1
|
Kim HC, Cho EJ, Chang HJ, Shin JA, Lee JH. Distribution of Dietary Phospholipids in Selected Agri-Foods: Versatile Nutraceutical Ingredients. Foods 2024; 13:3603. [PMID: 39594019 PMCID: PMC11594111 DOI: 10.3390/foods13223603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Phospholipids (PLs) play a crucial role in the nutraceutical field due to their various health benefits, including supporting acetylcholine production, enhancing cell membrane fluidity, and promoting cognitive functions. This study aimed to investigate the PL composition of selected agri-foods, including grains, vegetables, and fruits, and assess the effects of cooking methods. The major PLs identified in most agri-foods were phosphatidylethanolamine (PE) and phosphatidylcholine (PC). Additionally, lyso-phosphatidylethanolamine and lyso-phosphatidylcholine were found in rice, grains, and wheat, while N-acyl-phosphatidylethanolamine was detected in grains, wheat, and some vegetables. Phosphatidylinositol was present in fruits and vegetables, and phosphatidylserine was exclusively found in mushrooms. The PL composition was influenced by cooking methods, with boiling, steaming, blanching, and roasting increasing the PL content, while salting tended to decrease it. Although most agri-foods contained higher levels of PC than PE, citrus fruits under long-term low-temperature storage had significantly more PE than PC. This study established a PL database for the selected agri- and processed/cooked foods, providing insights into changes in PL composition and content based on cooking methods. Given the important health functions of each PL, consuming various agri-foods and incorporating different cooking methods for optimal health benefits is advisable.
Collapse
Affiliation(s)
- Ho-Chang Kim
- Department of Food and Nutrition, Daegu University, Gyeongsan 38453, Republic of Korea; (H.-C.K.); (E.-J.C.); (H.-J.C.)
| | - Eun-Ju Cho
- Department of Food and Nutrition, Daegu University, Gyeongsan 38453, Republic of Korea; (H.-C.K.); (E.-J.C.); (H.-J.C.)
| | - Hyeon-Jun Chang
- Department of Food and Nutrition, Daegu University, Gyeongsan 38453, Republic of Korea; (H.-C.K.); (E.-J.C.); (H.-J.C.)
| | - Jung-Ah Shin
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Jeung-Hee Lee
- Department of Food and Nutrition, Daegu University, Gyeongsan 38453, Republic of Korea; (H.-C.K.); (E.-J.C.); (H.-J.C.)
| |
Collapse
|
2
|
Bourtsala A, Farmaki T, Galanopoulou D. Phospholipases Dα and δ are involved in local and systemic wound responses of cotton ( G. hirsutum). Biochem Biophys Rep 2016; 9:133-139. [PMID: 28955998 PMCID: PMC5614590 DOI: 10.1016/j.bbrep.2016.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 12/29/2022] Open
Abstract
Phospholipases D (PLDs) catabolize structural phospholipids to produce phosphatidic acid (PtdOH), a lipid playing central role in signalling pathways in animal, yeast and plant cells. In animal cells two PLD genes have been studied while in model plant Arabidopsis twelve genes exist, classified in six classes (α-ζ). This underlines the role of these enzymes in plant responses to environmental stresses. However, information concerning the PLD involvement in the widely cultivated and economically important cotton plant responses is very limited. The aim of this report was to study the activity of conventional cotton PLD and its participation in plant responses to mechanical wounding, which resembles both biotic and abiotic stresses. PLDα activity was identified and further characterized by transphosphatidylation reaction. Upon wounding, cotton leaf responses consist of an acute in vitro increase of PLDα activity in both wounded and systemic tissue. However, determination of the in vivo PtdOH levels under the same wounding conditions revealed a rapid PtdOH formation only in wounded leaves and a late response of a PtdOH increase in both tissues. Εxpression analysis of PLDα and PLDδ isoforms showed mRNA accumulation of both isoforms in the wounded tissue, but only PLDδ exerts a high and sustainable expression in systemic leaves, indicating that this isoform is mainly responsible for the systemic wound-induced PtdOH production. Therefore, our data suggest that PLDα and PLDδ isoforms are involved in different steps in cotton wound signalling. PLDα activity and PtdOH levels rapidly increase in wounded cotton leaves. PLDα is also activated rapidly in systemic tissue. Doubling of PtdOH levels occurs as a late response in both wounded and systemic tissue. PLDδ (but not PLDα) exerts a high and sustainable expression in systemic leaves. PLDα and PLDδ are involved in different steps in cotton wound signalling.
Collapse
Affiliation(s)
- Angeliki Bourtsala
- National and Kapodistrian University of Athens, Department of Chemistry, Panepistimiopolis, 15771 Athens, Greece
| | - Theodora Farmaki
- Institute of Applied Biosciences, Centre for Research and Technology, 57001 Thessaloniki, Greece
| | - Dia Galanopoulou
- National and Kapodistrian University of Athens, Department of Chemistry, Panepistimiopolis, 15771 Athens, Greece
| |
Collapse
|
3
|
Phospholipid Hydrolysis and Transphosphatidylation by Phospholipase D from Indian Mustard Seeds in Two-Phase Systems. J AM OIL CHEM SOC 2016. [DOI: 10.1007/s11746-015-2784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Khatoon H, Mansfeld J, Schierhorn A, Ulbrich-Hofmann R. Purification, sequencing and characterization of phospholipase D from Indian mustard seeds. PHYTOCHEMISTRY 2015; 117:65-75. [PMID: 26057230 DOI: 10.1016/j.phytochem.2015.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/15/2015] [Accepted: 05/27/2015] [Indexed: 06/04/2023]
Abstract
Phospholipase D (PLD; E.C. 3.1.4.4) is widespread in plants where it fulfills diverse functions in growth and in the response to stresses. The enzyme occurs in multiple forms that differ in their biochemical properties. In the present paper PLD from medicinally relevant Indian mustard seeds was purified by Ca(2+)-mediated hydrophobic interaction and anion exchange chromatography to electrophoretic homogeneity. Based on mass-spectrometric sequence analysis of tryptic protein fragments, oligonucleotide primers for cloning genomic DNA fragments that encoded the enzyme were designed and used to derive the complete amino acid sequence of this PLD. The sequence data, as well as the molecular properties (molecular mass of 92.0 kDa, pI 5.39, maximum activity at pH 5.5-6.0 and Ca(2+) ion concentrations ⩾60 mM), allowed the assignment of this enzyme to the class of α-type PLDs. The apparent kinetic parameters Vmax and Km, determined for the hydrolysis of phosphatidylcholine (PC) in an aqueous mixed-micellar system were 356±15 μmol min(-1) mg(-1) and 1.84±0.17 mM, respectively. Phosphate analogs such as NaAlF4 and Na3VO4 displayed strong inhibition of the enzyme. Phosphatidylinositol 4,5-bisphosphate had a strong activating effect at 2-10 mM CaCl2. PLD was inactivated at temperatures >45 °C. The enzyme exhibited the highest activity toward PC followed by phosphatidylethanolamine and phosphatidylglycerol. PCs with short-chain fatty acids were better substrates than PCs with long fatty acid chains. Lyso-PC was not accepted as substrate.
Collapse
Affiliation(s)
- Hafeeza Khatoon
- Institute of Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle, Germany
| | - Johanna Mansfeld
- Institute of Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle, Germany
| | - Angelika Schierhorn
- Institute of Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle, Germany
| | - Renate Ulbrich-Hofmann
- Institute of Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle, Germany.
| |
Collapse
|
5
|
Pinsolle A, Roy P, Cansell M. Modulation of enzymatic PS synthesis by liposome membrane composition. Colloids Surf B Biointerfaces 2014; 115:157-63. [DOI: 10.1016/j.colsurfb.2013.11.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/29/2013] [Accepted: 11/18/2013] [Indexed: 11/30/2022]
|
6
|
Oblozinsky M, Bezakova L, Mansfeld J, Heilmann I, Ulbrich-Hofmann R. Differences in the effect of phosphatidylinositol 4,5-bisphosphate on the hydrolytic and transphosphatidylation activities of membrane-bound phospholipase D from poppy seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 69:39-42. [PMID: 23712013 DOI: 10.1016/j.plaphy.2013.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/04/2013] [Indexed: 06/02/2023]
Abstract
The hydrolytic activity of phospholipase D (PLD) yielding phosphatidic acid from phosphatidylcholine and other glycerophospholipids is known to be involved in many cellular processes. In contrast, it is not clear whether the competitive transphosphatidylation activity of PLD catalyzing the head group exchange of phospholipids has a natural function. In poppy seedlings (Papaver somniferum L.) where lipid metabolism and alkaloid synthesis are closely linked, five isoenzymes with different substrate and hydrolysis/transphosphatidylation selectivities have been detected hitherto. A membrane-bound PLD, found in microsomal fractions of poppy seedlings, is active at micromolar concentrations of Ca(2+) ions and needs phosphatidylinositol 4,5-bisphosphate (PIP2) as effector in the hydrolysis of phosphatidylcholine (PC). The optimum PIP2 concentration at 1.2 mol% of the concentration of the substrate PC indicates a specific activation effect. Transphosphatidylation with glycerol, ethanolamine, l-serine, or myo-inositol as acceptor alcohols is also activated by PIP2, however, with an optimum concentration at 0.6-0.9 mol%. In contrast to hydrolysis, a basic transphosphatidylation activity occurs even in the absence of PIP2, suggesting a different fine-tuning of the two competing reactions.
Collapse
Affiliation(s)
- Marek Oblozinsky
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, Kalinciakova 8, SK-83232 Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
7
|
Enzymatic synthesis of phosphatidylserine using bile salt mixed micelles. Colloids Surf B Biointerfaces 2013; 106:191-7. [DOI: 10.1016/j.colsurfb.2013.01.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/11/2012] [Accepted: 01/03/2013] [Indexed: 11/19/2022]
|
8
|
Rainteau D, Humbert L, Delage E, Vergnolle C, Cantrel C, Maubert MA, Lanfranchi S, Maldiney R, Collin S, Wolf C, Zachowski A, Ruelland E. Acyl chains of phospholipase D transphosphatidylation products in Arabidopsis cells: a study using multiple reaction monitoring mass spectrometry. PLoS One 2012; 7:e41985. [PMID: 22848682 PMCID: PMC3405027 DOI: 10.1371/journal.pone.0041985] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 06/27/2012] [Indexed: 12/26/2022] Open
Abstract
Background Phospholipases D (PLD) are major components of signalling pathways in plant responses to some stresses and hormones. The product of PLD activity is phosphatidic acid (PA). PAs with different acyl chains do not have the same protein targets, so to understand the signalling role of PLD it is essential to analyze the composition of its PA products in the presence and absence of an elicitor. Methodology/Principal findings Potential PLD substrates and products were studied in Arabidopsis thaliana suspension cells treated with or without the hormone salicylic acid (SA). As PA can be produced by enzymes other than PLD, we analyzed phosphatidylbutanol (PBut), which is specifically produced by PLD in the presence of n-butanol. The acyl chain compositions of PBut and the major glycerophospholipids were determined by multiple reaction monitoring (MRM) mass spectrometry. PBut profiles of untreated cells or cells treated with SA show an over-representation of 160/18∶2- and 16∶0/18∶3-species compared to those of phosphatidylcholine and phosphatidylethanolamine either from bulk lipid extracts or from purified membrane fractions. When microsomal PLDs were used in in vitro assays, the resulting PBut profile matched exactly that of the substrate provided. Therefore there is a mismatch between the acyl chain compositions of putative substrates and the in vivo products of PLDs that is unlikely to reflect any selectivity of PLDs for the acyl chains of substrates. Conclusions MRM mass spectrometry is a reliable technique to analyze PLD products. Our results suggest that PLD action in response to SA is not due to the production of a stress-specific molecular species, but that the level of PLD products per se is important. The over-representation of 160/18∶2- and 16∶0/18∶3-species in PLD products when compared to putative substrates might be related to a regulatory role of the heterogeneous distribution of glycerophospholipids in membrane sub-domains.
Collapse
|
9
|
Brothers MC, Ho M, Maharjan R, Clemons NC, Bannai Y, Waites MA, Faulkner MJ, Kuhlenschmidt TB, Kuhlenschmidt MS, Blanke SR, Rienstra CM, Wilson BA. Membrane interaction of Pasteurella multocida toxin involves sphingomyelin. FEBS J 2011; 278:4633-48. [PMID: 21951695 PMCID: PMC3220749 DOI: 10.1111/j.1742-4658.2011.08365.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pasteurella multocida toxin (PMT) is an AB toxin that causes pleiotropic effects in targeted host cells. The N-terminus of PMT (PMT-N) is considered to harbor the membrane receptor binding and translocation domains responsible for mediating cellular entry and delivery of the C-terminal catalytic domain into the host cytosol. Previous studies have implicated gangliosides as the host receptors for PMT binding. To gain further insight into the binding interactions involved in PMT binding to cell membranes, we explored the role of various membrane components in PMT binding, utilizing four different approaches: (a) TLC-overlay binding experiments with (125) I-labeled PMT, PMT-N or the C-terminus of PMT; (b) pull-down experiments using reconstituted membrane liposomes with full-length PMT; (c) surface plasmon resonance analysis of PMT-N binding to reconstituted membrane liposomes; (d) and surface plasmon resonance analysis of PMT-N binding to HEK-293T cell membranes without or with sphingomyelinase, phospholipase D or trypsin treatment. The results obtained revealed that, in our experimental system, full-length PMT and PMT-N did not bind to gangliosides, including monoasialogangliosides GM(1) , GM(2) or GM(3) , but instead bound to membrane phospholipids, primarily the abundant sphingophospholipid sphingomyelin or phosphatidylcholine with other lipid components. Collectively, these studies demonstrate the importance of sphingomyelin for PMT binding to membranes and suggest the involvement of a protein co-receptor.
Collapse
Affiliation(s)
| | - Mengfei Ho
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
- Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Ram Maharjan
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | - Nathan C. Clemons
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | - Yuka Bannai
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | - Mark A. Waites
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | - Steven R. Blanke
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
- Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Chad M. Rienstra
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - Brenda A. Wilson
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
- Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
10
|
Discrimination between the regioisomeric 1,2- and 1,3-diacylglycerophosphocholines by phospholipases. Chem Phys Lipids 2011; 164:196-204. [DOI: 10.1016/j.chemphyslip.2010.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 12/18/2010] [Accepted: 12/22/2010] [Indexed: 11/15/2022]
|
11
|
Jakubowicz M, Gałgańska H, Nowak W, Sadowski J. Exogenously induced expression of ethylene biosynthesis, ethylene perception, phospholipase D, and Rboh-oxidase genes in broccoli seedlings. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3475-91. [PMID: 20581125 PMCID: PMC2905205 DOI: 10.1093/jxb/erq177] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 05/21/2010] [Accepted: 05/25/2010] [Indexed: 05/20/2023]
Abstract
In higher plants, copper ions, hydrogen peroxide, and cycloheximide have been recognized as very effective inducers of the transcriptional activity of genes encoding the enzymes of the ethylene biosynthesis pathway. In this report, the transcriptional patterns of genes encoding the 1-aminocyclopropane-1-carboxylate synthases (ACSs), 1-aminocyclopropane-1-carboxylate oxidases (ACOs), ETR1, ETR2, and ERS1 ethylene receptors, phospholipase D (PLD)-alpha1, -alpha2, -gamma1, and -delta, and respiratory burst oxidase homologue (Rboh)-NADPH oxidase-D and -F in response to these inducers in Brassica oleracea etiolated seedlings are shown. ACS1, ACO1, ETR2, PLD-gamma1, and RbohD represent genes whose expression was considerably affected by all of the inducers used. The investigations were performed on the seedlings with (i) ethylene insensitivity and (ii) a reduced level of the PLD-derived phosphatidic acid (PA). The general conclusion is that the expression of ACS1, -3, -4, -5, -7, and -11, ACO1, ETR1, ERS1, and ETR2, PLD-gamma 1, and RbohD and F genes is undoubtedly under the reciprocal cross-talk of the ethylene and PA(PLD) signalling routes; both signals affect it in concerted or opposite ways depending on the gene or the type of stimuli. The results of these studies on broccoli seedlings are in agreement with the hypothesis that PA may directly affect the ethylene signal transduction pathway via an inhibitory effect on CTR1 (constitutive triple response 1) activity.
Collapse
Affiliation(s)
- Małgorzata Jakubowicz
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| | | | | | | |
Collapse
|
12
|
Dippe M, Ulbrich-Hofmann R. Spectrophotometric determination of phosphatidic acid via iron(III) complexation for assaying phospholipase D activity. Anal Biochem 2009; 392:169-73. [PMID: 19497293 DOI: 10.1016/j.ab.2009.05.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 05/27/2009] [Indexed: 10/20/2022]
Abstract
The ability of negatively charged phosphatidates to form complexes with Fe(3+) ions was used to design a simple spectrophotometric assay for the quantitative determination of phosphatidic acid (PA). In the reaction with the purple iron(III)-salicylate, PA extracts Fe(3+) ions and decreases the absorbance at 490 nm. Lower competition with salicylate for Fe(3+) ions was observed with single negatively charged phosphatidates such as phosphatidylglycerol (PG), whereas neutral phosphatidates such as phosphatidylcholine (PC) and phosphatidylethanolamine (PE) showed no influence on the absorbance of the iron(III) complex. The detection limit of the method on a microplate scale was 10 microM PA. Based on these results, an assay for determining the activity of phospholipase D (PLD) toward natural phospholipids such as PC, PE, and PG was developed. In contrast to other spectroscopic PLD assays, this method is able to determine PLD activity toward different lipids or even lipid mixtures.
Collapse
Affiliation(s)
- Martin Dippe
- Institute of Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, D-06099 Halle, Germany
| | | |
Collapse
|
13
|
Mansfeld J, Ulbrich-Hofmann R. Modulation of phospholipase D activity in vitro. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:913-26. [DOI: 10.1016/j.bbalip.2009.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 03/03/2009] [Accepted: 03/04/2009] [Indexed: 11/30/2022]
|