,School of Science and Engineering , The Chinese University of Hong Kong (Shenzhen) , Shenzhen 518172 , China.,Shenzhen Municipal Key Laboratory of Chemical Synthesis of Medicinal Organic Molecules, Shenzhen Research Institute , The Chinese University of Hong Kong , Shenzhen 518507 , China
| |
Collapse
|
11
|
Zhang J, Shukla V, Boger DL. Inverse Electron Demand Diels-Alder Reactions of Heterocyclic Azadienes, 1-Aza-1,3-Butadienes, Cyclopropenone Ketals, and Related Systems. A Retrospective. J Org Chem 2019; 84:9397-9445. [PMID: 31062977 DOI: 10.1021/acs.joc.9b00834] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A summary of the investigation and applications of the inverse electron demand Diels-Alder reaction is provided that have been conducted in our laboratory over a period that now spans more than 35 years. The work, which continues to provide solutions to complex synthetic challenges, is presented in the context of more than 70 natural product total syntheses in which the reactions served as a key strategic step in the approach. The studies include the development and use of the cycloaddition reactions of heterocyclic azadienes (1,2,4,5-tetrazines; 1,2,4-, 1,3,5-, and 1,2,3-triazines; 1,2-diazines; and 1,3,4-oxadiazoles), 1-aza-1,3-butadienes, α-pyrones, and cyclopropenone ketals. Their applications illustrate the power of the methodology, often provided concise and nonobvious total syntheses of the targeted natural products, typically were extended to the synthesis of analogues that contain deep-seated structural changes in more comprehensive studies to explore or optimize their biological properties, and highlight a wealth of opportunities not yet tapped.
Collapse
Affiliation(s)
- Jiajun Zhang
- Department of Chemistry and The Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Vyom Shukla
- Department of Chemistry and The Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Dale L Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
12
|
Hu J, Mao X, Zhang L, Jin N, Yin S, Peng T, Shi J. Indole Alkaloids from the Aerial Parts of Kopsia fruticosa. Chem Nat Compd 2019. [DOI: 10.1007/s10600-019-02725-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Indole alkaloids from the aerial parts of Kopsia fruticosa and their cytotoxic, antimicrobial and antifungal activities. Fitoterapia 2018; 129:145-149. [PMID: 29935259 DOI: 10.1016/j.fitote.2018.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 11/21/2022]
Abstract
A chemical investigation on the 80% EtOH extract of the aerial parts of Kopsia fruticosa led to five new indole alkaloids, kopsifolines G-K (1-5), and one known alkaloid, kopsifoline A (6). Structural elucidation of all the compounds were performed by spectral methods such as 1D and 2D (1H-1H COSY, HMQC, and HMBC) NMR spectroscopy, in addition to high resolution mass spectrometry. The isolated components were evaluated in vitro for cytotoxic activities against seven tumor cell lines, antimicrobial activities against two Gram-positive bacteria and five Gram-negative bacteria, and antifungal activities against five pathogens. As a result, alkaloids 3-5 exhibited some cytotoxicity against all of seven tested tumor cell lines (HS-1, HS-4, SCL-1, A431, BGC-823, MCF-7, and W480) with IC50 values of 11.8-13.8, 10.3-12.5, and 7.3-9.5 μM, respectively. Alkaloids 3-5 also possessed significant antimicrobial and antifungal activities which was reported for the first time for the alkaloids isolated from Kopsia genus.
Collapse
|
14
|
Pan F, Shu C, Ye LW. Recent progress towards gold-catalyzed synthesis of N-containing tricyclic compounds based on ynamides. Org Biomol Chem 2016; 14:9456-9465. [DOI: 10.1039/c6ob01774f] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The recent advances in the gold-catalyzed construction of N-containing tricycles based on ynamides are reviewed by highlighting their specificity and applicability, and the mechanistic rationale.
Collapse
Affiliation(s)
- Fei Pan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Key Laboratory for Chemical Biology of Fujian Province
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Chao Shu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Key Laboratory for Chemical Biology of Fujian Province
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Key Laboratory for Chemical Biology of Fujian Province
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| |
Collapse
|
15
|
Liu XL, Jing DH, Yao Z, Zhang WH, Liu XW, Yang ZJ, Zhao Z, Zhou Y, Li XN. DABCO-catalyzed sp3 C–H activation: rapid access to isoxazole or coumarin-fused 3-quaternary carbon oxindoles and isoxazole-fused pyrrolidinones. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.08.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Zheng N, Chang YY, Zhang LJ, Gong JX, Yang Z. Gold-Catalyzed Intramolecular Tandem Cyclization of Indole-Ynamides: Diastereoselective Synthesis of Spirocyclic Pyrrolidinoindolines. Chem Asian J 2015; 11:371-5. [DOI: 10.1002/asia.201500865] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Nan Zheng
- Laboratory of Chemical Genomics; School of Chemical Biology and Biotechnology; Peking University; Shenzhen Graduate School; Shenzhen 518055 China
| | - Yuan-Yuan Chang
- Laboratory of Chemical Genomics; School of Chemical Biology and Biotechnology; Peking University; Shenzhen Graduate School; Shenzhen 518055 China
| | - Li-Jie Zhang
- Laboratory of Chemical Genomics; School of Chemical Biology and Biotechnology; Peking University; Shenzhen Graduate School; Shenzhen 518055 China
| | - Jian-Xian Gong
- Laboratory of Chemical Genomics; School of Chemical Biology and Biotechnology; Peking University; Shenzhen Graduate School; Shenzhen 518055 China
| | - Zhen Yang
- Laboratory of Chemical Genomics; School of Chemical Biology and Biotechnology; Peking University; Shenzhen Graduate School; Shenzhen 518055 China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and; Beijing National Laboratory for Molecular Science (BNLMS); Peking- Tsinghua Center for Life Sciences; Peking University; Beijing 100871 China
- Key Laboratory of Marine Drugs; Chinese Ministry of Education; School of Medicine and Pharmacy; Ocean University of China; 5 Yushan Road Qingdao 266003 China
| |
Collapse
|
17
|
Mei G, Yuan H, Gu Y, Chen W, Chung LW, Li CC. Dearomative Indole [5+2] Cycloaddition Reactions: Stereoselective Synthesis of Highly Functionalized Cyclohepta[b]indoles. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406278] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Mei G, Yuan H, Gu Y, Chen W, Chung LW, Li CC. Dearomative Indole [5+2] Cycloaddition Reactions: Stereoselective Synthesis of Highly Functionalized Cyclohepta[b]indoles. Angew Chem Int Ed Engl 2014; 53:11051-5. [DOI: 10.1002/anie.201406278] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Indexed: 11/11/2022]
|
19
|
Lee K, Boger DL. Total syntheses of (-)-kopsifoline D and (-)-deoxoapodine: divergent total synthesis via late-stage key strategic bond formation. J Am Chem Soc 2014; 136:3312-7. [PMID: 24499015 PMCID: PMC3985950 DOI: 10.1021/ja500548e] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Indexed: 01/24/2023]
Abstract
Divergent total syntheses of (-)-kopsifoline D and (-)-deoxoapodine are detailed from a common pentacyclic intermediate 15, enlisting the late-stage formation of two different key strategic bonds (C21-C3 and C21-O-C6) unique to their hexacyclic ring systems that are complementary to its prior use in the total syntheses of kopsinine (C21-C2 bond formation) and (+)-fendleridine (C21-O-C19 bond formation). The combined efforts represent the total syntheses of members of four classes of natural products from a common intermediate functionalized for late-stage formation of four different key strategic bonds uniquely embedded in each natural product core structure. Key to the first reported total synthesis of a kopsifoline that is detailed herein was the development of a transannular enamide alkylation for late-stage formation of the C21-C3 bond with direct introduction of the reactive indolenine C2 oxidation state from a penultimate C21 functionalized Aspidosperma-like pentacyclic intermediate. Central to the assemblage of the underlying Apidosperma skeleton is a powerful intramolecular [4 + 2]/[3 + 2] cycloaddition cascade of a 1,3,4-oxadiazole that provided the functionalized pentacyclic ring system 15 in a single step in which the C3 methyl ester found in the natural products served as a key 1,3,4-oxadiazole substituent, activating it for participation in the initiating Diels-Alder reaction and stabilizing the intermediate 1,3-dipole.
Collapse
Affiliation(s)
- Kiyoun Lee
- Department
of Chemistry and
the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L. Boger
- Department
of Chemistry and
the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
20
|
Gan CY, Low YY, Robinson WT, Komiyama K, Kam TS. Aspidospermatan-aspidospermatan and eburnane-sarpagine bisindole alkaloids from Leuconotis. PHYTOCHEMISTRY 2010; 71:1365-1370. [PMID: 20542302 DOI: 10.1016/j.phytochem.2010.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/13/2010] [Accepted: 05/14/2010] [Indexed: 05/29/2023]
Abstract
Leucofoline and leuconoline, representing the first members of the aspidospermatan-aspidospermatan and eburnane-sarpagine subclasses of the bisindole alkaloids, respectively, were isolated from the Malayan Leuconotis griffithii. The structures of these bisindole alkaloids were established using NMR and MS analysis, and in the case of leuconoline, confirmed by X-ray diffraction analysis. Both alkaloids showed weak cytotoxicity towards human KB cells.
Collapse
Affiliation(s)
- Chew-Yan Gan
- Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- Toh-Seok Kam
- Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | | |
Collapse
|
22
|
Subramaniam G, Hiraku O, Hayashi M, Koyano T, Komiyama K, Kam TS. Biologically active aspidofractinine, rhazinilam, akuammiline, and vincorine alkaloids from Kopsia. JOURNAL OF NATURAL PRODUCTS 2007; 70:1783-1789. [PMID: 17939738 DOI: 10.1021/np0703747] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Eleven new indole alkaloids, in addition to the previously reported rhazinal (1), and 14 other known alkaloids, were obtained from the Malayan Kopsia singapurensis, viz., kopsiloscines A-F (2-7), 16-epikopsinine (8), kopsilongine- N-oxide (9), 16-epiakuammiline (10), aspidophylline A (11), and vincophylline (12). The structures of these alkaloids were determined using NMR and MS analyses. Rhazinal (1), rhazinilam (17), and rhazinicine (18) showed appreciable cytotoxicity toward drug-sensitive as well as vincristine-resistant KB cells, while kopsiloscines A (2), B (3), and D (5) and aspidophylline A (11) were found to reverse drug-resistance in drug-resistant KB cells.
Collapse
Affiliation(s)
- G Subramaniam
- Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | | | | | | | |
Collapse
|
23
|
Hong X, France S, Mejía-Oneto JM, Padwa A. Cycloaddition protocol for the assembly of the hexacyclic framework associated with the kopsifoline alkaloids. Org Lett 2007; 8:5141-4. [PMID: 17048863 PMCID: PMC2475586 DOI: 10.1021/ol062029z] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An approach to the hexacyclic framework of the kopsifoline alkaloids has been developed and is based on a Rh(II)-catalyzed cyclization-cycloaddition cascade. The resulting [3+2]-cycloadduct was readily converted into the TBS enol ether 23. Oxidation of the primary alcohol present in 23 followed by reaction with CsF afforded compound 24 that contains the complete hexacyclic skeleton of the kopsifolines. [reaction: see text]
Collapse
|
24
|
Hong X, France S, Padwa A. A Dipolar Cycloaddition Approach Toward the Kopsifoline Alkaloid Framework. Tetrahedron 2007; 63:5962-5976. [PMID: 17710185 PMCID: PMC1948834 DOI: 10.1016/j.tet.2007.01.064] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Using a metal-catalyzed domino reaction as the key step, the heterocyclic skeleton of the kopsifoline alkaloid family was constructed by a 1,3-dipolar cycloaddition of a carbonyl ylide dipole derived from a Rh(II)-catalyzed reaction of a diazo ketoester across the indole pi-bond. Ring opening of the resulting 1,3-dipolar cycloadduct followed by a reductive dehydroxylation step resulted in the formation of a critical silyl enol ether necessary for the final F-ring closure of the kopsifoline skeleton.
Collapse
Affiliation(s)
| | | | - Albert Padwa
- Corresponding Author: Tel.: 404-727-0283; Fax: 404-727-6629; e-mail:
| |
Collapse
|
25
|
Hong X, Mejía-Oneto JM, France S, Padwa A. Photodesulfonylation of indoles initiated by electron transfer from triethylamine. Tetrahedron Lett 2006. [DOI: 10.1016/j.tetlet.2006.01.152] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|