1
|
Cao Q, Han M, Zhang Z, Yu C, Xu L, Shi T, Zheng P, Sun J. Novel 15N Metabolic Labeling-Based Large-Scale Absolute Quantitative Proteomics Method for Corynebacterium glutamicum. Anal Chem 2023; 95:4829-4833. [PMID: 36897266 DOI: 10.1021/acs.analchem.2c05524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
With fast growth, synthetic biology powers us with the capability to produce high commercial value products in an efficient resource/energy-consuming manner. Comprehensive knowledge of the protein regulatory network of a bacterial host chassis, e.g., the actual amount of the given proteins, is the key to building cell factories for certain target hyperproduction. Many talent methods have been introduced for absolute quantitative proteomics. However, for most cases, a set of reference peptides with isotopic labeling (e.g., SIL, AQUA, QconCAT) or a set of reference proteins (e.g., commercial UPS2 kit) needs to be prepared. The higher cost hinders these methods for large sample research. In this work, we proposed a novel metabolic labeling-based absolute quantification approach (termed nMAQ). The reference Corynebacterium glutamicum strain is metabolically labeled with 15N, and a set of endogenous anchor proteins of the reference proteome is quantified by chemically synthesized light (14N) peptides. The prequantified reference proteome was then utilized as an internal standard (IS) and spiked into the target (14N) samples. SWATH-MS analysis is performed to obtain the absolute expression levels of the proteins from the target cells. The cost for nMAQ is estimated to be less than 10 dollars per sample. We have benchmarked the quantitative performance of the novel method. We believe this method will help with the deep understanding of the intrinsic regulatory mechanism of C. glutamicum during bioengineering and will promote the process of building cell factories for synthetic biology.
Collapse
Affiliation(s)
- Qichen Cao
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Systems Biology Centre, Technical Support Core Facilities, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Manman Han
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Systems Biology Centre, Technical Support Core Facilities, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Zuoqing Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Systems Biology Centre, Technical Support Core Facilities, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chang Yu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Systems Biology Centre, Technical Support Core Facilities, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Lida Xu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Systems Biology Centre, Technical Support Core Facilities, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tuo Shi
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jibin Sun
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Systems Biology Centre, Technical Support Core Facilities, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
2
|
Opdensteinen P, Sperl LE, Mohamadi M, Kündgen‐Redding N, Hagn F, Buyel JF. The transient expression of recombinant proteins in plant cell packs facilitates stable isotope labelling for NMR spectroscopy. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1928-1939. [PMID: 35702941 PMCID: PMC9491462 DOI: 10.1111/pbi.13873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/05/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy can be used to determine the structure, dynamics and interactions of proteins. However, protein NMR requires stable isotope labelling for signal detection. The cells used for the production of recombinant proteins must therefore be grown in medium containing isotopically labelled substrates. Stable isotope labelling is well established in Escherichia coli, but bacteria are only suitable for the production of simple proteins without post-translational modifications. More complex proteins require eukaryotic production hosts, but their growth can be impaired by labelled media, thus reducing product yields and increasing costs. To address this limitation, we used media supplemented with isotope-labelled substrates to cultivate the tobacco-derived cell line BY-2, which was then cast into plant cell packs (PCPs) for the transient expression of a labelled version of the model protein GB1. Mass spectrometry confirmed the feasibility of isotope labelling with 15 N and 2 H using this approach. The resulting NMR spectrum featured a signal dispersion comparable to recombinant GB1 produced in E. coli. PCPs therefore offer a rapid and cost-efficient alternative for the production of isotope-labelled proteins for NMR analysis, especially suitable for complex proteins that cannot be produced in microbial systems.
Collapse
Affiliation(s)
- Patrick Opdensteinen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Laura E. Sperl
- Bavarian NMR Center (BNMRZ) at the Department of ChemistryTechnical University of MunichGarchingGermany
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Mariam Mohamadi
- Bavarian NMR Center (BNMRZ) at the Department of ChemistryTechnical University of MunichGarchingGermany
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | | | - Franz Hagn
- Bavarian NMR Center (BNMRZ) at the Department of ChemistryTechnical University of MunichGarchingGermany
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Johannes Felix Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
3
|
Balotf S, Wilson R, Tegg RS, Nichols DS, Wilson CR. Shotgun Proteomics as a Powerful Tool for the Study of the Proteomes of Plants, Their Pathogens, and Plant-Pathogen Interactions. Proteomes 2022; 10:5. [PMID: 35225985 PMCID: PMC8883913 DOI: 10.3390/proteomes10010005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/31/2022] Open
Abstract
The interaction between plants and pathogenic microorganisms is a multifaceted process mediated by both plant- and pathogen-derived molecules, including proteins, metabolites, and lipids. Large-scale proteome analysis can quantify the dynamics of proteins, biological pathways, and posttranslational modifications (PTMs) involved in the plant-pathogen interaction. Mass spectrometry (MS)-based proteomics has become the preferred method for characterizing proteins at the proteome and sub-proteome (e.g., the phosphoproteome) levels. MS-based proteomics can reveal changes in the quantitative state of a proteome and provide a foundation for understanding the mechanisms involved in plant-pathogen interactions. This review is intended as a primer for biologists that may be unfamiliar with the diverse range of methodology for MS-based shotgun proteomics, with a focus on techniques that have been used to investigate plant-pathogen interactions. We provide a summary of the essential steps required for shotgun proteomic studies of plants, pathogens and plant-pathogen interactions, including methods for protein digestion, identification, separation, and quantification. Finally, we discuss how protein PTMs may directly participate in the interaction between a pathogen and its host plant.
Collapse
Affiliation(s)
- Sadegh Balotf
- New Town Research Laboratories, Tasmanian Institute of Agriculture, University of Tasmania, New Town, TAS 7008, Australia; (S.B.); (R.S.T.)
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Robert S. Tegg
- New Town Research Laboratories, Tasmanian Institute of Agriculture, University of Tasmania, New Town, TAS 7008, Australia; (S.B.); (R.S.T.)
| | - David S. Nichols
- Central Science Laboratory, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Calum R. Wilson
- New Town Research Laboratories, Tasmanian Institute of Agriculture, University of Tasmania, New Town, TAS 7008, Australia; (S.B.); (R.S.T.)
| |
Collapse
|
4
|
Abstract
To absolutely and relatively quantitate the alteration of a posttranslationally modified (PTM) proteome in response to a specific internal or external signal, a 15N-stable isotope labeling in Arabidopsis (SILIA) protocol has been integrated into the 4C quantitative PTM proteomics, named as SILIA-based 4C quantitative PTM proteomics (S4Quap). The isotope metabolic labeling produces both forward (F) and reciprocal (R) mixings of either 14N/15N-coded tissues or the 14N/15N-coded total cellular proteins. Plant protein is isolated using a urea-based extraction buffer (UEB). The presence of 8 M urea, 2% polyvinylpolypyrrolidone (PVPP), and 5 mM ascorbic acid allows to instantly denature protein, remove the phenolic compounds, and curb the oxidation by free radicals once plant cells are broken. The total cellular proteins are routinely processed into peptides by trypsin. The PTM peptide yield of affinity enrichment and preparation is 0.1-0.2% in general. Ion exchange chromatographic fractionation prepares the PTM peptides for LC-MS/MS analysis. The collected mass spectrograms are subjected to a target-decoy sequence analysis using various search engines. The computational programs are subsequently applied to analyze the ratios of the extracted ion chromatogram (XIC) of the 14N/15N isotope-coded PTM peptide ions and to perform the statistical evaluation of the quantitation results. The Student t-test values of ratios of quantifiable 14N/15N-coded PTM peptides are normally corrected using a Benjamini-Hochberg (BH) multiple hypothesis test to select the significantly regulated PTM peptide groups (BH-FDR < 5%). Consequently, the highly selected prospect candidate(s) of PTM proteins are confirmed and validated using biochemical, molecular, cellular, and transgenic plant analysis.
Collapse
Affiliation(s)
- Emily Oi Ying Wong
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, SAR, China.,Shenzhen Research Institute, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | - Ning Li
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, SAR, China. .,Shenzhen Research Institute, The Hong Kong University of Science and Technology, Hong Kong, SAR, China.
| |
Collapse
|
5
|
Smolikova G, Gorbach D, Lukasheva E, Mavropolo-Stolyarenko G, Bilova T, Soboleva A, Tsarev A, Romanovskaya E, Podolskaya E, Zhukov V, Tikhonovich I, Medvedev S, Hoehenwarter W, Frolov A. Bringing New Methods to the Seed Proteomics Platform: Challenges and Perspectives. Int J Mol Sci 2020; 21:E9162. [PMID: 33271881 PMCID: PMC7729594 DOI: 10.3390/ijms21239162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
For centuries, crop plants have represented the basis of the daily human diet. Among them, cereals and legumes, accumulating oils, proteins, and carbohydrates in their seeds, distinctly dominate modern agriculture, thus play an essential role in food industry and fuel production. Therefore, seeds of crop plants are intensively studied by food chemists, biologists, biochemists, and nutritional physiologists. Accordingly, seed development and germination as well as age- and stress-related alterations in seed vigor, longevity, nutritional value, and safety can be addressed by a broad panel of analytical, biochemical, and physiological methods. Currently, functional genomics is one of the most powerful tools, giving direct access to characteristic metabolic changes accompanying plant development, senescence, and response to biotic or abiotic stress. Among individual post-genomic methodological platforms, proteomics represents one of the most effective ones, giving access to cellular metabolism at the level of proteins. During the recent decades, multiple methodological advances were introduced in different branches of life science, although only some of them were established in seed proteomics so far. Therefore, here we discuss main methodological approaches already employed in seed proteomics, as well as those still waiting for implementation in this field of plant research, with a special emphasis on sample preparation, data acquisition, processing, and post-processing. Thereby, the overall goal of this review is to bring new methodologies emerging in different areas of proteomics research (clinical, food, ecological, microbial, and plant proteomics) to the broad society of seed biologists.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
| | - Daria Gorbach
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Elena Lukasheva
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Gregory Mavropolo-Stolyarenko
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Tatiana Bilova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Alena Soboleva
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Alexander Tsarev
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Ekaterina Romanovskaya
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Ekaterina Podolskaya
- Institute of Analytical Instrumentation, Russian Academy of Science; 190103 St. Petersburg, Russia;
- Institute of Toxicology, Russian Federal Medical Agency; 192019 St. Petersburg, Russia
| | - Vladimir Zhukov
- All-Russia Research Institute for Agricultural Microbiology; 196608 St. Petersburg, Russia; (V.Z.); (I.T.)
| | - Igor Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology; 196608 St. Petersburg, Russia; (V.Z.); (I.T.)
- Department of Genetics and Biotechnology, St. Petersburg State University; 199034 St. Petersburg, Russia
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
| | - Wolfgang Hoehenwarter
- Proteome Analytics Research Group, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany;
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| |
Collapse
|
6
|
Farvardin A, González-Hernández AI, Llorens E, García-Agustín P, Scalschi L, Vicedo B. The Apoplast: A Key Player in Plant Survival. Antioxidants (Basel) 2020; 9:E604. [PMID: 32664231 PMCID: PMC7402137 DOI: 10.3390/antiox9070604] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
The apoplast comprises the intercellular space, the cell walls, and the xylem. Important functions for the plant, such as nutrient and water transport, cellulose synthesis, and the synthesis of molecules involved in plant defense against both biotic and abiotic stresses, take place in it. The most important molecules are ROS, antioxidants, proteins, and hormones. Even though only a small quantity of ROS is localized within the apoplast, apoplastic ROS have an important role in plant development and plant responses to various stress conditions. In the apoplast, like in the intracellular cell compartments, a specific set of antioxidants can be found that can detoxify the different types of ROS produced in it. These scavenging ROS components confer stress tolerance and avoid cellular damage. Moreover, the production and accumulation of proteins and peptides in the apoplast take place in response to various stresses. Hormones are also present in the apoplast where they perform important functions. In addition, the apoplast is also the space where microbe-associated molecular Patterns (MAMPs) are secreted by pathogens. In summary, the diversity of molecules found in the apoplast highlights its importance in the survival of plant cells.
Collapse
Affiliation(s)
- Atefeh Farvardin
- Grupo de Bioquímica y Biotecnología, Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I de Castellón, Avenida de Vicent Sos Baynat, s/n, 12071 Castellón de la Plana, Spain
| | - Ana Isabel González-Hernández
- Grupo de Bioquímica y Biotecnología, Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I de Castellón, Avenida de Vicent Sos Baynat, s/n, 12071 Castellón de la Plana, Spain
| | - Eugenio Llorens
- Grupo de Bioquímica y Biotecnología, Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I de Castellón, Avenida de Vicent Sos Baynat, s/n, 12071 Castellón de la Plana, Spain
| | - Pilar García-Agustín
- Grupo de Bioquímica y Biotecnología, Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I de Castellón, Avenida de Vicent Sos Baynat, s/n, 12071 Castellón de la Plana, Spain
| | - Loredana Scalschi
- Grupo de Bioquímica y Biotecnología, Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I de Castellón, Avenida de Vicent Sos Baynat, s/n, 12071 Castellón de la Plana, Spain
| | - Begonya Vicedo
- Grupo de Bioquímica y Biotecnología, Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I de Castellón, Avenida de Vicent Sos Baynat, s/n, 12071 Castellón de la Plana, Spain
| |
Collapse
|
7
|
Kim S, Nie H, Jun B, Kim J, Lee J, Kim S, Kim E, Kim S. Functional genomics by integrated analysis of transcriptome of sweet potato (Ipomoea batatas (L.) Lam.) during root formation. Genes Genomics 2020; 42:581-596. [PMID: 32240514 DOI: 10.1007/s13258-020-00927-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/26/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Sweet potato is easily propagated by cuttings. But the molecular biological mechanism of adventitious root formation are not yet clear. OBJECTIVE To understand the molecular mechanisms of adventitious root formation from stem cuttings in sweet potato. METHODS RNA-seq analysis was performed using un-rooted stem (0 day) and rooted stem (3 days). Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, comparison with Arabidopsis transcription factors (TFs) of DEGs were conducted to investigate the characteristics of genes and TFs involved in root formation. In addition, qRT-PCR analysis using roots at 0, 3, 6, 9, and 12 days after planting was performed to confirm RNA-seq reliability and related genes expression. RESULTS 42,459 representative transcripts and 2092 DEGs were obtained through the RNA-seq analysis. The DEGs indicated the GO terms related to the single-organism metabolic process and cell periphery, and involved in the biosynthesis of secondary metabolites, and phenylpropanoid biosynthesis in KEGG pathways. The comparison with Arabidopsis thaliana TF database showed that 3 TFs (WRKY, NAC, bHLH) involved in root formation of sweet potato. qRT-PCR analysis, which was conducted to confirm the reliability of RNA-seq analysis, indicated that some metabolisms including oxidative stress and wounding, transport, hormone may be involved in adventitious root formation. CONCLUSIONS The detected genes related to secondary metabolism, some hormone (auxin, gibberellin), transports, etc. and 3 TFs (WRKY, NAC, bHLH) may have functions in adventitious roots formation. This results provide valuable resources for future research on the adventitious root formation of sweet potato.
Collapse
Affiliation(s)
- Sujung Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea
| | - Hualin Nie
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea
| | - Byungki Jun
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea.,NH Seed Research Development Center, Nonghyup Agribusiness Group Incorporation, Anseong, 17558, Korea
| | - Jiseong Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea
| | - Jeongeun Lee
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea
| | - Seungill Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea
| | - Ekyune Kim
- College of Pharmacy, Catholic University of Daegu, Gyeongsan, Gyeongbuk, 38430, Korea
| | - Sunhyung Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea.
| |
Collapse
|
8
|
Borniego ML, Molina MC, Guiamét JJ, Martinez DE. Physiological and Proteomic Changes in the Apoplast Accompany Leaf Senescence in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 10:1635. [PMID: 31969890 PMCID: PMC6960232 DOI: 10.3389/fpls.2019.01635] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/20/2019] [Indexed: 05/14/2023]
Abstract
The apoplast, i.e. the cellular compartment external to the plasma membrane, undergoes important changes during senescence. Apoplastic fluid volume increases quite significantly in senescing leaves, thereby diluting its contents. Its pH elevates by about 0.8 units, similar to the apoplast alkalization in response to abiotic stresses. The levels of 159 proteins decrease, whereas 24 proteins increase in relative abundance in the apoplast of senescing leaves. Around half of the apoplastic proteins of non-senescent leaves contain a N-terminal signal peptide for secretion, while all the identified senescence-associated apoplastic proteins contain the signal peptide. Several of the apoplastic proteins that accumulate during senescence also accumulate in stress responses, suggesting that the apoplast may constitute a compartment where developmental and stress-related programs overlap. Other senescence-related apoplastic proteins are involved in cell wall modifications, proteolysis, carbohydrate, ROS and amino acid metabolism, signaling, lipid transport, etc. The most abundant senescence-associated apoplastic proteins, PR2 and PR5 (e.g. pathogenesis related proteins PR2 and PR5) are related to leaf aging rather than to the chloroplast degradation program, as their levels increase only in leaves undergoing developmental senescence, but not in dark-induced senescent leaves. Changes in the apoplastic space may be relevant for signaling and molecular trafficking underlying senescence.
Collapse
Affiliation(s)
| | | | | | - Dana E. Martinez
- Instituto de Fisiología Vegetal (INFIVE), CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
9
|
Plasma membrane proteome analyses of Arabidopsis thaliana suspension-cultured cells during cold or ABA treatment: Relationship with freezing tolerance and growth phase. J Proteomics 2020; 211:103528. [DOI: 10.1016/j.jprot.2019.103528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/28/2019] [Accepted: 09/15/2019] [Indexed: 11/22/2022]
|
10
|
Bąchor R, Waliczek M, Stefanowicz P, Szewczuk Z. Trends in the Design of New Isobaric Labeling Reagents for Quantitative Proteomics. Molecules 2019; 24:molecules24040701. [PMID: 30781343 PMCID: PMC6412310 DOI: 10.3390/molecules24040701] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/23/2022] Open
Abstract
Modern mass spectrometry is one of the most frequently used methods of quantitative proteomics, enabling determination of the amount of peptides in a sample. Although mass spectrometry is not inherently a quantitative method due to differences in the ionization efficiency of various analytes, the application of isotope-coded labeling allows relative quantification of proteins and proteins. Over the past decade, a new method for derivatization of tryptic peptides using isobaric labels has been proposed. The labels consist of reporter and balanced groups. They have the same molecular weights and chemical properties, but differ in the distribution of stable heavy isotopes. These tags are designed in such a way that during high energy collision induced dissociation (CID) by tandem mass spectrometry, the isobaric tag is fragmented in the specific linker region, yielding reporter ions with different masses. The mass shifts among the reporter groups are compensated by the balancing groups so that the overall mass is the same for all forms of the reagent. Samples of peptides are labeled with the isobaric mass tags in parallel and combined for analysis. Quantification of individual peptides is achieved by comparing the intensity of reporter ions in the tandem mass (MS/MS) spectra. Isobaric markers have found a wide range of potential applications in proteomics. However, the currently available isobaric labeling reagents have some drawbacks, such as high cost of production, insufficient selectivity of the derivatization, and relatively limited enhancement of sensitivity of the analysis. Therefore, efforts have been devoted to the development of new isobaric markers with increased usability. The search for new isobaric markers is focused on developing a more selective method of introducing a tag into a peptide molecule, increasing the multiplexicity of markers, lowering the cost of synthesis, and increasing the sensitivity of measurement by using ionization tags containing quaternary ammonium salts. Here, the trends in the design of new isobaric labeling reagents for quantitative proteomics isobaric derivatization strategies in proteomics are reviewed, with a particular emphasis on isobaric ionization tags. The presented review focused on different types of isobaric reagents used in quantitative proteomics, their chemistry, and advantages offer by their application.
Collapse
Affiliation(s)
- Remigiusz Bąchor
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Mateusz Waliczek
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Piotr Stefanowicz
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Zbigniew Szewczuk
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| |
Collapse
|
11
|
Monte-Bello CC, Araujo EF, Martins MCM, Mafra V, da Silva VCH, Celente V, Caldana C. A Flexible Low Cost Hydroponic System for Assessing Plant Responses to Small Molecules in Sterile Conditions. J Vis Exp 2018:57800. [PMID: 30199012 PMCID: PMC6231878 DOI: 10.3791/57800] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A wide range of studies in plant biology are performed using hydroponic cultures. In this work, an in vitro hydroponic growth system designed for assessing plant responses to chemicals and other substances of interest is presented. This system is highly efficient in obtaining homogeneous and healthy seedlings of the C3 and C4 model species Arabidopsis thaliana and Setaria viridis, respectively. The sterile cultivation avoids algae and microorganism contamination, which are known limiting factors for plant normal growth and development in hydroponics. In addition, this system is scalable, enabling the harvest of plant material on a large scale with minor mechanical damage, as well as the harvest of individual parts of a plant if desired. A detailed protocol demonstrating that this system has an easy and low-cost assembly, as it uses pipette racks as the main platform for growing plants, is provided. The feasibility of this system was validated using Arabidopsis seedlings to assess the effect of the drug AZD-8055, a chemical inhibitor of the target of rapamycin (TOR) kinase. TOR inhibition was efficiently detected as early as 30 min after an AZD-8055 treatment in roots and shoots. Furthermore, AZD-8055-treated plants displayed the expected starch-excess phenotype. We proposed this hydroponic system as an ideal method for plant researchers aiming to monitor the action of plant inducers or inhibitors, as well as to assess metabolic fluxes using isotope-labeling compounds which, in general, requires the use of expensive reagents.
Collapse
Affiliation(s)
- Carolina C Monte-Bello
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in energy and materials (CNPEM); University of Campinas (UNICAMP)
| | - Elias F Araujo
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in energy and materials (CNPEM); University of Viçosa (UFV)
| | - Marina C M Martins
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in energy and materials (CNPEM)
| | | | - Viviane C H da Silva
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in energy and materials (CNPEM); University of Campinas (UNICAMP)
| | - Viviane Celente
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in energy and materials (CNPEM)
| | - Camila Caldana
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in energy and materials (CNPEM); Brazilian Bioethanol Science and Technology Laboratory (CTBE/CNPEM), Max Planck Partner Group;
| |
Collapse
|
12
|
Aguilar-Hernández V, Loyola-Vargas VM. Advanced Proteomic Approaches to Elucidate Somatic Embryogenesis. FRONTIERS IN PLANT SCIENCE 2018; 9:1658. [PMID: 30524454 PMCID: PMC6262180 DOI: 10.3389/fpls.2018.01658] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/25/2018] [Indexed: 05/06/2023]
Abstract
Somatic embryogenesis (SE) is a cell differentiation process by which a somatic cell changes its genetic program and develops into an embryonic cell. Investigating this process with various explant sources in vitro has allowed us to trace somatic embryo development from germination to plantlets and has led to the generation of new technologies, including genetic transformation, endangered species conservation, and synthetic seed production. A transcriptome data comparison from different stages of the developing somatic embryo has revealed a complex network controlling the somatic cell's fate, suggesting that an interconnected network acts at the protein level. Here, we discuss the current progress on SE using proteomic-based data, focusing on changing patterns of proteins during the establishment of the somatic embryo. Despite the advanced proteomic approaches available so far, deciphering how the somatic embryo is induced is still in its infancy. The new proteomics techniques that lead to the quantification of proteins with different abundances during the induction of SE are opening this area of study for the first time. These quantitative differences can elucidate the different pathways involved in SE induction. We envisage that the application of these proteomic technologies can be pivotal to identifying proteins critical to the process of SE, demonstrating the cellular localization, posttranslational modifications, and turnover protein events required to switch from a somatic cell to a somatic embryo cell and providing new insights into the molecular mechanisms underlying SE. This work will help to develop biotechnological strategies for mass production of quality crop material.
Collapse
Affiliation(s)
- Victor Aguilar-Hernández
- Catedrático CONACYT, Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
- *Correspondence: Victor Aguilar-Hernández, orcid.org/0000-0001-8239-4047
| | - Víctor M. Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| |
Collapse
|
13
|
Mazzoni-Putman SM, Stepanova AN. A Plant Biologist's Toolbox to Study Translation. FRONTIERS IN PLANT SCIENCE 2018; 9:873. [PMID: 30013583 PMCID: PMC6036148 DOI: 10.3389/fpls.2018.00873] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/04/2018] [Indexed: 05/03/2023]
Abstract
Across a broad range of species and biological questions, more and more studies are incorporating translation data to better assess how gene regulation occurs at the level of protein synthesis. The inclusion of translation data improves upon, and has been shown to be more accurate than, transcriptional studies alone. However, there are many different techniques available to measure translation and it can be difficult, especially for young or aspiring scientists, to determine which methods are best applied in specific situations. We have assembled this review in order to enhance the understanding and promote the utilization of translational methods in plant biology. We cover a broad range of methods to measure changes in global translation (e.g., radiolabeling, polysome profiling, or puromycylation), translation of single genes (e.g., fluorescent reporter constructs, toeprinting, or ribosome density mapping), sequencing-based methods to uncover the entire translatome (e.g., Ribo-seq or translating ribosome affinity purification), and mass spectrometry-based methods to identify changes in the proteome (e.g., stable isotope labeling by amino acids in cell culture or bioorthogonal noncanonical amino acid tagging). The benefits and limitations of each method are discussed with a particular note of how applications from other model systems might be extended for use in plants. In order to make this burgeoning field more accessible to students and newer scientists, our review includes an extensive glossary to define key terms.
Collapse
|
14
|
Wang W, Zhang X, Deng F, Yuan R, Shen F. Genome-wide characterization and expression analyses of superoxide dismutase (SOD) genes in Gossypium hirsutum. BMC Genomics 2017; 18:376. [PMID: 28499417 PMCID: PMC5429560 DOI: 10.1186/s12864-017-3768-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/07/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Superoxide dismutases (SODs) are a key antioxidant enzyme family, which have been implicated in protecting plants against the toxic effects of reactive oxygen species. Despite current studies have shown that the gene family are involved in plant growth and developmental processes and biotic and abiotic stress responses, little is known about its functional role in upland cotton. RESULTS In the present study, we comprehensively analyzed the characteristics of the SOD gene family in upland cotton (Gossypium hirsutum). Based on their conserved motifs, 18 GhSOD genes were identified and phylogenetically classified into five subgroups which corroborated their classifications based on gene-structure patterns and subcellular localizations. The GhSOD sequences were distributed at different densities across 12 of the 26 chromosomes. The conserved domains, gene family evolution cis-acting elements of promoter regions and miRNA-mediated posttranscriptional regulation were predicted and analyzed. In addition, the expression pattern of 18 GhSOD genes were tested in different tissues/organs and developmental stages, and different abiotic stresses and abscisic acid, which indicated that the SOD gene family possessed temporal and spatial specificity expression specificity and may play important roles in reactive oxygen species scavenging caused by various stresses in upland cotton. CONCLUSIONS This study describes the first genome-wide analysis of the upland cotton SOD gene family, and the results will help establish a foundation for the further cloning and functional verification of the GhSOD gene family during stress responses, leading to crop improvement.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 Shandong People’s Republic of China
| | - Xiaopei Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 Shandong People’s Republic of China
| | - Fenni Deng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 Shandong People’s Republic of China
| | - Rui Yuan
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 Shandong People’s Republic of China
| | - Fafu Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 Shandong People’s Republic of China
| |
Collapse
|
15
|
Podgórska A, Burian M, Szal B. Extra-Cellular But Extra-Ordinarily Important for Cells: Apoplastic Reactive Oxygen Species Metabolism. FRONTIERS IN PLANT SCIENCE 2017; 8:1353. [PMID: 28878783 PMCID: PMC5572287 DOI: 10.3389/fpls.2017.01353] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/20/2017] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS), by their very nature, are highly reactive, and it is no surprise that they can cause damage to organic molecules. In cells, ROS are produced as byproducts of many metabolic reactions, but plants are prepared for this ROS output. Even though extracellular ROS generation constitutes only a minor part of a cell's total ROS level, this fraction is of extraordinary importance. In an active apoplastic ROS burst, it is mainly the respiratory burst oxidases and peroxidases that are engaged, and defects of these enzymes can affect plant development and stress responses. It must be highlighted that there are also other less well-known enzymatic or non-enzymatic ROS sources. There is a need for ROS detoxification in the apoplast, and almost all cellular antioxidants are present in this space, but the activity of antioxidant enzymes and the concentration of low-mass antioxidants is very low. The low antioxidant efficiency in the apoplast allows ROS to accumulate easily, which is a condition for ROS signaling. Therefore, the apoplastic ROS/antioxidant homeostasis is actively engaged in the reception and reaction to many biotic and abiotic stresses.
Collapse
Affiliation(s)
| | | | - Bożena Szal
- *Correspondence: Bożena Szal, Anna Podgórska,
| |
Collapse
|
16
|
Genome-wide analysis of superoxide dismutase gene family in Gossypium raimondii and G. arboreum. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.plgene.2016.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Li X, Yang Y, Yang S, Sun X, Yin X, Zhao Y, Yang Y. Comparative proteomics analyses of intraspecific differences in the response of Stipa purpurea to drought. PLANT DIVERSITY 2016; 38:101-117. [PMID: 30159454 PMCID: PMC6112215 DOI: 10.1016/j.pld.2016.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/26/2016] [Accepted: 03/31/2016] [Indexed: 05/11/2023]
Abstract
Stipa purpurea is widely distributed along a large precipitation gradient on the Tibetan Plateau. This implies that S. purpurea from different populations may have different responses to drought stress. To explore this we compared the morphological and physiological changes of S. purpurea seedlings cultivated from seeds from Gar County and Nagqu County after 7 and 14 days of drought stress and subsequent re-watering. The results showed that S. purpurea plants from the more arid Gar area were more tolerant to drought stress than that from Nagqu. To investigate the potential mechanisms underlying this difference, we used iTRAQ quantitative proteomics technology to analyze protein dynamics in S. purpurea samples treated with 7 days of drought stress and subsequent re-watering. The results indicated that, during the process of drought and re-watering treatments, there were differentially expressed proteins in either or both S. purpurea populations. These differential proteins were divided into 24 functional categories that were mainly associated with stress response, the antioxidant system, photosynthesis, carbohydrate metabolism, and post-translational modifications. According to these results, we concluded that the molecular basis of stronger drought resistance likely lies in the specific up-regulation or higher expression of many proteins involved in stress response, the antioxidant system, post-translational modification and osmotic regulation in S. purpurea from Gar County compared with that from Nagqu. This study improves our understanding of the intraspecific differences in drought resistance within S. purpurea populations, which helps to understand the distribution of S. purpurea along the moisture gradient, as well as the effect of climate change on this species.
Collapse
Key Words
- Adaptation
- CDPK, calcium-dependent protein kinase
- DREB, dehydration responsive element binding protein
- DW, dry weight
- Drought
- GR, Gar Country
- GR-C/-D/-R, GR-Control/-Drought/-Recovery
- HSP, heat shock protein
- LEA, late embryogenesis abundant protein
- MAPK, mitogen activated protein kinase
- NQ, Nagqu Country
- NQ-C/-D/-R, NQ-Control/-Drought/-Recovery
- Proteomics
- ROS, reactive oxygen species
- RWC, relative water content
- Stipa purpurea
- Tibetan Plateau
- iTRAQ, isobaric tag for relative and absolute quantitation
Collapse
Affiliation(s)
- Xiong Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest of China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yunqiang Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest of China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Shihai Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xudong Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest of China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xin Yin
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest of China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Youjie Zhao
- Computer and Information Department, Southwest Forestry University, Kunming, 650224, China
| | - Yongping Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest of China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
18
|
Li X, Jackson A, Xie M, Wu D, Tsai WC, Zhang S. Proteomic insights into floral biology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1050-60. [PMID: 26945514 DOI: 10.1016/j.bbapap.2016.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/25/2016] [Accepted: 02/24/2016] [Indexed: 12/17/2022]
Abstract
The flower is the most important biological structure for ensuring angiosperms reproductive success. Not only does the flower contain critical reproductive organs, but the wide variation in morphology, color, and scent has evolved to entice specialized pollinators, and arguably mankind in many cases, to ensure the successful propagation of its species. Recent proteomic approaches have identified protein candidates related to these flower traits, which has shed light on a number of previously unknown mechanisms underlying these traits. This review article provides a comprehensive overview of the latest advances in proteomic research in floral biology according to the order of flower structure, from corolla to male and female reproductive organs. It summarizes mainstream proteomic methods for plant research and recent improvements on two dimensional gel electrophoresis and gel-free workflows for both peptide level and protein level analysis. The recent advances in sequencing technologies provide a new paradigm for the ever-increasing genome and transcriptome information on many organisms. It is now possible to integrate genomic and transcriptomic data with proteomic results for large-scale protein characterization, so that a global understanding of the complex molecular networks in flower biology can be readily achieved. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Xiaobai Li
- Zhejiang Academy of Agricultural Sciences, Shiqiao Road 139, Hangzhou 310021, PR China; International Atomic Energy Agency Collaborating Center, Zhejiang University, Hangzhou 310029, PR China.
| | | | - Ming Xie
- Zhejiang Academy of Agricultural Sciences, Shiqiao Road 139, Hangzhou 310021, PR China.
| | - Dianxing Wu
- International Atomic Energy Agency Collaborating Center, Zhejiang University, Hangzhou 310029, PR China
| | - Wen-Chieh Tsai
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Sheng Zhang
- Proteomics and Mass Spectrometry Facility, Cornell University, New York 14853, USA
| |
Collapse
|
19
|
Pennington HG, Gheorghe DM, Damerum A, Pliego C, Spanu PD, Cramer R, Bindschedler LV. Interactions between the Powdery Mildew Effector BEC1054 and Barley Proteins Identify Candidate Host Targets. J Proteome Res 2016; 15:826-39. [DOI: 10.1021/acs.jproteome.5b00732] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Helen G. Pennington
- Department
of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Dana M. Gheorghe
- Department
of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Annabelle Damerum
- Department
of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Clara Pliego
- Department
of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Pietro D. Spanu
- Department
of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Rainer Cramer
- Department
of Chemistry, University of Reading, Reading RG6 6AD, United Kingdom
| | - Laurence V. Bindschedler
- Department
of Chemistry, University of Reading, Reading RG6 6AD, United Kingdom
- School
of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, United Kingdom
| |
Collapse
|
20
|
|
21
|
Mithoe SC, Menke FLH. Phosphopeptide immuno-affinity enrichment to enhance detection of tyrosine phosphorylation in plants. Methods Mol Biol 2015; 1306:135-46. [PMID: 25930699 DOI: 10.1007/978-1-4939-2648-0_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Tyrosine (Tyr) phosphorylation plays an essential role in signaling in animal systems, but the relative contribution of Tyr phosphorylation to plant signal transduction has, until recently, remained an open question. One of the major issues hampering the analysis is the low abundance of Tyr phosphorylation and therefore underrepresentation in most mass spec-based proteomic studies. Here, we describe a working approach to selectively enrich Tyr-phosphorylated peptides from complex plant tissue samples. We describe a detailed protocol that is based on immuno-affinity enrichment step using an anti-phospho-tyrosine (pTyr)-specific antibody. This single enrichment strategy effectively enriches pTyr-containing peptides from complex total plant cell extracts, which can be measured by LC-MS/MS without further fractionation or enrichment.
Collapse
|
22
|
Chen C, Liu S, Liu Q, Niu J, Liu P, Zhao J, Jian H. An ANNEXIN-like protein from the cereal cyst nematode Heterodera avenae suppresses plant defense. PLoS One 2015; 10:e0122256. [PMID: 25849616 PMCID: PMC4388550 DOI: 10.1371/journal.pone.0122256] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/10/2015] [Indexed: 11/19/2022] Open
Abstract
Parasitism genes encoding secreted effector proteins of plant-parasitic nematodes play important roles in facilitating parasitism. An annexin-like gene was isolated from the cereal cyst nematode Heterodera avenae (termed Ha-annexin) and had high similarity to annexin 2, which encodes a secreted protein of Globodera pallida. Ha-annexin encodes a predicted 326 amino acid protein containing four conserved annexin domains. Southern blotting revealed that there are at least two homologies in the H. avenae genome. Ha-annexin transcripts were expressed within the subventral gland cells of the pre-parasitic second-stage juveniles by in situ hybridization. Additionally, expression of these transcripts were relatively higher in the parasitic second-stage juveniles by quantitative real-time RT-PCR analysis, coinciding with the time when feeding cell formation is initiated. Knockdown of Ha-annexin by method of barley stripe mosaic virus-based host-induced gene silencing (BSMV-HIGS) caused impaired nematode infections at 7 dpi and reduced females at 40 dpi, indicating important roles of the gene in parasitism at least in early stage in vivo. Transiently expression of Ha-ANNEXIN in onion epidermal cells and Nicotiana benthamiana leaf cells showed the whole cell-localization. Using transient expression assays in N. benthamiana, we found that Ha-ANNEXIN could suppress programmed cell death triggered by the pro-apoptotic mouse protein BAX and the induction of marker genes of PAMP-triggered immunity (PTI) in N. benthamiana. In addition, Ha-ANNEXIN targeted a point in the mitogen-activated protein kinase (MAPK) signaling pathway downstream of two kinases MKK1 and NPK1 in N. benthamiana.
Collapse
Affiliation(s)
- Changlong Chen
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Shusen Liu
- Department of Plant Pathology, China Agricultural University, Beijing, China
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Qian Liu
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Junhai Niu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, China
| | - Pei Liu
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Jianlong Zhao
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Heng Jian
- Department of Plant Pathology, China Agricultural University, Beijing, China
| |
Collapse
|
23
|
Luczak M, Krzeszowiec-Jeleń W, Konopka-Postupolska D, Wojtaszek P. Collagenase as a useful tool for the analysis of plant cellular peripheries. PHYTOCHEMISTRY 2015; 112:195-209. [PMID: 25435175 DOI: 10.1016/j.phytochem.2014.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 10/15/2014] [Accepted: 11/05/2014] [Indexed: 05/25/2023]
Abstract
A technique for the selective loosening of the cell wall structure and the isolation of proteins permanently knotted in the cell walls was elaborated. Following treatment with collagenase, some proteins, such as calreticulin (CRT) and auxin binding protein 1 (ABP1) were released from purified cell walls, most probably through destruction of respective interacting proteins. The results were confirmed by the immunolocalization of the ABP1 and CRT with confocal and electron microscopy. On the other hand, potential substrates of collagenase, among them annexin 1 have been recognized. Mass spectra of annexin 1 obtained after collagenase digestion and results from analysis of potential cleavage sites suggested that the mechanism of enzyme cleavage might not depend on the amino acid sequence. Summarizing, collagenase was found to be a very useful tool for exploring molecules involved in the functioning of cellular peripheries.
Collapse
Affiliation(s)
- Magdalena Luczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland.
| | | | | | - Przemysław Wojtaszek
- Department of Molecular and Cellular Biology, Adam Mickiewicz University, Poznań, Poland.
| |
Collapse
|
24
|
Silva-Sanchez C, Li H, Chen S. Recent advances and challenges in plant phosphoproteomics. Proteomics 2015; 15:1127-41. [PMID: 25429768 DOI: 10.1002/pmic.201400410] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/29/2014] [Accepted: 11/24/2014] [Indexed: 12/13/2022]
Abstract
Plants are sessile organisms that need to respond to environmental changes quickly and efficiently. They can accomplish this by triggering specialized signaling pathways often mediated by protein phosphorylation and dephosphorylation. Phosphorylation is a fast response that can switch on or off a myriad of biological pathways and processes. Proteomics and MS are the main tools employed in the study of protein phosphorylation. Advances in the technologies allow simultaneous identification and quantification of thousands of phosphopeptides and proteins that are essential to understanding the sophisticated biological systems and regulations. In this review, we summarize the advances in phosphopeptide enrichment and quantitation, MS for phosphorylation site mapping and new data acquisition methods, databases and informatics, interpretation of biological insights and crosstalk with other PTMs, as well as future directions and challenges in the field of phosphoproteomics.
Collapse
Affiliation(s)
- Cecilia Silva-Sanchez
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | | | | |
Collapse
|
25
|
Walton A, Stes E, De Smet I, Goormachtig S, Gevaert K. Plant hormone signalling through the eye of the mass spectrometer. Proteomics 2015; 15:1113-26. [DOI: 10.1002/pmic.201400403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/01/2014] [Accepted: 11/13/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Alan Walton
- Department of Medical Protein Research; VIB, Ghent University; Ghent Belgium
- Department of Biochemistry; VIB, Ghent University; Ghent Belgium
- Department of Plant Systems Biology; VIB, Ghent University; Ghent Belgium
- Department of Plant Biotechnology and Bioinformatics; VIB, Ghent University; Ghent Belgium
| | - Elisabeth Stes
- Department of Medical Protein Research; VIB, Ghent University; Ghent Belgium
- Department of Biochemistry; VIB, Ghent University; Ghent Belgium
- Department of Plant Systems Biology; VIB, Ghent University; Ghent Belgium
- Department of Plant Biotechnology and Bioinformatics; VIB, Ghent University; Ghent Belgium
| | - Ive De Smet
- Department of Plant Systems Biology; VIB, Ghent University; Ghent Belgium
- Department of Plant Biotechnology and Bioinformatics; VIB, Ghent University; Ghent Belgium
| | - Sofie Goormachtig
- Department of Plant Systems Biology; VIB, Ghent University; Ghent Belgium
- Department of Plant Biotechnology and Bioinformatics; VIB, Ghent University; Ghent Belgium
| | - Kris Gevaert
- Department of Medical Protein Research; VIB, Ghent University; Ghent Belgium
- Department of Biochemistry; VIB, Ghent University; Ghent Belgium
| |
Collapse
|
26
|
Mora L, Bramley PM, Fraser PD. Development and optimisation of a label-free quantitative proteomic procedure and its application in the assessment of genetically modified tomato fruit. Proteomics 2014; 13:2016-30. [PMID: 23616442 DOI: 10.1002/pmic.201200480] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 04/01/2013] [Accepted: 04/10/2013] [Indexed: 01/01/2023]
Abstract
A key global challenge for plant biotechnology is addressing food security, whereby provision must be made to feed 9 billion people with nutritional feedstuffs by 2050. To achieve this step change in agricultural production new crop varieties are required that are tolerant to environmental stresses imposed by climate change, have better yields, are more nutritious and require less resource input. Genetic modification (GM) and marker-assisted screening will need to be fully utilised to deliver these new crop varieties. To evaluate these varieties both in terms of environmental and food safety and the rational design of traits a systems level characterisation is necessary. To link the transcriptome to the metabolome, quantitative proteomics is required. Routine quantitative proteomics is an important challenge. Gel-based densitometry and MS analysis after stable isotope labeling have been employed. In the present article, we describe the application of a label-free approach that can be used in combination with SDS-PAGE and reverse-phase chromatography to evaluate the changes in the proteome of new crop varieties. The workflow has been optimised for protein coverage, accuracy and robustness, then its application demonstrated using a GM tomato variety engineered to deliver nutrient dense fruit.
Collapse
Affiliation(s)
- Leticia Mora
- Centre for Systems and Synthetic Biology, School of Biological Sciences, Royal Holloway, University of London, Egham, UK
| | | | | |
Collapse
|
27
|
Matthes A, Köhl K, Schulze WX. SILAC and alternatives in studying cellular proteomes of plants. Methods Mol Biol 2014; 1188:65-83. [PMID: 25059605 DOI: 10.1007/978-1-4939-1142-4_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Quantitative proteomics by metabolic labeling has a high impact on the growing field of plant systems biology. SILAC has been pioneered and optimized for plant cell culture systems allowing for SILAC-based quantitative experiments in specialized experimental setups. In comparison to other model organisms, the application of SILAC to whole plants is challenging. As autotrophic organisms, plants under their natural growth conditions can hardly be fully labeled with stable isotope-coded amino acids. The metabolic labeling with inorganic nitrogen is therefore the method of choice for most whole-plant physiological questions. Plants can easily metabolize different inorganic nitrogen isotopes. The incorporation of the labeled inorganic nitrogen then results in proteins and metabolites with distinct molecular mass, which can be detected on a mass spectrometer. In comparative quantitative experiments, similarly as in SILAC experiments, treated and untreated samples are differentially labeled by nitrogen isotopes and jointly processed, thereby minimizing sample-to-sample variation. In recent years, heavy nitrogen labeling has become a widely used strategy in quantitative proteomics and novel approaches were developed for metabolite identification. Here we present a typical hydroponics setup, the workflow for processing of samples, mass spectrometry and data analysis for large-scale metabolic labeling experiments of whole plants.
Collapse
Affiliation(s)
- Annemarie Matthes
- Max Planck Institut für molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Golm, Germany
| | | | | |
Collapse
|
28
|
Agrawal GK, Sarkar A, Righetti PG, Pedreschi R, Carpentier S, Wang T, Barkla BJ, Kohli A, Ndimba BK, Bykova NV, Rampitsch C, Zolla L, Rafudeen MS, Cramer R, Bindschedler LV, Tsakirpaloglou N, Ndimba RJ, Farrant JM, Renaut J, Job D, Kikuchi S, Rakwal R. A decade of plant proteomics and mass spectrometry: translation of technical advancements to food security and safety issues. MASS SPECTROMETRY REVIEWS 2013; 32:335-65. [PMID: 23315723 DOI: 10.1002/mas.21365] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 09/10/2012] [Accepted: 09/10/2012] [Indexed: 05/21/2023]
Abstract
Tremendous progress in plant proteomics driven by mass spectrometry (MS) techniques has been made since 2000 when few proteomics reports were published and plant proteomics was in its infancy. These achievements include the refinement of existing techniques and the search for new techniques to address food security, safety, and health issues. It is projected that in 2050, the world's population will reach 9-12 billion people demanding a food production increase of 34-70% (FAO, 2009) from today's food production. Provision of food in a sustainable and environmentally committed manner for such a demand without threatening natural resources, requires that agricultural production increases significantly and that postharvest handling and food manufacturing systems become more efficient requiring lower energy expenditure, a decrease in postharvest losses, less waste generation and food with longer shelf life. There is also a need to look for alternative protein sources to animal based (i.e., plant based) to be able to fulfill the increase in protein demands by 2050. Thus, plant biology has a critical role to play as a science capable of addressing such challenges. In this review, we discuss proteomics especially MS, as a platform, being utilized in plant biology research for the past 10 years having the potential to expedite the process of understanding plant biology for human benefits. The increasing application of proteomics technologies in food security, analysis, and safety is emphasized in this review. But, we are aware that no unique approach/technology is capable to address the global food issues. Proteomics-generated information/resources must be integrated and correlated with other omics-based approaches, information, and conventional programs to ensure sufficient food and resources for human development now and in the future.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry, PO Box 13265, Kathmandu, Nepal.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lewandowska D, ten Have S, Hodge K, Tillemans V, Lamond AI, Brown JWS. Plant SILAC: stable-isotope labelling with amino acids of arabidopsis seedlings for quantitative proteomics. PLoS One 2013; 8:e72207. [PMID: 23977254 PMCID: PMC3748079 DOI: 10.1371/journal.pone.0072207] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/07/2013] [Indexed: 12/20/2022] Open
Abstract
Stable Isotope Labelling by Amino acids in Cell culture (SILAC) is a powerful technique for comparative quantitative proteomics, which has recently been applied to a number of different eukaryotic organisms. Inefficient incorporation of labelled amino acids in cell cultures of Arabidopsis thaliana has led to very limited use of SILAC in plant systems. We present a method allowing, for the first time, efficient labelling with stable isotope-containing arginine and lysine of whole Arabidopsis seedlings. To illustrate the utility of this method, we have combined the high labelling efficiency (>95%) with quantitative proteomics analyses of seedlings exposed to increased salt concentration. In plants treated for 7 days with 80 mM NaCl, a relatively mild salt stress, 215 proteins were identified whose expression levels changed significantly compared to untreated seedling controls. The 92 up-regulated proteins included proteins involved in abiotic stress responses and photosynthesis, while the 123 down-regulated proteins were enriched in proteins involved in reduction of oxidative stress and other stress responses, respectively. Efficient labelling of whole Arabidopsis seedlings by this modified SILAC method opens new opportunities to exploit the genetic resources of Arabidopsis and analyse the impact of mutations on quantitative protein dynamics in vivo.
Collapse
Affiliation(s)
- Dominika Lewandowska
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- Division of Plant Sciences, College of Life Sciences, University of Dundee at the James Hutton Institute, Dundee, United Kingdom
| | - Sara ten Have
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Kelly Hodge
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Vinciane Tillemans
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Angus I. Lamond
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - John W. S. Brown
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- Division of Plant Sciences, College of Life Sciences, University of Dundee at the James Hutton Institute, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
Abreu IA, Farinha AP, Negrão S, Gonçalves N, Fonseca C, Rodrigues M, Batista R, Saibo NJM, Oliveira MM. Coping with abiotic stress: proteome changes for crop improvement. J Proteomics 2013; 93:145-68. [PMID: 23886779 DOI: 10.1016/j.jprot.2013.07.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 07/02/2013] [Accepted: 07/08/2013] [Indexed: 12/20/2022]
Abstract
Plant breeders need new and more precise tools to accelerate breeding programs that address the increasing needs for food, feed, energy and raw materials, while facing a changing environment in which high salinity and drought have major impacts on crop losses worldwide. This review covers the achievements and bottlenecks in the identification and validation of proteins with relevance in abiotic stress tolerance, also mentioning the unexpected consequences of the stress in allergen expression. While addressing the key pathways regulating abiotic stress plant adaptation, comprehensive data is presented on the proteins confirmed as relevant to confer tolerance. Promising candidates still to be confirmed are also highlighted, as well as the specific protein families and protein modifications for which detection and characterization is still a challenge. This article is part of a Special Issue entitled: Translational Plant Proteomics.
Collapse
Affiliation(s)
- Isabel A Abreu
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Genomics of Plant Stress Laboratory (GPlantS Lab), Av. da República, 2780-157 Oeiras, Portugal; iBET, Apartado 12, 2781-901 Oeiras, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhang H, Zhou H, Berke L, Heck AJR, Mohammed S, Scheres B, Menke FLH. Quantitative phosphoproteomics after auxin-stimulated lateral root induction identifies an SNX1 protein phosphorylation site required for growth. Mol Cell Proteomics 2013; 12:1158-69. [PMID: 23328941 DOI: 10.1074/mcp.m112.021220] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein phosphorylation is instrumental to early signaling events. Studying system-wide phosphorylation in relation to processes under investigation requires a quantitative proteomics approach. In Arabidopsis, auxin application can induce pericycle cell divisions and lateral root formation. Initiation of lateral root formation requires transcriptional reprogramming following auxin-mediated degradation of transcriptional repressors. The immediate early signaling events prior to this derepression are virtually uncharacterized. To identify the signal molecules responding to auxin application, we used a lateral root-inducible system that was previously developed to trigger synchronous division of pericycle cells. To identify and quantify the early signaling events following this induction, we combined (15)N-based metabolic labeling and phosphopeptide enrichment and applied a mass spectrometry-based approach. In total, 3068 phosphopeptides were identified from auxin-treated root tissue. This root proteome dataset contains largely phosphopeptides not previously reported and represents one of the largest quantitative phosphoprotein datasets from Arabidopsis to date. Key proteins responding to auxin treatment included the multidrug resistance-like and PIN2 auxin carriers, auxin response factor2 (ARF2), suppressor of auxin resistance 3 (SAR3), and sorting nexin1 (SNX1). Mutational analysis of serine 16 of SNX1 showed that overexpression of the mutated forms of SNX1 led to retarded growth and reduction of lateral root formation due to the reduced outgrowth of the primordium, showing proof of principle for our approach.
Collapse
Affiliation(s)
- Hongtao Zhang
- Bijvoet Center for Biomolecular Research, and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
32
|
Costa M, Nobre MS, Becker JD, Masiero S, Amorim MI, Pereira LG, Coimbra S. Expression-based and co-localization detection of arabinogalactan protein 6 and arabinogalactan protein 11 interactors in Arabidopsis pollen and pollen tubes. BMC PLANT BIOLOGY 2013; 13:7. [PMID: 23297674 PMCID: PMC3546934 DOI: 10.1186/1471-2229-13-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/28/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND Arabinogalactan proteins (AGPs) are cell wall proteoglycans that have been shown to be important for pollen development. An Arabidopsis double null mutant for two pollen-specific AGPs (agp6 agp11) showed reduced pollen tube growth and compromised response to germination cues in vivo. A microarray experiment was performed on agp6 agp11 pollen tubes to search for genetic interactions in the context of pollen tube growth. A yeast two-hybrid experiment for AGP6 and AGP11 was also designed. RESULTS The lack of two specific AGPs induced a meaningful shift in the gene expression profile. In fact, a high number of genes showed altered expression levels, strengthening the case that AGP6 and AGP11 are involved in complex phenomena. The expression levels of calcium- and signaling-related genes were found to be altered, supporting the known roles of the respective proteins in pollen tube growth. Although the precise nature of the proposed interactions needs further investigation, the putative involvement of AGPs in signaling cascades through calmodulin and protein degradation via ubiquitin was indicated. The expression of stress-, as well as signaling- related, genes was also changed; a correlation that may result from the recognized similarities between signaling pathways in both defense and pollen tube growth.The results of yeast two-hybrid experiments lent further support to these signaling pathways and revealed putative AGP6 and AGP11 interactors implicated in recycling of cell membrane components via endocytosis, through clathrin-mediated endosomes and multivesicular bodies. CONCLUSIONS The data presented suggest the involvement of AGP6 and AGP11 in multiple signaling pathways, in particular those involved in developmental processes such as endocytosis-mediated plasma membrane remodeling during Arabidopsis pollen development. This highlights the importance of endosomal trafficking pathways which are rapidly emerging as fundamental regulators of the wall physiology.
Collapse
Affiliation(s)
- Mário Costa
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Edifício FC4 Rua do Campo Alegre, 4169-007, Porto, Portugal
- BioFIG, Center for Biodiversity, Functional and Integrative Genomics, Porto, Portugal
| | - Margarida Sofia Nobre
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Edifício FC4 Rua do Campo Alegre, 4169-007, Porto, Portugal
- BioFIG, Center for Biodiversity, Functional and Integrative Genomics, Porto, Portugal
| | - Jörg D Becker
- Instituto Gulbenkian de Ciência, Oeiras, 2780-901, Portugal
| | - Simona Masiero
- Dipartimento di Biologia, Università degli Studi di Milano, Milan, 20133, Italy
| | - Maria Isabel Amorim
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Edifício FC4 Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Luís Gustavo Pereira
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Edifício FC4 Rua do Campo Alegre, 4169-007, Porto, Portugal
- BioFIG, Center for Biodiversity, Functional and Integrative Genomics, Porto, Portugal
| | - Sílvia Coimbra
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Edifício FC4 Rua do Campo Alegre, 4169-007, Porto, Portugal
- BioFIG, Center for Biodiversity, Functional and Integrative Genomics, Porto, Portugal
| |
Collapse
|
33
|
Hakeem KR, Chandna R, Ahmad P, Iqbal M, Ozturk M. Relevance of Proteomic Investigations in Plant Abiotic Stress Physiology. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:621-35. [DOI: 10.1089/omi.2012.0041] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Khalid Rehman Hakeem
- Molecular Ecology Laboratory, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Ruby Chandna
- Molecular Ecology Laboratory, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Parvaiz Ahmad
- Department of Botany, Amar Singh College, University of Kashmir, Srinagar, India
| | - Muhammad Iqbal
- Molecular Ecology Laboratory, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Munir Ozturk
- Department of Botany, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
34
|
Ullmann-Zeunert L, Muck A, Wielsch N, Hufsky F, Stanton MA, Bartram S, Böcker S, Baldwin IT, Groten K, Svatoš A. Determination of ¹⁵N-incorporation into plant proteins and their absolute quantitation: a new tool to study nitrogen flux dynamics and protein pool sizes elicited by plant-herbivore interactions. J Proteome Res 2012; 11:4947-60. [PMID: 22905865 DOI: 10.1021/pr300465n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Herbivory leads to changes in the allocation of nitrogen among different pools and tissues; however, a detailed quantitative analysis of these changes has been lacking. Here, we demonstrate that a mass spectrometric data-independent acquisition approach known as LC-MS(E), combined with a novel algorithm to quantify heavy atom enrichment in peptides, is able to quantify elicited changes in protein amounts and (15)N flux in a high throughput manner. The reliable identification/quantitation of rabbit phosphorylase b protein spiked into leaf protein extract was achieved. The linear dynamic range, reproducibility of technical and biological replicates, and differences between measured and expected (15)N-incorporation into the small (SSU) and large (LSU) subunits of ribulose-1,5-bisphosphate-carboxylase/oxygenase (RuBisCO) and RuBisCO activase 2 (RCA2) of Nicotiana attenuata plants grown in hydroponic culture at different known concentrations of (15)N-labeled nitrate were used to further evaluate the procedure. The utility of the method for whole-plant studies in ecologically realistic contexts was demonstrated by using (15)N-pulse protocols on plants growing in soil under unknown (15)N-incorporation levels. Additionally, we quantified the amounts of lipoxygenase 2 (LOX2) protein, an enzyme important in antiherbivore defense responses, demonstrating that the approach allows for in-depth quantitative proteomics and (15)N flux analyses of the metabolic dynamics elicited during plant-herbivore interactions.
Collapse
|
35
|
Cheung MT, Ramalingam R, Lau KK, Chiang MW, Chiu S, Cheung H, Lam Y. Cell type-dependent effects of andrographolide on human cancer cell lines. Life Sci 2012; 91:751-760. [DOI: 10.1016/j.lfs.2012.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/22/2012] [Accepted: 04/03/2012] [Indexed: 01/11/2023]
|
36
|
Filiou MD, Varadarajulu J, Teplytska L, Reckow S, Maccarrone G, Turck CW. The 15N isotope effect in Escherichia coli: a neutron can make the difference. Proteomics 2012; 12:3121-8. [PMID: 22887715 DOI: 10.1002/pmic.201200209] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 06/25/2012] [Accepted: 08/04/2012] [Indexed: 12/22/2022]
Abstract
Several techniques based on stable isotope labeling are used for quantitative MS. These include stable isotope metabolic labeling methods for cells in culture as well as live organisms with the assumption that the stable isotope has no effect on the proteome. Here, we investigate the (15) N isotope effect on Escherichia coli cultures that were grown in either unlabeled ((14) N) or (15) N-labeled media by LC-ESI-MS/MS-based relative protein quantification. Consistent protein expression level differences and altered growth rates were observed between (14) N and (15) N-labeled cultures. Furthermore, targeted metabolite analyses revealed altered metabolite levels between (14) N and (15) N-labeled bacteria. Our data demonstrate for the first time that the introduction of the (15) N isotope affects protein and metabolite levels in E. coli and underline the importance of implementing controls for unbiased protein quantification using stable isotope labeling techniques.
Collapse
Affiliation(s)
- Michaela D Filiou
- Max Planck Institute of Psychiatry, Proteomics and Biomarkers, Munich, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Smith C, Mills D, Cramer R. Application of DIGE and mass spectrometry in the study of type 2 diabetes mellitus mouse models. Methods Mol Biol 2012; 854:299-318. [PMID: 22311769 DOI: 10.1007/978-1-61779-573-2_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Knowledge of the differences between the amounts and types of protein that are expressed in diseased compared to healthy subjects may give an understanding of the biological pathways that cause disease. This is the reasoning behind the presented protocol, which uses difference gel electrophoresis (DIGE) to discover up- or down-regulated proteins between mice of different genotypes, or of those fed on different diets, that may thus be prone to develop diabetes-like phenotypes. Subsequent analysis of these proteins by tandem mass spectrometry typically facilitates their identification with a high degree of confidence.
Collapse
Affiliation(s)
- Celia Smith
- Department of Chemistry, University of Reading, Reading, UK
| | | | | |
Collapse
|
38
|
Arsova B, Kierszniowska S, Schulze WX. The use of heavy nitrogen in quantitative proteomics experiments in plants. TRENDS IN PLANT SCIENCE 2012; 17:102-12. [PMID: 22154826 DOI: 10.1016/j.tplants.2011.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 10/28/2011] [Accepted: 11/04/2011] [Indexed: 05/04/2023]
Abstract
In the growing field of plant systems biology, there is an undisputed need for methods allowing accurate quantitation of proteins and metabolites. As autotrophic organisms, plants can easily metabolize different nitrogen isotopes, resulting in proteins and metabolites with distinct molecular mass that can be separated on a mass spectrometer. In comparative quantitative experiments, treated and untreated samples are differentially labeled by nitrogen isotopes and jointly processed, thereby minimizing sample-to-sample variation. In recent years, heavy nitrogen labeling has become a widely used strategy in quantitative proteomics and novel approaches have been developed for metabolite identification. Here, we present an overview of currently used experimental strategies in heavy nitrogen labeling in plants and provide background on the history and function of this quantitation technique.
Collapse
Affiliation(s)
- Borjana Arsova
- Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany
| | | | | |
Collapse
|
39
|
Filiou MD, Martins-de-Souza D, Guest PC, Bahn S, Turck CW. To label or not to label: Applications of quantitative proteomics in neuroscience research. Proteomics 2012; 12:736-47. [DOI: 10.1002/pmic.201100350] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 10/18/2011] [Accepted: 10/24/2011] [Indexed: 01/09/2023]
|
40
|
Abdallah C, Dumas-Gaudot E, Renaut J, Sergeant K. Gel-based and gel-free quantitative proteomics approaches at a glance. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2012; 2012:494572. [PMID: 23213324 PMCID: PMC3508552 DOI: 10.1155/2012/494572] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/12/2012] [Indexed: 05/06/2023]
Abstract
Two-dimensional gel electrophoresis (2-DE) is widely applied and remains the method of choice in proteomics; however, pervasive 2-DE-related concerns undermine its prospects as a dominant separation technique in proteome research. Consequently, the state-of-the-art shotgun techniques are slowly taking over and utilising the rapid expansion and advancement of mass spectrometry (MS) to provide a new toolbox of gel-free quantitative techniques. When coupled to MS, the shotgun proteomic pipeline can fuel new routes in sensitive and high-throughput profiling of proteins, leading to a high accuracy in quantification. Although label-based approaches, either chemical or metabolic, gained popularity in quantitative proteomics because of the multiplexing capacity, these approaches are not without drawbacks. The burgeoning label-free methods are tag independent and suitable for all kinds of samples. The challenges in quantitative proteomics are more prominent in plants due to difficulties in protein extraction, some protein abundance in green tissue, and the absence of well-annotated and completed genome sequences. The goal of this perspective assay is to present the balance between the strengths and weaknesses of the available gel-based and -free methods and their application to plants. The latest trends in peptide fractionation amenable to MS analysis are as well discussed.
Collapse
Affiliation(s)
- Cosette Abdallah
- Environment and Agro-Biotechnologies Department, Centre de Recherche Public-Gabriel Lippmann, 41 rue du Brill, 4422 Belvaux, Luxembourg
- UMR Agroécologie INRA 1347/Agrosup/Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, Boite Postal 86510, 21065 Dijon Cedex, France
| | - Eliane Dumas-Gaudot
- UMR Agroécologie INRA 1347/Agrosup/Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, Boite Postal 86510, 21065 Dijon Cedex, France
| | - Jenny Renaut
- Environment and Agro-Biotechnologies Department, Centre de Recherche Public-Gabriel Lippmann, 41 rue du Brill, 4422 Belvaux, Luxembourg
| | - Kjell Sergeant
- Environment and Agro-Biotechnologies Department, Centre de Recherche Public-Gabriel Lippmann, 41 rue du Brill, 4422 Belvaux, Luxembourg
- *Kjell Sergeant:
| |
Collapse
|
41
|
Bindschedler LV, Mills DJS, Cramer R. Hydroponic isotope labeling of entire plants and high-performance mass spectrometry for quantitative plant proteomics. Methods Mol Biol 2012; 893:155-173. [PMID: 22665301 DOI: 10.1007/978-1-61779-885-6_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Hydroponic isotope labeling of entire plants (HILEP) combines hydroponic plant cultivation and metabolic labeling with stable isotopes using (15)N-containing inorganic salts to label whole and mature plants. Employing (15)N salts as the sole nitrogen source for HILEP leads to the production of healthy-looking plants which contain (15)N proteins labeled to nearly 100%. Therefore, HILEP is suitable for quantitative plant proteomic analysis, where plants are grown in either (14)N- or (15)N-hydroponic media and pooled when the biological samples are collected for relative proteome quantitation. The pooled (14)N-/(15)N-protein extracts can be fractionated in any suitable way and digested with a protease for shotgun proteomics, using typically reverse phase liquid chromatography nanoelectrospray ionization tandem mass spectrometry (RPLC-nESI-MS/MS). Best results were obtained with a hybrid ion trap/FT-MS mass spectrometer, combining high mass accuracy and sensitivity for the MS data acquisition with speed and high-throughput MS/MS data acquisition, increasing the number of proteins identified and quantified and improving protein quantitation. Peak processing and picking from raw MS data files, protein identification, and quantitation were performed in a highly automated way using integrated MS data analysis software with minimum manual intervention, thus easing the analytical workflow. In this methodology paper, we describe how to grow Arabidopsis plants hydroponically for isotope labeling using (15)N salts and how to quantitate the resulting proteomes using a convenient workflow that does not require extensive bioinformatics skills.
Collapse
|
42
|
Gonorazky G, Laxalt AM, Dekker HL, Rep M, Munnik T, Testerink C, de la Canal L. Phosphatidylinositol 4-phosphate is associated to extracellular lipoproteic fractions and is detected in tomato apoplastic fluids. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:41-9. [PMID: 21972816 DOI: 10.1111/j.1438-8677.2011.00488.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have recently detected phosphatidylinositol-4-phosphate (PI4P) in the extracellular medium of tomato cell suspensions. Extracellular PI4P was shown to trigger the activation of defence responses induced by the fungal elicitor xylanase. In this study, by applying a differential centrifugation technique, we found that extracellular PI4P is associated with fractions composed of diverse phospholipids and proteins, which were pelleted from the extracellular medium of tomato cell suspensions grown under basal conditions. Using mass spectrometry, we identified the proteins present in these pelleted fractions. Most of these proteins have previously been characterised as having a role in defence responses. Next, we evaluated whether PI4P could also be detected in an entire plant system. For this, apoplastic fluids of tomato plants grown under basal conditions were analysed using a lipid overlay assay. Interestingly, PI4P could be detected in intercellular fluids obtained from tomato leaflets and xylem sap of tomato plants. By employing electrospray ionisation tandem mass spectrometry (ESI-MS/MS), other phospholipids were also found in intercellular fluids of tomato plants. These had a markedly different profile from the phospholipid pattern identified in entire leaflets. Based on these results, the potential role of extracellular phospholipids in plant intercellular communication is discussed.
Collapse
Affiliation(s)
- G Gonorazky
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | | | | | | | | | | | | |
Collapse
|
43
|
Martin SF, Munagapati VS, Salvo-Chirnside E, Kerr LE, Le Bihan T. Proteome turnover in the green alga Ostreococcus tauri by time course 15N metabolic labeling mass spectrometry. J Proteome Res 2011; 11:476-86. [PMID: 22077659 DOI: 10.1021/pr2009302] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein synthesis and degradation determine the cellular levels of proteins, and their control hence enables organisms to respond to environmental change. Experimentally, these are little known proteome parameters; however, recently, SILAC-based mass spectrometry studies have begun to quantify turnover in the proteomes of cell lines, yeast, and animals. Here, we present a proteome-scale method to quantify turnover and calculate synthesis and degradation rate constants of individual proteins in autotrophic organisms such as algae and plants. The workflow is based on the automated analysis of partial stable isotope incorporation with (15)N. We applied it in a study of the unicellular pico-alga Ostreococcus tauri and observed high relative turnover in chloroplast-encoded ATPases (0.42-0.58% h(-1)), core photosystem II proteins (0.34-0.51% h(-1)), and RbcL (0.47% h(-1)), while nuclear-encoded RbcS2 is more stable (0.23% h(-1)). Mitochondrial targeted ATPases (0.14-0.16% h(-1)), photosystem antennae (0.09-0.14% h(-1)), and histones (0.07-0.1% h(-1)) were comparatively stable. The calculation of degradation and synthesis rate constants k(deg) and k(syn) confirms RbcL as the bulk contributor to overall protein turnover. This study performed over 144 h of incorporation reveals dynamics of protein complex subunits as well as isoforms targeted to different organelles.
Collapse
Affiliation(s)
- Sarah F Martin
- Centre for Systems Biology at Edinburgh, University of Edinburgh, CH Waddington Building, The Kings Buildings, Mayfield Road, EH9 3JD, United Kingdom
| | | | | | | | | |
Collapse
|
44
|
Mithoe SC, Boersema PJ, Berke L, Snel B, Heck AJR, Menke FLH. Targeted quantitative phosphoproteomics approach for the detection of phospho-tyrosine signaling in plants. J Proteome Res 2011; 11:438-48. [PMID: 22074104 DOI: 10.1021/pr200893k] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tyrosine (Tyr) phosphorylation plays an essential role in signaling in animal systems. However, a few studies have also reported Tyr phosphorylation in plants, but the relative contribution of tyrosine phosphorylation to plant signal transduction has remained an open question. We present an approach to selectively measure and quantify Tyr phosphorylation in plant cells, which can also be applied to whole plants. We combined a (15)N stable isotope metabolic labeling strategy with an immuno-affinity purification using phospho-tyrosine (pY) specific antibodies. This single enrichment strategy was sufficient to reproducibly identify and quantify pY containing peptides from total plant cell extract in a single LC-MS/MS run. We succeeded in identifying 149 unique pY peptides originating from 135 proteins, including a large set of different protein kinases and several receptor-like kinases. We used flagellin perception by Arabidopsis cells, a model system for pathogen triggered immune (PTI) signaling, to test our approach. We reproducibly quantified 23 pY peptides in 2 inversely labeled biological replicates identifying 11 differentially phosphorylated proteins. These include a set of 3 well-characterized flagellin responsive MAP kinases and 4 novel MAP kinases. With this targeted approach, we elucidate a new level of complexity in flagellin-induced MAP kinase activation.
Collapse
Affiliation(s)
- Sharon C Mithoe
- Molecular Genetics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
45
|
Ibl V, Csaszar E, Schlager N, Neubert S, Spitzer C, Hauser MT. Interactome of the plant-specific ESCRT-III component AtVPS2.2 in Arabidopsis thaliana. J Proteome Res 2011; 11:397-411. [PMID: 22010978 PMCID: PMC3252797 DOI: 10.1021/pr200845n] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
The endosomal sorting complexes required for transport (ESCRT) guides transmembrane proteins to domains that bud away from the cytoplasm. The ESCRT machinery consists of four complexes. ESCRT complexes 0–II are important for cargo recognition and concentration via ubiquitin binding. Most of the membrane bending function is mediated by the large multimeric ESCRT-III complex and associated proteins. Here we present the first in vivo proteome analysis of a member of the ESCRT-III complex which is unique to the plant kingdom. We show with LC–MS/MS, yeast-two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) that coimmunoprecipitated proteins from Arabidopsisthaliana roots expressing a functional GFP-tagged VACUOLAR PROTEIN SORTING 2.2 (AtVPS2.2) protein are members of the ESCRT-III complex and associated proteins. Therefore we propose that at least in plants the large ESCRT-III membrane scaffolding complex consists of a mixture of SNF7, VPS2 and the associated VPS46 and VPS60 proteins. Apart from transmembrane proteins, numerous membrane-associated but also nuclear and extracellular proteins have been identified, indicating that AtVPS2.2 might be involved in processes beyond the classical ESCRT role. This study is the first in vivo proteome analysis with a tagged ESCRT-III component demonstrating the feasibility of this approach and provides numerous starting points for the investigation of the biological process in which AtVPS2.2 is involved. The endosomal sorting complexes required for transport (ESCRT) guides transmembrane proteins to domains that bud away from the cytoplasm. Most of the membrane bending function is mediated by the ESCRT-III complex. Proteomic analysis was used to identify novel ESCRT-III interactors of Arabidopsis thaliana seedlings expressing a functional GFP-tagged VACUOLAR PROTEIN SORTING2.2 as bait. Some intractors were confirmed by yeast-two-hybrid and bimolecular fluorescence complementation and others will be the target for future investigations.
Collapse
Affiliation(s)
- Verena Ibl
- Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
46
|
Agrawal GK, Bourguignon J, Rolland N, Ephritikhine G, Ferro M, Jaquinod M, Alexiou KG, Chardot T, Chakraborty N, Jolivet P, Doonan JH, Rakwal R. Plant organelle proteomics: collaborating for optimal cell function. MASS SPECTROMETRY REVIEWS 2011; 30:772-853. [PMID: 21038434 DOI: 10.1002/mas.20301] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 05/10/2023]
Abstract
Organelle proteomics describes the study of proteins present in organelle at a particular instance during the whole period of their life cycle in a cell. Organelles are specialized membrane bound structures within a cell that function by interacting with cytosolic and luminal soluble proteins making the protein composition of each organelle dynamic. Depending on organism, the total number of organelles within a cell varies, indicating their evolution with respect to protein number and function. For example, one of the striking differences between plant and animal cells is the plastids in plants. Organelles have their own proteins, and few organelles like mitochondria and chloroplast have their own genome to synthesize proteins for specific function and also require nuclear-encoded proteins. Enormous work has been performed on animal organelle proteomics. However, plant organelle proteomics has seen limited work mainly due to: (i) inter-plant and inter-tissue complexity, (ii) difficulties in isolation of subcellular compartments, and (iii) their enrichment and purity. Despite these concerns, the field of organelle proteomics is growing in plants, such as Arabidopsis, rice and maize. The available data are beginning to help better understand organelles and their distinct and/or overlapping functions in different plant tissues, organs or cell types, and more importantly, how protein components of organelles behave during development and with surrounding environments. Studies on organelles have provided a few good reviews, but none of them are comprehensive. Here, we present a comprehensive review on plant organelle proteomics starting from the significance of organelle in cells, to organelle isolation, to protein identification and to biology and beyond. To put together such a systematic, in-depth review and to translate acquired knowledge in a proper and adequate form, we join minds to provide discussion and viewpoints on the collaborative nature of organelles in cell, their proper function and evolution.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), P.O. Box 13265, Sanepa, Kathmandu, Nepal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Gicquel M, Esnault MA, Jorrín-Novo JV, Cabello-Hurtado F. Application of proteomics to the assessment of the response to ionising radiation in Arabidopsis thaliana. J Proteomics 2011; 74:1364-77. [DOI: 10.1016/j.jprot.2011.03.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 03/18/2011] [Accepted: 03/21/2011] [Indexed: 11/24/2022]
|
48
|
Proteogenomics and in silico structural and functional annotation of the barley powdery mildew Blumeria graminis f. sp. hordei. Methods 2011; 54:432-41. [DOI: 10.1016/j.ymeth.2011.03.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/08/2011] [Accepted: 03/16/2011] [Indexed: 02/05/2023] Open
|
49
|
Mithoe SC, Menke FLH. Phosphoproteomics perspective on plant signal transduction and tyrosine phosphorylation. PHYTOCHEMISTRY 2011; 72:997-1006. [PMID: 21315387 DOI: 10.1016/j.phytochem.2010.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 11/25/2010] [Accepted: 12/06/2010] [Indexed: 05/14/2023]
Abstract
Plants and animal cells use intricate signaling pathways to respond to a diverse array of stimuli. These stimuli include signals from environment, such as biotic and abiotic stress signals, as well as cell-to-cell signaling required for pattern formation during development. The transduction of the signal often relies on the post-translational modification (PTM) of proteins. Protein phosphorylation in eukaryotic cells is considered to be a central mechanism for regulation and cellular signaling. The classic view is that phosphorylation of serine (Ser) and threonine (Thr) residues is more abundant, whereas tyrosine (Tyr) phosphorylation is less frequent. This review provides an overview of the progress in the plant phosphoproteomics field and how this progress has lead to a re-evaluation of the relative contribution of tyrosine phosphorylation to the plant phosphoproteome. In relation to this appreciated contribution of tyrosine phosphorylation we also discuss some of the recent progress on the role of tyrosine phosphorylation in plant signal transduction.
Collapse
Affiliation(s)
- Sharon C Mithoe
- Department of Biology, Molecular Genetics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
50
|
Kota U, Goshe MB. Advances in qualitative and quantitative plant membrane proteomics. PHYTOCHEMISTRY 2011; 72:1040-60. [PMID: 21367437 DOI: 10.1016/j.phytochem.2011.01.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 01/13/2011] [Accepted: 01/19/2011] [Indexed: 05/08/2023]
Abstract
The membrane proteome consists of integral and membrane-associated proteins that are involved in various physiological and biochemical functions critical for cellular function. It is also dynamic in nature, where many proteins are only expressed during certain developmental stages or in response to environmental stress. These proteins can undergo post-translational modifications in response to these different conditions, allowing them to transiently associate with the membrane or other membrane proteins. Along with their increased size, hydrophobicity, and the additional organelle and cellular features of plant cells relative to mammalian systems, the characterization of the plant membrane proteome presents unique challenges for effective qualitative and quantitative analysis using mass spectrometry (MS) analysis. Here, we present the latest advancements developed for the isolation and fractionation of plant organelles and their membrane components amenable to MS analysis. Separations of membrane proteins from these enriched preparations that have proven effective are discussed for both gel- and liquid chromatography-based MS analysis. In this context, quantitative membrane proteomic analyses using both isotope-coded and label-free approaches are presented and reveal the potential to establish a wider-biological interpretation of the function of plant membrane proteins that will ultimately lead to a more comprehensive understanding of plant physiology and their response mechanisms.
Collapse
Affiliation(s)
- Uma Kota
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA
| | | |
Collapse
|