1
|
Nayak A, Rühl M, Klüber P. Bioconversion efficiency and chemical composition of Hermetia illucens larvae fed spent mushroom substrates. AMB Express 2024; 14:133. [PMID: 39673033 PMCID: PMC11645357 DOI: 10.1186/s13568-024-01802-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/28/2024] [Indexed: 12/15/2024] Open
Abstract
Spent mushroom substrate (SMS) is a by-product remaining after harvesting mushrooms. We evaluated the effect of substituting chicken feed with 0-100% of Pleurotus eryngii and Lentinula edodes SMS at different stocking densities (200-1000 larvae/box) on development, composition, and substrate reduction of black soldier fly (Hermetia illucens) larvae. Although the survival rate was not significantly different, feeding pure SMS led to a low growth rate. The substitution level of SMS negatively correlated with individual larval weight, total harvested biomass, larval growth rate (LGR), feed conversion ratio (FCR), substrate reduction, and waste reduction index (WRI) except for the 20% substitution. Feeding 40% SMS resulted in the highest number of prepupae. In the density experiment, the heaviest larvae (220-239 mg fresh weight) were obtained at 200 larvae/box in the 0% SMS group. The frass residue and FCR decreased with increased density. Remarkably, when feeding 20% SMS at 250 larvae/box, the harvested biomass, LGR, and FCR did not differ significantly from the 0% SMS control, whereas some of the higher densities led to a deterioration. In fact, the frass residue, substrate reduction, and WRI were even improved at 250 larvae/box in the 20% SMS group. The chemical analyses of larvae reared on 20% SMS at 250 larvae/box showed comparable ash and fat contents and a higher protein content compared to the 0% SMS group. Accordingly, up to 20% of a standard diet such as chicken feed can be replaced by low-cost SMS without disadvantages for breeding.
Collapse
Affiliation(s)
- Anjani Nayak
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| | - Martin Rühl
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany
| | - Patrick Klüber
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany.
| |
Collapse
|
2
|
Muhammad N, Avila F, Kim SG. Comparative genome analysis of the genus Marivirga and proposal of two novel marine species: Marivirga arenosa sp. nov., and Marivirga salinae sp. nov. BMC Microbiol 2024; 24:245. [PMID: 38970021 PMCID: PMC11225308 DOI: 10.1186/s12866-024-03393-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/20/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND The phylum Bacteroidota represents a significant proportion of heterotrophic bacteria found in marine ecosystems. Members of the phylum Bacteroidota are actively involved in the degradation of biopolymers such as polysaccharides and proteins. Bacteroidota genomes exhibit a significant enrichment of various enzymes, including carbohydrate-active enzymes (CAZymes), carboxypeptidases, esterases, isomerases, peptidases, phosphatases, and sulfatases. The genus Marivirga, a member of the family Marivirgaceae within the phylum Bacteroidota, comprises six documented species. During a microbial diversity study, three novel Marivirga strains (BKB1-2 T, ABR2-2, and BDSF4-3 T) were isolated from the West Sea, Republic of Korea. RESULTS To explore the taxonomic status and genomic characteristics of the novel isolates, we employed a polyphasic taxonomic approach, which included phylogenetic, chemotaxonomic and comprehensive genome analysis. The three isolates were Gram-stain-negative, aerobic, rod-shaped, moderately halophilic, and had a gliding motility. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values among the two isolates, BKB1-2 T and BDSF4-3 T, and the six reference strains were 70.5-76.5% for ANI and 18.1-25.7% for dDDH. Interestingly, the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the strains harbor genes for a comprehensive pathway for dissimilatory nitrate reduction to ammonium (DNRA), as well as other nitrogen pathways for the reduction of nitrite, nitric oxide, and nitrous oxide. Additionally, the antiSMASH analysis indicated that the strains contained three to eight biosynthetic gene clusters (BGCs) associated with the synthesis of secondary metabolites. Furthermore, the strains carried a high number of CAZyme ranging from 53 to 152, which was also demonstrated by an in vitro analysis of degradation of the polysaccharide cellulose, chitin, laminarin, starch, and xylan. Additionally, all the strains carried genes for the metabolism of heavy metals, and exhibited tolerance to heavy metals, with minimum inhibitory concentrations (MICs) in millimoles (mM) in ranges of Co2+ (3-6), Cu2+ (0.2-0.4), Ni2+ (3-5), Zn2+ (2-4), Mn2+ (20-50), and Hg2+ (0.3). CONCLUSIONS Based on polyphasic taxonomic approach, the three isolated strains represent two novel species names Marivirga arenosa sp. nov. (BKB1-2 T = KCTC 82989 T = InaCC B1618T), and Marivirga salinae sp. nov. (BDSF4-3 T = KCTC 82973 T = InaCC B1619T).
Collapse
Affiliation(s)
- Neak Muhammad
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea ResearchInstitute of Bioscience and Biotechnology, Jeongeup, Jeonbuk, 56212, the Republic of Korea
- Department of Biotechnology, KRIBB School, University of Science and Technology (UST), Daejeon, 34113, the Republic of Korea
| | - Forbes Avila
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea ResearchInstitute of Bioscience and Biotechnology, Jeongeup, Jeonbuk, 56212, the Republic of Korea
- Department of Biotechnology, KRIBB School, University of Science and Technology (UST), Daejeon, 34113, the Republic of Korea
| | - Song-Gun Kim
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea ResearchInstitute of Bioscience and Biotechnology, Jeongeup, Jeonbuk, 56212, the Republic of Korea.
- Department of Biotechnology, KRIBB School, University of Science and Technology (UST), Daejeon, 34113, the Republic of Korea.
| |
Collapse
|
3
|
Muhammad N, Avila F, Nedashkovskaya OI, Kim SG. Three novel marine species of the genus Reichenbachiella exhibiting degradation of complex polysaccharides. Front Microbiol 2023; 14:1265676. [PMID: 38156005 PMCID: PMC10752948 DOI: 10.3389/fmicb.2023.1265676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/23/2023] [Indexed: 12/30/2023] Open
Abstract
Three novel strains designated ABR2-5T, BKB1-1T, and WSW4-B4T belonging to the genus Reichenbachiella of the phylum Bacteroidota were isolated from algae and mud samples collected in the West Sea, Korea. All three strains were enriched for genes encoding up to 216 carbohydrate-active enzymes (CAZymes), which participate in the degradation of agar, alginate, carrageenan, laminarin, and starch. The 16S rRNA sequence similarities among the three novel isolates were 94.0%-94.7%, and against all three existing species in the genus Reichenbachiella they were 93.6%-97.2%. The genome sizes of the strains ABR2-5T, BKB1-1T, and WSW4-B4T were 5.5, 4.4, and 5.0 Mb, respectively, and the GC content ranged from 41.1%-42.0%. The average nucleotide identity and the digital DNA-DNA hybridization values of each novel strain within the isolates and all existing species in the genus Reichenbachiella were in a range of 69.2%-75.5% and 17.7-18.9%, respectively, supporting the creation of three new species. The three novel strains exhibited a distinctive fatty acid profile characterized by elevated levels of iso-C15:0 (37.7%-47.4%) and C16:1 ω5c (14.4%-22.9%). Specifically, strain ABR2-5T displayed an additional higher proportion of C16:0 (13.0%). The polar lipids were phosphatidylethanolamine, unidentified lipids, aminolipids, and glycolipids. Menaquinone-7 was identified as the respiratory quinone of the isolates. A comparative genome analysis was performed using the KEGG, RAST, antiSMASH, CRISPRCasFinder, dbCAN, and dbCAN-PUL servers and CRISPRcasIdentifier software. The results revealed that the isolates harbored many key genes involved in central metabolism for the synthesis of essential amino acids and vitamins, hydrolytic enzymes, carotenoid pigments, and antimicrobial compounds. The KEGG analysis showed that the three isolates possessed a complete pathway of dissimilatory nitrate reduction to ammonium (DNRA), which is involved in the conservation of bioavailable nitrogen within the ecosystem. Moreover, all the strains possessed genes that participated in the metabolism of heavy metals, including arsenic, copper, cobalt, ferrous, and manganese. All three isolated strains contain the class 2 type II subtype C1 CRISPR-Cas system in their genomes. The distinguished phenotypic, chemotaxonomic, and genomic characteristics led us to propose that the three strains represent three novel species in the genus Reichenbachiella: R. ulvae sp. nov. (ABR2-5T = KCTC 82990T = JCM 35839T), R. agarivorans sp. nov. (BKB1-1T = KCTC 82964T = JCM 35840T), and R. carrageenanivorans sp. nov. (WSW4-B4T = KCTC 82706T = JCM 35841T).
Collapse
Affiliation(s)
- Neak Muhammad
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Forbes Avila
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Olga I. Nedashkovskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far-Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Song-Gun Kim
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
4
|
Kim MC, Winter JM, Cullum R, Smith AJ, Fenical W. Expanding the Utility of Bioinformatic Data for the Full Stereostructural Assignments of Marinolides A and B, 24- and 26-Membered Macrolactones Produced by a Chemically Exceptional Marine-Derived Bacterium. Mar Drugs 2023; 21:367. [PMID: 37367692 DOI: 10.3390/md21060367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Marinolides A and B, two new 24- and 26-membered bacterial macrolactones, were isolated from the marine-derived actinobacterium AJS-327 and their stereostructures initially assigned by bioinformatic data analysis. Macrolactones typically possess complex stereochemistry, the assignments of which have been one of the most difficult undertakings in natural products chemistry, and in most cases, the use of X-ray diffraction methods and total synthesis have been the major methods of assigning their absolute configurations. More recently, however, it has become apparent that the integration of bioinformatic data is growing in utility to assign absolute configurations. Genome mining and bioinformatic analysis identified the 97 kb mld biosynthetic cluster harboring seven type I polyketide synthases. A detailed bioinformatic investigation of the ketoreductase and enoylreductase domains within the multimodular polyketide synthases, coupled with NMR and X-ray diffraction data, allowed for the absolute configurations of marinolides A and B to be determined. While using bioinformatics to assign the relative and absolute configurations of natural products has high potential, this method must be coupled with full NMR-based analysis to both confirm bioinformatic assignments as well as any additional modifications that occur during biosynthesis.
Collapse
Affiliation(s)
- Min Cheol Kim
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, Skaggs School of Pharmacy and Pharmaceutical Sciences, Moores Comprehensive Cancer Center, University of California, La Jolla, San Diego, CA 92093, USA
| | - Jaclyn M Winter
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Reiko Cullum
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, Skaggs School of Pharmacy and Pharmaceutical Sciences, Moores Comprehensive Cancer Center, University of California, La Jolla, San Diego, CA 92093, USA
| | - Alexander J Smith
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, Skaggs School of Pharmacy and Pharmaceutical Sciences, Moores Comprehensive Cancer Center, University of California, La Jolla, San Diego, CA 92093, USA
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, Skaggs School of Pharmacy and Pharmaceutical Sciences, Moores Comprehensive Cancer Center, University of California, La Jolla, San Diego, CA 92093, USA
| |
Collapse
|
5
|
Singh HW, Creamer KE, Chase AB, Klau LJ, Podell S, Jensen PR. Metagenomic Data Reveal Type I Polyketide Synthase Distributions Across Biomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523365. [PMID: 36711755 PMCID: PMC9882069 DOI: 10.1101/2023.01.09.523365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Microbial polyketide synthase (PKS) genes encode the biosynthesis of many biomedically important natural products, yet only a small fraction of nature's polyketide biosynthetic potential has been realized. Much of this potential originates from type I PKSs (T1PKSs), which can be delineated into different classes and subclasses based on domain organization and structural features of the compounds encoded. Notably, phylogenetic relationships among PKS ketosynthase (KS) domains provide a method to classify the larger and more complex genes in which they occur. Increased access to large metagenomic datasets from diverse habitats provides opportunities to assess T1PKS biosynthetic diversity and distributions through the analysis of KS domain sequences. Here, we used the webtool NaPDoS2 to detect and classify over 35,000 type I KS domains from 137 metagenomic data sets reported from eight diverse biomes. We found biome-specific separation with soils enriched in modular cis -AT and hybrid cis -AT KSs relative to other biomes and marine sediments enriched in KSs associated with PUFA and enediyne biosynthesis. By extracting full-length KS domains, we linked the phylum Actinobacteria to soil-specific enediyne and cis -AT clades and identified enediyne and monomodular KSs in phyla from which the associated compound classes have not been reported. These sequences were phylogenetically distinct from those associated with experimentally characterized PKSs suggesting novel structures or enzyme functions remain to be discovered. Lastly, we employed our metagenome-extracted KS domains to evaluate commonly used type I KS PCR primers and identified modifications that could increase the KS sequence diversity recovered from amplicon libraries. Importance Polyketides are a crucial source of medicines, agrichemicals, and other commercial products. Advances in our understanding of polyketide biosynthesis coupled with the accumulation of metagenomic sequence data provide new opportunities to assess polyketide biosynthetic potential across biomes. Here, we used the webtool NaPDoS2 to assess type I PKS diversity and distributions by detecting and classifying KS domains across 137 metagenomes. We show that biomes are differentially enriched in KS domain classes, providing a roadmap for future biodiscovery strategies. Further, KS phylogenies reveal both biome-specific clades that do not include biochemically characterized PKSs, highlighting the biosynthetic potential of poorly explored environments. The large metagenome-derived KS dataset allowed us to identify regions of commonly used type I KS PCR primers that could be modified to capture a larger extent of KS diversity. These results facilitate both the search for novel polyketides and our understanding of the biogeographical distribution of PKSs across earth's major biomes.
Collapse
|
6
|
Comparative Metagenomic Analysis of Biosynthetic Diversity across Sponge Microbiomes Highlights Metabolic Novelty, Conservation, and Diversification. mSystems 2022; 7:e0035722. [PMID: 35862823 PMCID: PMC9426513 DOI: 10.1128/msystems.00357-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine sponges and their microbial symbiotic communities are rich sources of diverse natural products (NPs) that often display biological activity, yet little is known about the global distribution of NPs and the symbionts that produce them. Since the majority of sponge symbionts remain uncultured, it is a challenge to characterize their NP biosynthetic pathways, assess their prevalence within the holobiont, and measure the diversity of NP biosynthetic gene clusters (BGCs) across sponge taxa and environments. Here, we explore the microbial biosynthetic landscapes of three high-microbial-abundance (HMA) sponges from the Atlantic Ocean and the Mediterranean Sea. This data set reveals striking novelty, with <1% of the recovered gene cluster families (GCFs) showing similarity to any characterized BGC. When zooming in on the microbial communities of each sponge, we observed higher variability of specialized metabolic and taxonomic profiles between sponge species than within species. Nonetheless, we identified conservation of GCFs, with 20% of sponge GCFs being shared between at least two sponge species and a GCF core comprised of 6% of GCFs shared across all species. Within this functional core, we identified a set of widespread and diverse GCFs encoding nonribosomal peptide synthetases that are potentially involved in the production of diversified ether lipids, as well as GCFs putatively encoding the production of highly modified proteusins. The present work contributes to the small, yet growing body of data characterizing NP landscapes of marine sponge symbionts and to the cryptic biosynthetic potential contained in this environmental niche. IMPORTANCE Marine sponges and their microbial symbiotic communities are a rich source of diverse natural products (NPs). However, little is known about the sponge NP global distribution landscape and the symbionts that produce them. Here, we make use of recently developed tools to perform untargeted mining and comparative analysis of sponge microbiome metagenomes of three sponge species in the first study considering replicate metagenomes of multiple sponge species. We present an overview of the biosynthetic diversity across these sponge holobionts, which displays extreme biosynthetic novelty. We report not only the conservation of biosynthetic and taxonomic diversity but also a core of conserved specialized metabolic pathways. Finally, we highlight several novel GCFs with unknown ecological function, and observe particularly high biosynthetic potential in Acidobacteriota and Latescibacteria symbionts. This study paves the way toward a better understanding of the marine sponge holobionts' biosynthetic potential and the functional and ecological role of sponge microbiomes.
Collapse
|
7
|
Kaluzhnaya OV, Itskovich VB. Features of Diversity of Polyketide Synthase Genes in the Community of Freshwater Sponge Baikalospongia fungiformis. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422030061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Chakraborty K, Kizhakkekalam VK, Joy M. Chemical mining of heterotrophic Shewanella algae reveals anti-infective potential of macrocyclic polyketides against multidrug-resistant pathogens. Bioorg Chem 2020; 108:104533. [PMID: 33342567 DOI: 10.1016/j.bioorg.2020.104533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 11/17/2022]
Abstract
Heterotrophic Gamma-proteobacterium Shewanella algae MTCC 12715, associated with an intertidal red algae Hypnea valentiae, presented broad-spectra of antibacterial activities against pathogenic bacteria bringing about nosocomial infection. Bioassay-guided fractionation of the bacterial crude extract resulted in two undescribed macrocyclic polyketide analogs, with anti-infective activities against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis (MIC 3.1-5.0 µg/mL). In order to identify the polyketide biosynthetic machinery termed type-I polyketide synthase (pks-I) encoding biologically active secondary metabolites in this strain, the ketosynthase-coding regions of DNA with ≈700 bp size, were amplified, and the partial sequence was submitted in the GenBank (accession number MH157093). The titled compounds were classified under macrocyclic polyketides bearing dodecahydropyrano-trioxacyclooctadecine-dione and trioxo-octadecahydro-1H-benzo[o]tetraoxacyclopentacosine-carboxylate functionalities. Structure-activity correlation analysis displayed that hydrophobic descriptor of the studied compounds could play a prominent role in its anti-infective property against the opportunistic pathogens. Further, in silico molecular docking studies were performed in the allosteric sites of penicillin-binding protein (PBP2a) coded by mecA genes of MRSA, and the best binding pose for each compound (docking score -8.47 kcal/mol and -9.58 kcal/mol, respectively) could be correlated with their in vitro antibacterial activities. The pks-I assisted biosynthetic pathway of macrocyclic polyketides through step-wise decarboxylative condensation initiated by malonate-acyl carrier protein corroborated their structural attributes. Chemical mining of the studied macroalgae-associated heterotrophic bacterium thus revealed the promising antagonistic properties of macrocyclic polyketides isolated from Shewanella algae MTCC 12715 against multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Kajal Chakraborty
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India.
| | - Vinaya Kizhakkepatt Kizhakkekalam
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India; Faculty of Marine Sciences, Lakeside Campus, Cochin University of Science and Technology, Cochin, Kerala State, India
| | - Minju Joy
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India
| |
Collapse
|
9
|
Gutleben J, Loureiro C, Ramírez Romero LA, Shetty S, Wijffels RH, Smidt H, Sipkema D. Cultivation of Bacteria From Aplysina aerophoba: Effects of Oxygen and Nutrient Gradients. Front Microbiol 2020; 11:175. [PMID: 32140143 PMCID: PMC7042410 DOI: 10.3389/fmicb.2020.00175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/24/2020] [Indexed: 12/22/2022] Open
Abstract
Sponge-associated bacteria possess biotechnologically interesting properties but as yet have largely evaded cultivation. Thus, "omics"-based information on the ecology and functional potential of sponge symbionts is awaiting its integration into the design of innovative cultivation approaches. To cultivate bacteria derived from the marine sponge Aplysina aerophoba, nine novel media formulations were created based on the predicted genomic potential of the prevalent sponge symbiont lineage Poribacteria. In addition, to maintain potential microbial metabolic interactions in vitro, a Liquid-Solid cultivation approach and a Winogradsky-column approach were applied. The vast majority of microorganisms in the inoculum appeared viable after cryopreservation of sponge specimen as determined by selective propidium monoazide DNA modification of membrane-compromised cells, however, only 2% of the initial prokaryotic diversity could be recovered through cultivation. In total, 256 OTUs encompassing seven prokaryotic phyla were cultivated. The diversity of the cultivated community was influenced by the addition of the antibiotic aeroplysinin-1 as well as by medium dilution, rather than carbon source. Furthermore, the Winogradsky-column approach reproducibly enriched distinct communities at different column depths, amongst which were numerous Clostridia and OTUs that could not be assigned to a known phylum. While some bacterial taxa such as Pseudovibrio and Ruegeria were recovered from nearly all applied cultivation conditions, others such as Bacteroidetes were specific to certain medium types. Predominant sponge-associated prokaryotic taxa remained uncultured, nonetheless, alternative cultivation approaches applied here enriched for previously uncultivated microbes.
Collapse
Affiliation(s)
- Johanna Gutleben
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Catarina Loureiro
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | | | - Sudarshan Shetty
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - René H. Wijffels
- Bioprocess Engineering, AlgaePARC, Wageningen University, Wageningen, Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
10
|
Nivina A, Yuet KP, Hsu J, Khosla C. Evolution and Diversity of Assembly-Line Polyketide Synthases. Chem Rev 2019; 119:12524-12547. [PMID: 31838842 PMCID: PMC6935866 DOI: 10.1021/acs.chemrev.9b00525] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Indexed: 12/11/2022]
Abstract
Assembly-line polyketide synthases (PKSs) are among the most complex protein machineries known in nature, responsible for the biosynthesis of numerous compounds used in the clinic. Their present-day diversity is the result of an evolutionary path that has involved the emergence of a multimodular architecture and further diversification of assembly-line PKSs. In this review, we provide an overview of previous studies that investigated PKS evolution and propose a model that challenges the currently prevailing view that gene duplication has played a major role in the emergence of multimodularity. We also analyze the ensemble of orphan PKS clusters sequenced so far to evaluate how large the entire diversity of assembly-line PKS clusters and their chemical products could be. Finally, we examine the existing techniques to access the natural PKS diversity in natural and heterologous hosts and describe approaches to further expand this diversity through engineering.
Collapse
Affiliation(s)
- Aleksandra Nivina
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| | - Kai P. Yuet
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| | - Jake Hsu
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| | - Chaitan Khosla
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
11
|
Gutleben J, Koehorst JJ, McPherson K, Pomponi S, Wijffels RH, Smidt H, Sipkema D. Diversity of tryptophan halogenases in sponges of the genus Aplysina. FEMS Microbiol Ecol 2019; 95:fiz108. [PMID: 31276591 PMCID: PMC6644159 DOI: 10.1093/femsec/fiz108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/04/2019] [Indexed: 12/21/2022] Open
Abstract
Marine sponges are a prolific source of novel enzymes with promising biotechnological potential. Especially halogenases, which are key enzymes in the biosynthesis of brominated and chlorinated secondary metabolites, possess interesting properties towards the production of pharmaceuticals that are often halogenated. In this study we used a polymerase chain reaction (PCR)-based screening to simultaneously examine and compare the richness and diversity of putative tryptophan halogenase protein sequences and bacterial community structures of six Aplysina species from the Mediterranean and Caribbean seas. At the phylum level, bacterial community composition was similar amongst all investigated species and predominated by Actinobacteria, Chloroflexi, Cyanobacteria, Gemmatimonadetes, and Proteobacteria. We detected four phylogenetically diverse clades of putative tryptophan halogenase protein sequences, which were only distantly related to previously reported halogenases. The Mediterranean species Aplysina aerophoba harbored unique halogenase sequences, of which the most predominant was related to a sponge-associated Psychrobacter-derived sequence. In contrast, the Caribbean species shared numerous novel halogenase sequence variants and exhibited a highly similar bacterial community composition at the operational taxonomic unit (OTU) level. Correlations of relative abundances of halogenases with those of bacterial taxa suggest that prominent sponge symbiotic bacteria, including Chloroflexi and Actinobacteria, are putative producers of the detected enzymes and may thus contribute to the chemical defense of their host.
Collapse
Affiliation(s)
- Johanna Gutleben
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Jasper J Koehorst
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Kyle McPherson
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Shirley Pomponi
- Bioprocess Engineering, AlgaePARC, Wageningen University & Research, 6700 AA, Wageningen, The Netherlands
- Florida Atlantic University – Harbor Branch, 5600 U.S. 1, Fort Pierce, FL 34946, the United States
| | - René H Wijffels
- Bioprocess Engineering, AlgaePARC, Wageningen University & Research, 6700 AA, Wageningen, The Netherlands
- Faculty of Biosciences and Aquaculture, Nord University, 8026 Bodø, Norway
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
12
|
Marine Biosurfactants: Biosynthesis, Structural Diversity and Biotechnological Applications. Mar Drugs 2019; 17:md17070408. [PMID: 31323998 PMCID: PMC6669457 DOI: 10.3390/md17070408] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 11/16/2022] Open
Abstract
Biosurfactants are amphiphilic secondary metabolites produced by microorganisms. Marine bacteria have recently emerged as a rich source for these natural products which exhibit surface-active properties, making them useful for diverse applications such as detergents, wetting and foaming agents, solubilisers, emulsifiers and dispersants. Although precise structural data are often lacking, the already available information deduced from biochemical analyses and genome sequences of marine microbes indicates a high structural diversity including a broad spectrum of fatty acid derivatives, lipoamino acids, lipopeptides and glycolipids. This review aims to summarise biosyntheses and structures with an emphasis on low molecular weight biosurfactants produced by marine microorganisms and describes various biotechnological applications with special emphasis on their role in the bioremediation of oil-contaminated environments. Furthermore, novel exploitation strategies are suggested in an attempt to extend the existing biosurfactant portfolio.
Collapse
|
13
|
Chevrette MG, Currie CR. Emerging evolutionary paradigms in antibiotic discovery. J Ind Microbiol Biotechnol 2018; 46:257-271. [PMID: 30269177 DOI: 10.1007/s10295-018-2085-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022]
Abstract
Antibiotics revolutionized medicine and remain its cornerstone. Despite their global importance and the continuous threat of resistant pathogens, few antibiotics have been discovered in recent years. Natural products, especially the secondary metabolites of Actinobacteria, have been the traditional discovery source of antibiotics. In nature, the chemistry of antibiotic natural products is shaped by the unique evolution and ecology of their producing organisms, yet these influences remain largely unknown. Here, we highlight the ecology of antibiotics employed by microbes in defensive symbioses and review the evolutionary processes underlying the chemical diversity and activity of microbe-derived antibiotics, including the dynamics of vertical and lateral transmission of biosynthetic pathways and the evolution of efficacy, targeting specificity, and toxicity. We argue that a deeper understanding of the ecology and evolution of microbial interactions and the metabolites that mediate them will allow for an alternative, rational approach to discover new antibiotics.
Collapse
Affiliation(s)
- Marc G Chevrette
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, USA.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
14
|
Uria AR, Piel J, Wakimoto T. Biosynthetic Insights of Calyculin- and Misakinolide-Type Compounds in "Candidatus Entotheonella sp.". Methods Enzymol 2018; 604:287-330. [PMID: 29779656 DOI: 10.1016/bs.mie.2018.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Microbial symbionts are recognized as the important sources of numerous sponge-derived metabolites with potent biological activities. The limitation to cultivate the majority of potential symbionts has hampered attempts to explore and exploit their natural products for further development toward medical applications. Metagenomics-guided approaches have enabled cloning of natural product biosynthesis genes from uncultured microbial symbionts. Subsequent activation of biosynthesis genes in easily culturable bacteria could lead to the sustainable production of rare sponge-derived compounds. In this chapter, we highlight metagenomic strategies to reveal natural product biosynthetic pathways in sponge metagenomes based on the calyculin and misakinolide polyketides. Techniques to identify the compound producer are briefly discussed. We further describe examples of functional studies of the biosynthetic pathways of these two compound types with a special emphasis on the general experimental protocols for the activity assays of key proteins involved in their biosynthesis.
Collapse
Affiliation(s)
- Agustinus R Uria
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland.
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
15
|
Coelho FJRC, Cleary DFR, Gomes NCM, Pólonia ARM, Huang YM, Liu LL, de Voogd NJ. Sponge Prokaryote Communities in Taiwanese Coral Reef and Shallow Hydrothermal Vent Ecosystems. MICROBIAL ECOLOGY 2018; 75:239-254. [PMID: 28699015 DOI: 10.1007/s00248-017-1023-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/15/2017] [Indexed: 06/07/2023]
Abstract
Previously, it was believed that the prokaryote communities of typical 'low-microbial abundance' (LMA) or 'non-symbiont harboring' sponges were merely subsets of the prokaryote plankton community. Recent research has, however, shown that these sponges are dominated by particular clades of Proteobacteria or Cyanobacteria. Here, we expand on this research and assess the composition and putative functional profiles of prokaryotic communities from LMA sponges collected in two ecosystems (coral reef and hydrothermal vent) from vicinal islands of Taiwan with distinct physicochemical conditions. Six sponge species identified as Acanthella cavernosa (Bubarida), Echinodictyum asperum, Ptilocaulis spiculifer (Axinellida), Jaspis splendens (Tetractinellida), Stylissa carteri (Scopalinida) and Suberites sp. (Suberitida) were sampled in coral reefs in the Penghu archipelago. One sponge species provisionally identified as Hymeniacidon novo spec. (Suberitida) was sampled in hydrothermal vent habitat. Each sponge was dominated by a limited set of operational taxonomic units which were similar to sequences from organisms previously obtained from other LMA sponges. There was a distinct bacterial community between sponges collected in coral reef and in hydrothermal vents. The putative functional profile revealed that the prokaryote community from sponges collected in hydrothermal vents was significantly enriched for pathways related to DNA replication and repair.
Collapse
Affiliation(s)
- F J R C Coelho
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - D F R Cleary
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - N C M Gomes
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - A R M Pólonia
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Y M Huang
- Department of Marine Recreation, National Penghu University of Science and Technology, Penghu, Taiwan
- Naturalis Biodiversity Center, Leiden, the Netherlands
| | - L-L Liu
- Department of Oceanography, National Sun Yet-Sen University, Kaohsiung, Taiwan
| | - N J de Voogd
- Naturalis Biodiversity Center, Leiden, the Netherlands.
| |
Collapse
|
16
|
Chakraborty K, Thilakan B, Raola VK. Antimicrobial polyketide furanoterpenoids from seaweed-associated heterotrophic bacterium Bacillus subtilis MTCC 10403. PHYTOCHEMISTRY 2017; 142:112-125. [PMID: 28704687 DOI: 10.1016/j.phytochem.2017.06.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 05/17/2023]
Abstract
Brown seaweed Anthophycus longifolius (Turner) Kützing (family Sargassaceae) associated heterotrophic bacterium Bacillus subtilis MTCC 10403 was found to be a potent isolate with broad range of antibacterial activity against important perceptive food pathogens Vibrio parahaemolyticus, V. vulnificus, and Aeromonas hydrophila. This bacterium was positive for polyketide synthetase gene (KC589397), and therefore, was selected to bioprospect specialized metabolites bearing polyketide backbone. Bioactivity-guided chromatographic fractionation of the ethyl acetate extract of the seaweed-associated bacterium segregated four homologous polyketide furanoterpenoids with potential antibacterial activities against clinically important pathogens. The minimum inhibitory concentration (MIC) assay showed that the referral antibiotics tetracycline and ampicillin were active at 25 μg/mL against the test pathogens, whereas the previously undescribed (4E)-methyl 13-((16-(furan-2-yl) ethyl)-octahydro-7-hydroxy-4-((E)-23-methylbut-21-enyl)-2H-chromen-6-yl)-4-methylpent-4-enoate (compound 1) and methyl 3-(hexahydro-9-((E)-3-methylpent-1-enyl)-4H-furo[3,2-g]isochromen-6-yl) propanoate (compound 3) displayed antibacterial activities against the test pathogens at a lesser concentration (MIC < 7 μg/mL). The title compounds were characterized by comprehensive nuclear magnetic resonance and mass spectroscopic experiments. Polyketide synthase catalyzed putative biosynthetic mechanism additionally corroborated the structural ascriptions of the hitherto undescribed furanoterpenoids from seaweed-associated bacterial symbiont. The electronic and hydrophobic parameters appeared to hold a conspicuous part in directing the antibacterial properties of the compounds. Seaweed-associated B. subtilis MTCC 10403 demonstrated to represent a potential source of antimicrobial polyketides for pharmaceutical applications.
Collapse
Affiliation(s)
- Kajal Chakraborty
- Marine Bioprospecting Section of Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, 682018, Kerala, India.
| | - Bini Thilakan
- Marine Bioprospecting Section of Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, 682018, Kerala, India
| | - Vamshi Krishna Raola
- Marine Bioprospecting Section of Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, 682018, Kerala, India
| |
Collapse
|
17
|
An Overview on Marine Sponge-Symbiotic Bacteria as Unexhausted Sources for Natural Product Discovery. DIVERSITY-BASEL 2017. [DOI: 10.3390/d9040040] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Microbial symbiotic communities of marine macro-organisms carry functional metabolic profiles different to the ones found terrestrially and within surrounding marine environments. These symbiotic bacteria have increasingly been a focus of microbiologists working in marine environments due to a wide array of reported bioactive compounds of therapeutic importance resulting in various patent registrations. Revelations of symbiont-directed host specific functions and the true nature of host-symbiont interactions, combined with metagenomic advances detecting functional gene clusters, will inevitably open new avenues for identification and discovery of novel bioactive compounds of biotechnological value from marine resources. This review article provides an overview on bioactive marine symbiotic organisms with specific emphasis placed on the sponge-associated ones and invites the international scientific community to contribute towards establishment of in-depth information of the environmental parameters defining selection and acquisition of true symbionts by the host organisms.
Collapse
|
18
|
Diversity and Bioactivity of Marine Bacteria Associated with the Sponges Candidaspongia flabellata and Rhopaloeides odorabile from the Great Barrier Reef in Australia. DIVERSITY-BASEL 2017. [DOI: 10.3390/d9030039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Ruiz-Torres V, Encinar JA, Herranz-López M, Pérez-Sánchez A, Galiano V, Barrajón-Catalán E, Micol V. An Updated Review on Marine Anticancer Compounds: The Use of Virtual Screening for the Discovery of Small-Molecule Cancer Drugs. Molecules 2017; 22:E1037. [PMID: 28644406 PMCID: PMC6152364 DOI: 10.3390/molecules22071037] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/09/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022] Open
Abstract
Marine secondary metabolites are a promising source of unexploited drugs that have a wide structural diversity and have shown a variety of biological activities. These compounds are produced in response to the harsh and competitive conditions that occur in the marine environment. Invertebrates are considered to be among the groups with the richest biodiversity. To date, a significant number of marine natural products (MNPs) have been established as antineoplastic drugs. This review gives an overview of MNPs, both in research or clinical stages, from diverse organisms that were reported as being active or potentially active in cancer treatment in the past seventeen years (from January 2000 until April 2017) and describes their putative mechanisms of action. The structural diversity of MNPs is also highlighted and compared with the small-molecule anticancer drugs in clinical use. In addition, this review examines the use of virtual screening for MNP-based drug discovery and reveals that classical approaches for the selection of drug candidates based on ADMET (absorption, distribution, metabolism, excretion, and toxicity) filtering may miss potential anticancer lead compounds. Finally, we introduce a novel and publically accessible chemical library of MNPs for virtual screening purposes.
Collapse
Affiliation(s)
- Verónica Ruiz-Torres
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| | - Jose Antonio Encinar
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| | - María Herranz-López
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| | - Almudena Pérez-Sánchez
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| | - Vicente Galiano
- Physics and Computer Architecture Department, Miguel Hernández University, Avda. Universidad s/n, Elche 03202, Spain.
| | - Enrique Barrajón-Catalán
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| | - Vicente Micol
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
- CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III., Palma de Mallorca 07122, Spain (CB12/03/30038).
| |
Collapse
|
20
|
Satheesh S, Ba-akdah MA, Al-Sofyani AA. Natural antifouling compound production by microbes associated with marine macroorganisms — A review. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.02.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
21
|
Kaluzhnaya OV, Itskovich VB. Distinctive features of the microbial diversity and the polyketide synthase genes spectrum in the community of the endemic Baikal sponge Swartschewskia papyracea. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416010099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Using Molecular Networking for Microbial Secondary Metabolite Bioprospecting. Metabolites 2016; 6:metabo6010002. [PMID: 26761036 PMCID: PMC4812331 DOI: 10.3390/metabo6010002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/23/2015] [Accepted: 12/30/2015] [Indexed: 01/02/2023] Open
Abstract
The oceans represent an understudied resource for the isolation of bacteria with the potential to produce novel secondary metabolites. In particular, actinomyces are well known to produce chemically diverse metabolites with a wide range of biological activities. This study characterised spore-forming bacteria from both Scottish and Antarctic sediments to assess the influence of isolation location on secondary metabolite production. Due to the selective isolation method used, all 85 isolates belonged to the phyla Firmicutes and Actinobacteria, with the majority of isolates belonging to the genera Bacillus and Streptomyces. Based on morphology, thirty-eight isolates were chosen for chemical investigation. Molecular networking based on chemical profiles (HR-MS/MS) of fermentation extracts was used to compare complex metabolite extracts. The results revealed 40% and 42% of parent ions were produced by Antarctic and Scottish isolated bacteria, respectively, and only 8% of networked metabolites were shared between these locations, implying a high degree of biogeographic influence upon secondary metabolite production. The resulting molecular network contained over 3500 parent ions with a mass range of m/z 149–2558 illustrating the wealth of metabolites produced. Furthermore, seven fermentation extracts showed bioactivity against epithelial colon adenocarcinoma cells, demonstrating the potential for the discovery of novel bioactive compounds from these understudied locations.
Collapse
|
23
|
Contemporary molecular tools in microbial ecology and their application to advancing biotechnology. Biotechnol Adv 2015; 33:1755-73. [DOI: 10.1016/j.biotechadv.2015.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 09/19/2015] [Accepted: 09/20/2015] [Indexed: 12/30/2022]
|
24
|
Graça AP, Viana F, Bondoso J, Correia MI, Gomes L, Humanes M, Reis A, Xavier JR, Gaspar H, Lage OM. The antimicrobial activity of heterotrophic bacteria isolated from the marine sponge Erylus deficiens (Astrophorida, Geodiidae). Front Microbiol 2015; 6:389. [PMID: 25999928 PMCID: PMC4423441 DOI: 10.3389/fmicb.2015.00389] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/15/2015] [Indexed: 11/22/2022] Open
Abstract
Interest in the study of marine sponges and their associated microbiome has increased both for ecological reasons and for their great biotechnological potential. In this work, heterotrophic bacteria associated with three specimens of the marine sponge Erylus deficiens, were isolated in pure culture, phylogenetically identified and screened for antimicrobial activity. The isolation of bacteria after an enrichment treatment in heterotrophic medium revealed diversity in bacterial composition with only Pseudoalteromonas being shared by two specimens. Of the 83 selected isolates, 58% belong to Proteobacteria, 23% to Actinobacteria and 19% to Firmicutes. Diffusion agar assays for bioactivity screening against four bacterial strains and one yeast, revealed that a high number of the isolated bacteria (68.7%) were active, particularly against Candida albicans and Vibrio anguillarum. Pseudoalteromonas, Microbacterium, and Proteus were the most bioactive genera. After this preliminary screening, the bioactive strains were further evaluated in liquid assays against C. albicans, Bacillus subtilis and Escherichia coli. Filtered culture medium and acetone extracts from three and 5 days-old cultures were assayed. High antifungal activity against C. albicans in both aqueous and acetone extracts as well as absence of activity against B. subtilis were confirmed. Higher levels of activity were obtained with the aqueous extracts when compared to the acetone extracts and differences were also observed between the 3 and 5 day-old extracts. Furthermore, a low number of active strains was observed against E. coli. Potential presence of type-I polyketide synthases (PKS-I) and non-ribosomal peptide synthetases (NRPSs) genes were detected in 17 and 30 isolates, respectively. The high levels of bioactivity and the likely presence of associated genes suggest that Erylus deficiens bacteria are potential sources of novel marine bioactive compounds.
Collapse
Affiliation(s)
- Ana Patrícia Graça
- Department of Biology, Faculty of Sciences, University of Porto Porto, Portugal ; Centre of Marine and Environmental Research (CIIMAR) Porto, Portugal
| | - Flávia Viana
- Department of Biology, Faculty of Sciences, University of Porto Porto, Portugal ; Centro de Química e Bioquímica e Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa Lisboa, Portugal
| | - Joana Bondoso
- Department of Biology, Faculty of Sciences, University of Porto Porto, Portugal ; Centre of Marine and Environmental Research (CIIMAR) Porto, Portugal
| | - Maria Inês Correia
- Department of Biology, Faculty of Sciences, University of Porto Porto, Portugal
| | - Luis Gomes
- Department of Biology, Faculty of Sciences, University of Porto Porto, Portugal
| | - Madalena Humanes
- Centro de Química e Bioquímica e Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa Lisboa, Portugal
| | - Alberto Reis
- Bioenergy Unit, National Laboratory for Energy and Geology I.P. Lisboa, Portugal
| | - Joana R Xavier
- Department of Biology and Centre for Geobiology, University of Bergen Bergen, Norway
| | - Helena Gaspar
- Centro de Química e Bioquímica e Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa Lisboa, Portugal
| | - Olga M Lage
- Department of Biology, Faculty of Sciences, University of Porto Porto, Portugal ; Centre of Marine and Environmental Research (CIIMAR) Porto, Portugal
| |
Collapse
|
25
|
Kirschning A, Walter JG, Stahl F, Schax E, Scheper T, Aliuos P, Zeilinger C. Molecular Survival Strategies of Organisms: HSP and Small Molecules for Diagnostics and Drug Development. HEAT SHOCK PROTEINS 2015. [DOI: 10.1007/978-3-319-17211-8_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Hoppers A, Stoudenmire J, Wu S, Lopanik NB. Antibiotic activity and microbial community of the temperate sponge, Haliclona sp. J Appl Microbiol 2014; 118:419-30. [PMID: 25431341 DOI: 10.1111/jam.12709] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/06/2014] [Accepted: 11/17/2014] [Indexed: 01/09/2023]
Abstract
AIMS Sessile marine invertebrates engage in a diverse array of beneficial interactions with bacterial symbionts. One feature of some of these relationships is the presence of bioactive natural products that can defend the holobiont from predation, competition or disease. In this study, we investigated the antimicrobial activity and microbial community of a common temperate sponge from coastal North Carolina. METHODS AND RESULTS The sponge was identified as a member of the genus Haliclona, a prolific source of bioactive natural products, based on its 18S rRNA gene sequence. The crude chemical extract and methanol partition had broad activity against the assayed Gram-negative and Gram-positive pathogenic bacteria. Further fractionation resulted in two groups of compounds with differing antimicrobial activity, primarily against Gram-positive test organisms. There was, however, notable activity against the Gram-negative marine pathogen, Vibrio parahaemolyticus. Microbial community analysis of the sponge and surrounding sea water via denaturing gradient gel electrophoresis (DGGE) indicates that it harbours a distinct group of bacterial associates. CONCLUSIONS The common temperate sponge, Haliclona sp., is a source of multiple antimicrobial compounds and has some consistent microbial community members that may play a role in secondary metabolite production. SIGNIFICANCE AND IMPACT OF THE STUDY These data suggest that common temperate sponges can be a source of bioactive chemical and microbial diversity. Further studies may reveal the importance of the microbial associates to the sponge and natural product biosynthesis.
Collapse
Affiliation(s)
- A Hoppers
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | | | | | | |
Collapse
|
27
|
Hardoim CCP, Cardinale M, Cúcio ACB, Esteves AIS, Berg G, Xavier JR, Cox CJ, Costa R. Effects of sample handling and cultivation bias on the specificity of bacterial communities in keratose marine sponges. Front Microbiol 2014; 5:611. [PMID: 25477868 PMCID: PMC4235377 DOI: 10.3389/fmicb.2014.00611] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 10/27/2014] [Indexed: 11/16/2022] Open
Abstract
Complex and distinct bacterial communities inhabit marine sponges and are believed to be essential to host survival, but our present-day inability to domesticate sponge symbionts in the laboratory hinders our access to the full metabolic breadth of these microbial consortia. We address bacterial cultivation bias in marine sponges using a procedure that enables direct comparison between cultivated and uncultivated symbiont community structures. Bacterial community profiling of the sympatric keratose species Sarcotragus spinosulus and Ircinia variabilis (Dictyoceratida, Irciniidae) was performed by polymerase chain reaction-denaturing gradient gel electrophoresis and 454-pyrosequecing of 16S rRNA gene fragments. Whereas cultivation-independent methods revealed species-specific bacterial community structures in these hosts, cultivation-dependent methods resulted in equivalent community assemblages from both species. Between 15 and 18 bacterial phyla were found in S. spinosulus and I. variabilis using cultivation-independent methods. However, Alphaproteobacteria and Gammaproteobacteria dominated the cultivation-dependent bacterial community. While cultivation-independent methods revealed about 200 and 220 operational taxonomic units (OTUs, 97% gene similarity) in S. spinosulus and I. variabilis, respectively, only 33 and 39 OTUs were found in these species via culturing. Nevertheless, around 50% of all cultured OTUs escaped detection by cultivation-independent methods, indicating that standard cultivation makes otherwise host-specific bacterial communities similar by selectively enriching for rarer and generalist symbionts. This study sheds new light on the diversity spectrum encompassed by cultivated and uncultivated sponge-associated bacteria. Moreover, it highlights the need to develop alternative culturing technologies to capture the dominant sponge symbiont fraction that currently remains recalcitrant to laboratory manipulation.
Collapse
Affiliation(s)
- Cristiane C P Hardoim
- Microbial Ecology and Evolution Research Group, Centre of Marine Sciences, University of Algarve Faro, Portugal
| | | | - Ana C B Cúcio
- Microbial Ecology and Evolution Research Group, Centre of Marine Sciences, University of Algarve Faro, Portugal ; Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam Amsterdam, Netherlands
| | - Ana I S Esteves
- Microbial Ecology and Evolution Research Group, Centre of Marine Sciences, University of Algarve Faro, Portugal
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology Graz, Austria
| | - Joana R Xavier
- Department of Biology, Centre for Geobiology, University of Bergen Bergen, Norway
| | - Cymon J Cox
- Plant Systematics and Bioinformatics, Centre of Marine Sciences, University of Algarve Faro, Portugal
| | - Rodrigo Costa
- Microbial Ecology and Evolution Research Group, Centre of Marine Sciences, University of Algarve Faro, Portugal
| |
Collapse
|
28
|
Polyketide synthases in the microbiome of the marine sponge Plakortis halichondrioides: a metagenomic update. Mar Drugs 2014; 12:5425-40. [PMID: 25405856 PMCID: PMC4245539 DOI: 10.3390/md12115425] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/04/2014] [Accepted: 11/06/2014] [Indexed: 01/01/2023] Open
Abstract
Sponge-associated microorganisms are able to assemble the complex machinery for the production of secondary metabolites such as polyketides, the most important class of marine natural products from a drug discovery perspective. A comprehensive overview of polyketide biosynthetic genes of the sponge Plakortis halichondrioides and its symbionts was obtained in the present study by massively parallel 454 pyrosequencing of complex and heterogeneous PCR (Polymerase Chain Reaction) products amplified from the metagenomic DNA of a specimen of P. halichondrioides collected in the Caribbean Sea. This was accompanied by a survey of the bacterial diversity within the sponge. In line with previous studies, sequences belonging to supA and swfA, two widespread sponge-specific groups of polyketide synthase (PKS) genes were dominant. While they have been previously reported as belonging to Poribacteria (a novel bacterial phylum found exclusively in sponges), re-examination of current genomic sequencing data showed supA and swfA not to be present in the poribacterial genome. Several non-supA, non-swfA type-I PKS fragments were also identified. A significant portion of these fragments resembled type-I PKSs from protists, suggesting that bacteria may not be the only source of polyketides from P. halichondrioides, and that protistan PKSs should receive further investigation as a source of novel polyketides.
Collapse
|
29
|
Valliappan K, Sun W, Li Z. Marine actinobacteria associated with marine organisms and their potentials in producing pharmaceutical natural products. Appl Microbiol Biotechnol 2014; 98:7365-77. [PMID: 25064352 DOI: 10.1007/s00253-014-5954-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 01/09/2023]
Abstract
Actinobacteria are ubiquitous in the marine environment, playing an important ecological role in the recycling of refractory biomaterials and producing novel natural products with pharmic applications. Actinobacteria have been detected or isolated from the marine creatures such as sponges, corals, mollusks, ascidians, seaweeds, and seagrass. Marine organism-associated actinobacterial 16S rRNA gene sequences, i.e., 3,003 sequences, deposited in the NCBI database clearly revealed enormous numbers of actinobacteria associated with marine organisms. For example, RDP classification of these sequences showed that 112 and 62 actinobacterial genera were associated with the sponges and corals, respectively. In most cases, it is expected that these actinobacteria protect the host against pathogens by producing bioactive compounds. Natural products investigation and functional gene screening of the actinobacteria associated with the marine organisms revealed that they can synthesize numerous natural products including polyketides, isoprenoids, phenazines, peptides, indolocarbazoles, sterols, and others. These compounds showed anticancer, antimicrobial, antiparasitic, neurological, antioxidant, and anti-HIV activities. Therefore, marine organism-associated actinobacteria represent an important resource for marine drugs. It is an upcoming field of research to search for novel actinobacteria and pharmaceutical natural products from actinobacteria associated with the marine organisms. In this review, we attempt to summarize the present knowledge on the diversity and natural products production of actinobacteria associated with the marine organisms, based on the publications from 1991 to 2013.
Collapse
Affiliation(s)
- Karuppiah Valliappan
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | | | | |
Collapse
|
30
|
Abstract
In this study, we compare biosynthetic gene richness and diversity of 96 soil microbiomes from diverse environments found throughout the southwestern and northeastern regions of the United States. The 454-pyroseqencing of nonribosomal peptide adenylation (AD) and polyketide ketosynthase (KS) domain fragments amplified from these microbiomes provide a means to evaluate the variation of secondary metabolite biosynthetic diversity in different soil environments. Through soil composition and AD- and KS-amplicon richness analysis, we identify soil types with elevated biosynthetic potential. In general, arid soils show the richest observed biosynthetic diversity, whereas brackish sediments and pine forest soils show the least. By mapping individual environmental amplicon sequences to sequences derived from functionally characterized biosynthetic gene clusters, we identified conserved soil type-specific secondary metabolome enrichment patterns despite significant sample-to-sample sequence variation. These data are used to create chemical biogeographic distribution maps for biomedically valuable families of natural products in the environment that should prove useful for directing the discovery of bioactive natural products in the future.
Collapse
|
31
|
Della Sala G, Hochmuth T, Costantino V, Teta R, Gerwick W, Gerwick L, Piel J, Mangoni A. Polyketide genes in the marine sponge Plakortis simplex: a new group of mono-modular type I polyketide synthases from sponge symbionts. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:809-818. [PMID: 24249289 PMCID: PMC3908369 DOI: 10.1111/1758-2229.12081] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 06/22/2013] [Indexed: 05/31/2023]
Abstract
Sponge symbionts are a largely unexplored source of new and unusual metabolic pathways. Insights into the distribution and function of metabolic genes of sponge symbionts are crucial to dissect and exploit their biotechnological potential. Screening of the metagenome of the marine sponge Plakortis simplex led to the discovery of the swf family, a new group of mono-modular type I polyketide synthase/fatty acid synthase (PKS/FAS) specifically associated with sponge symbionts. Two different examples of the swf cluster were present in the metagenome of P. simplex. A third example of the cluster is present in the previously sequenced genome of a poribacterium from the sponge Aplysina aerophoba but was formerly considered orthologous to the wcb/rkp cluster. The swf cluster was also found in six additional species of sponges. Therefore, the swf cluster represents the second group of mono-modular PKS, after the supA family, to be widespread in marine sponges. The putative swf operon consists of swfA (type I PKS/FAS), swfB (reductase and sulphotransferase domains) and swfC (radical S-adenosylmethionine, or radical SAM). Activation of the acyl carrier protein (ACP) domain of the SwfA protein to its holo-form by co-expression with Svp is the first functional proof of swf type genes in marine sponges. However, the precise biosynthetic role of the swf clusters remains unknown.
Collapse
Affiliation(s)
- Gerardo Della Sala
- Dipartimento di Farmacia, Università di Napoli Federico IIVia Domenico Montesano, 49, 80131, Napoli, Italy
| | - Thomas Hochmuth
- Dipartimento di Farmacia, Università di Napoli Federico IIVia Domenico Montesano, 49, 80131, Napoli, Italy
| | - Valeria Costantino
- Dipartimento di Farmacia, Università di Napoli Federico IIVia Domenico Montesano, 49, 80131, Napoli, Italy
| | - Roberta Teta
- Dipartimento di Farmacia, Università di Napoli Federico IIVia Domenico Montesano, 49, 80131, Napoli, Italy
| | - William Gerwick
- Center for Marine Biotechnology and Biomedicine Scripps Institution of Oceanography Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego9500 Gilman Drive, MC 0212, La Jolla, CA, 92093-0212, USA
| | - Lena Gerwick
- Center for Marine Biotechnology and Biomedicine Scripps Institution of Oceanography Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego9500 Gilman Drive, MC 0212, La Jolla, CA, 92093-0212, USA
| | - Jörn Piel
- Institute of Microbiology, Eidgenoessische Technische Hochschule (ETH) ZurichWolfgang-Pauli-Str. 10, 8093, Zurich, Switzerland
| | - Alfonso Mangoni
- Dipartimento di Farmacia, Università di Napoli Federico IIVia Domenico Montesano, 49, 80131, Napoli, Italy
| |
Collapse
|
32
|
Antidiatom activity of marine bacteria associated with sponges from San Juan Island, Washington. World J Microbiol Biotechnol 2013; 30:1325-34. [DOI: 10.1007/s11274-013-1557-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/09/2013] [Indexed: 11/25/2022]
|
33
|
Graça AP, Bondoso J, Gaspar H, Xavier JR, Monteiro MC, de la Cruz M, Oves-Costales D, Vicente F, Lage OM. Antimicrobial activity of heterotrophic bacterial communities from the marine sponge Erylus discophorus (Astrophorida, Geodiidae). PLoS One 2013; 8:e78992. [PMID: 24236081 PMCID: PMC3827338 DOI: 10.1371/journal.pone.0078992] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/25/2013] [Indexed: 12/17/2022] Open
Abstract
Heterotrophic bacteria associated with two specimens of the marine sponge Erylus discophorus were screened for their capacity to produce bioactive compounds against a panel of human pathogens (Staphylococcus aureus wild type and methicillin-resistant S. aureus (MRSA), Bacillus subtilis, Pseudomonas aeruginosa, Acinetobacter baumanii, Candida albicans and Aspergillus fumigatus), fish pathogen (Aliivibrio fischeri) and environmentally relevant bacteria (Vibrio harveyi). The sponges were collected in Berlengas Islands, Portugal. Of the 212 isolated heterotrophic bacteria belonging to Alpha- and Gammaproteobacteria, Actinobacteria and Firmicutes, 31% produced antimicrobial metabolites. Bioactivity was found against both Gram positive and Gram negative and clinically and environmentally relevant target microorganisms. Bioactivity was found mainly against B. subtilis and some bioactivity against S. aureus MRSA, V. harveyi and A. fisheri. No antifungal activity was detected. The three most bioactive genera were Pseudovibrio (47.0%), Vibrio (22.7%) and Bacillus (7.6%). Other less bioactive genera were Labrenzia, Acinetobacter, Microbulbifer, Pseudomonas, Gordonia, Microbacterium, Micrococcus and Mycobacterium, Paenibacillus and Staphylococcus. The search of polyketide I synthases (PKS-I) and nonribosomal peptide synthetases (NRPSs) genes in 59 of the bioactive bacteria suggested the presence of PKS-I in 12 strains, NRPS in 3 strains and both genes in 3 strains. Our results show the potential of the bacterial community associated with Erylus discophorus sponges as producers of bioactive compounds.
Collapse
Affiliation(s)
- Ana Patrícia Graça
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIMAR/CIIMAR), Porto, Portugal
| | - Joana Bondoso
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIMAR/CIIMAR), Porto, Portugal
| | - Helena Gaspar
- Centro de Química e Bioquímica e Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa Campo Grande, Lisboa, Portugal
| | - Joana R. Xavier
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores – Departamento de Biologia da Universidade dos Açores, Ponta Delgada, Portugal
- CEAB, Centre d'Estudis Avançats de Blanes, (CSIC), Blanes (Girona), Spain
| | - Maria Cândida Monteiro
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Armilla, Granada, Spain
| | - Mercedes de la Cruz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Armilla, Granada, Spain
| | - Daniel Oves-Costales
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Armilla, Granada, Spain
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Armilla, Granada, Spain
| | - Olga Maria Lage
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIMAR/CIIMAR), Porto, Portugal
- * E-mail:
| |
Collapse
|
34
|
Culture-dependent and independent approaches for identifying novel halogenases encoded by Crambe crambe (marine sponge) microbiota. Sci Rep 2013; 3:2780. [PMID: 24071658 PMCID: PMC3784947 DOI: 10.1038/srep02780] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 08/30/2013] [Indexed: 01/08/2023] Open
Abstract
Sponges harbour microbial communities that contribute to the genetic and metabolic potential of their host. Among metabolites produced by sponge-associated microbial communities, halogenated compounds are of special interest because of their biotechnological potential. In this study, we have examined the diversity of the cultivable fraction of the marine demosponge Crambe crambe microbiota. Application of complementary cultivation methods yielded 107 bacterial isolates, some of which may be sponge-specific based on their phylogenetic analysis. Among these, Psychrobacter sp. was found to contain a putative halogenase gene. In addition to the culture-dependent approach for discovering halogenase genes, a cDNA library was constructed to determine the diversity of halogenase genes expressed in situ by the C. crambe microbiota. To this end, seventeen putative tryptophan halogenase cDNA sequences were identified, most of which were only remotely related to known halogenase genes, indicating the potential for novel bioactive compounds being produced by the C. crambe microbiota.
Collapse
|
35
|
Fujinami S, Takarada H, Kasai H, Sekine M, Omata S, Harada T, Fukai R, Hosoyama A, Horikawa H, Kato Y, Nakazawa H, Fujita N. Complete genome sequence of Ilumatobacter coccineum YM16-304(T.). Stand Genomic Sci 2013; 8:430-40. [PMID: 24501628 PMCID: PMC3910706 DOI: 10.4056/sigs.4007734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ilumatobacter coccineum YM16-304(T) (=NBRC 103263(T)) is a novel marine actinobacterium isolated from a sand sample collected at a beach in Shimane Prefecture, Japan. Strain YM16-304(T) is the type strain of the species. Phylogenetically, strain YM16-304(T) is close to Ilumatobacter nonamiense YM16-303(T) (=NBRC 109120(T)), Ilumatobacter fluminis YM22-133(T) and some uncultured bacteria including putative marine sponge symbionts. Whole genome sequence of these species has not been reported. Here we report the complete genome sequence of strain YM16-304(T). The 4,830,181 bp chromosome was predicted to encode a total of 4,291 protein-coding genes.
Collapse
Affiliation(s)
- Shun Fujinami
- Biological Resource Center, National Institute of Technology and Evaluation, Shibuya, Tokyo, Japan
- Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama, Japan
| | - Hiromi Takarada
- Biological Resource Center, National Institute of Technology and Evaluation, Shibuya, Tokyo, Japan
| | - Hiroaki Kasai
- Marine Biosciences Kamaishi Research Laboratory, Kitasato University, Ofunato, Iwate, Japan
| | - Mitsuo Sekine
- Biological Resource Center, National Institute of Technology and Evaluation, Shibuya, Tokyo, Japan
| | - Seiha Omata
- Biological Resource Center, National Institute of Technology and Evaluation, Shibuya, Tokyo, Japan
| | - Takeshi Harada
- Biological Resource Center, National Institute of Technology and Evaluation, Shibuya, Tokyo, Japan
| | - Rieko Fukai
- Biological Resource Center, National Institute of Technology and Evaluation, Shibuya, Tokyo, Japan
| | - Akira Hosoyama
- Biological Resource Center, National Institute of Technology and Evaluation, Shibuya, Tokyo, Japan
| | - Hiroshi Horikawa
- Biological Resource Center, National Institute of Technology and Evaluation, Shibuya, Tokyo, Japan
| | - Yumiko Kato
- Biological Resource Center, National Institute of Technology and Evaluation, Shibuya, Tokyo, Japan
| | - Hidekazu Nakazawa
- Biological Resource Center, National Institute of Technology and Evaluation, Shibuya, Tokyo, Japan
| | - Nobuyuki Fujita
- Biological Resource Center, National Institute of Technology and Evaluation, Shibuya, Tokyo, Japan
| |
Collapse
|
36
|
Metagenomic natural product discovery in lichen provides evidence for a family of biosynthetic pathways in diverse symbioses. Proc Natl Acad Sci U S A 2013; 110:E3129-37. [PMID: 23898213 DOI: 10.1073/pnas.1305867110] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bacteria are a major source of natural products that provide rich opportunities for both chemical and biological investigation. Although the vast majority of known bacterial metabolites derive from free-living organisms, increasing evidence supports the widespread existence of chemically prolific bacteria living in symbioses. A strategy based on bioinformatic prediction, symbiont cultivation, isotopic enrichment, and advanced analytics was used to characterize a unique polyketide, nosperin, from a lichen-associated Nostoc sp. cyanobacterium. The biosynthetic gene cluster and the structure of nosperin, determined from 30 μg of compound, are related to those of the pederin group previously known only from nonphotosynthetic bacteria associated with beetles and marine sponges. The presence of this natural product family in such highly dissimilar associations suggests that some bacterial metabolites may be specific to symbioses with eukaryotes and encourages exploration of other symbioses for drug discovery and better understanding of ecological interactions mediated by complex bacterial metabolites.
Collapse
|
37
|
Esteves AI, Hardoim CC, Xavier JR, Gonçalves JM, Costa R. Molecular richness and biotechnological potential of bacteria cultured from Irciniidae sponges in the north-east Atlantic. FEMS Microbiol Ecol 2013; 85:519-36. [DOI: 10.1111/1574-6941.12140] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/19/2013] [Accepted: 04/19/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Ana I.S. Esteves
- Microbial Ecology and Evolution Research Group; Centre of Marine Sciences; Universidade do Algarve; Faro Portugal
| | - Cristiane C.P. Hardoim
- Microbial Ecology and Evolution Research Group; Centre of Marine Sciences; Universidade do Algarve; Faro Portugal
| | - Joana R. Xavier
- CIBIO; Centro de Investigação em Biodiversidade e Recursos Genéticos; InBIO Laboratório Associado; Pólo dos Açores - Departamento de Biologia da Universidade dos Açores; Ponta Delgada Portugal
- CEAB, Centre d'Estudis Avançats de Blanes, (CSIC); Blanes (Girona) Spain
| | - Jorge M.S. Gonçalves
- Fisheries; Biodiversity and Conservation Research Group; Centre of Marine Sciences; University of Algarve; Faro Portugal
| | - Rodrigo Costa
- Microbial Ecology and Evolution Research Group; Centre of Marine Sciences; Universidade do Algarve; Faro Portugal
| |
Collapse
|
38
|
Deep sequencing of non-ribosomal peptide synthetases and polyketide synthases from the microbiomes of Australian marine sponges. ISME JOURNAL 2013; 7:1842-51. [PMID: 23598791 DOI: 10.1038/ismej.2013.65] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/21/2013] [Accepted: 03/06/2013] [Indexed: 11/08/2022]
Abstract
The biosynthesis of non-ribosomal peptide and polyketide natural products is facilitated by multimodular enzymes that contain domains responsible for the sequential condensation of amino and carboxylic subunits. These conserved domains provide molecular targets for the discovery of natural products from microbial metagenomes. This study demonstrates the application of tag-encoded FLX amplicon pyrosequencing (TEFAP) targeting non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) genes as a method for determining the identity and diversity of natural product biosynthesis genes. To validate this approach, we assessed the diversity of NRPS and PKS genes within the microbiomes of six Australian marine sponge species using both TEFAP and metagenomic whole-genome shotgun sequencing approaches. The TEFAP approach identified 100 novel ketosynthase (KS) domain sequences and 400 novel condensation domain sequences within the microbiomes of the six sponges. The diversity of KS domains within the microbiome of a single sponge species Scopalina sp. exceeded that of any previously surveyed marine sponge. Furthermore, this study represented the first to target the condensation domain from NRPS biosynthesis and resulted in the identification of a novel condensation domain lineage. This study highlights the untapped potential of Australian marine sponges for the isolation of novel bioactive natural products. Furthermore, this study demonstrates that TEFAP approaches can be applied to functional genes, involved in natural product biosynthesis, as a tool to aid natural product discovery. It is envisaged that this approach will be used across multiple environments, offering an insight into the biological processes that influence the production of secondary metabolites.
Collapse
|
39
|
Jenner M, Frank S, Kampa A, Kohlhaas C, Pöplau P, Briggs GS, Piel J, Oldham NJ. Substrate Specificity in Ketosynthase Domains fromtrans-AT Polyketide Synthases. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201207690] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Jenner M, Frank S, Kampa A, Kohlhaas C, Pöplau P, Briggs GS, Piel J, Oldham NJ. Substrate Specificity in Ketosynthase Domains fromtrans-AT Polyketide Synthases. Angew Chem Int Ed Engl 2012; 52:1143-7. [DOI: 10.1002/anie.201207690] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Indexed: 11/07/2022]
|
41
|
Inbaneson SJ, Ravikumar S. In vitro antiplasmodial activity of marine sponge Stylissa carteri associated bacteria against Plasmodium falciparum. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2012. [DOI: 10.1016/s2222-1808(12)60081-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
42
|
Anaerobic bacteria as producers of antibiotics. Appl Microbiol Biotechnol 2012; 96:61-7. [PMID: 22854892 DOI: 10.1007/s00253-012-4285-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/04/2012] [Accepted: 07/04/2012] [Indexed: 01/09/2023]
Abstract
Anaerobic bacteria are the oldest terrestrial creatures. They occur ubiquitously in soil and in the intestine of higher organisms and play a major role in human health, ecology, and industry. However, until lately no antibiotic or any other secondary metabolite has been known from anaerobes. Mining the genome sequences of Clostridium spp. has revealed a high prevalence of putative biosynthesis genes (PKS and NRPS), and only recently the first antibiotic from the anaerobic world, closthioamide, has been isolated from the cellulose degrading bacterium Clostridium cellulolyticum. The successful genetic induction of antibiotic biosynthesis in an anaerobe encourages further investigations of obligate anaerobes to tap their hidden biosynthetic potential.
Collapse
|
43
|
Inbaneson SJ, Ravikumar S. In vitro antiplasmodial activity of Clathria vulpina sponge associated bacteria against Plasmodium falciparum. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2012. [DOI: 10.1016/s2222-1808(12)60069-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
44
|
Phylogenetically diverse endozoic fungi in the South China Sea sponges and their potential in synthesizing bioactive natural products suggested by PKS gene and cytotoxic activity analysis. FUNGAL DIVERS 2012. [DOI: 10.1007/s13225-012-0192-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
45
|
Nikolouli K, Mossialos D. Bioactive compounds synthesized by non-ribosomal peptide synthetases and type-I polyketide synthases discovered through genome-mining and metagenomics. Biotechnol Lett 2012; 34:1393-403. [PMID: 22481301 DOI: 10.1007/s10529-012-0919-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 03/21/2012] [Indexed: 12/16/2022]
Abstract
Non-ribosomal peptide synthetases (NRPS) and type-I polyketide synthases (PKS-I) are multimodular enzymes involved in biosynthesis of oligopeptide and polyketide secondary metabolites produced by microorganisms such as bacteria and fungi. New findings regarding the mechanisms underlying NRPS and PKS-I evolution illustrate how microorganisms expand their metabolic potential. During the last decade rapid development of bioinformatics tools as well as improved sequencing and annotation of microbial genomes led to discovery of novel bioactive compounds synthesized by NRPS and PKS-I through genome-mining. Taking advantage of these technological developments metagenomics is a fast growing research field which directly studies microbial genomes or specific gene groups and their products. Discovery of novel bioactive compounds synthesized by NRPS and PKS-I will certainly be accelerated through metagenomics, allowing the exploitation of so far untapped microbial resources in biotechnology and medicine.
Collapse
Affiliation(s)
- Katerina Nikolouli
- Department of Biochemistry and Biotechnology, University of Thessaly, Ploutonos 26 & Eolou, 41221, Larissa, Greece
| | | |
Collapse
|
46
|
In vitro antiplasmodial activity of marine sponge Clathria indica associated bacteria against Palsmodium falciparum. Asian Pac J Trop Biomed 2012. [DOI: 10.1016/s2221-1691(12)60367-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
47
|
Wiens M, Schröder HC, Korzhev M, Wang XH, Batel R, Müller WEG. Inducible ASABF-type antimicrobial peptide from the sponge Suberites domuncula: microbicidal and hemolytic activity in vitro and toxic effect on molluscs in vivo. Mar Drugs 2011; 9:1969-1994. [PMID: 22073005 PMCID: PMC3210614 DOI: 10.3390/md9101969] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/26/2011] [Accepted: 10/08/2011] [Indexed: 11/16/2022] Open
Abstract
Since sponges, as typical filter-feeders, are exposed to a high load of attacking prokaryotic and eukaryotic organisms, they are armed with a wide arsenal of antimicrobial/cytostatic low-molecular-weight, non-proteinaceous bioactive compounds. Here we present the first sponge agent belonging to the group of ASABF-type antimicrobial peptides. The ASABF gene was identified and cloned from the demosponge Suberites domuncula. The mature peptide, with a length of 64 aa residues has a predicted pI of 9.24, and comprises the characteristic CSα β structural motif. Consequently, the S. domuncula ASABF shares high similarity with the nematode ASABFs; it is distantly related to the defensins. The recombinant peptide was found to display besides microbicidal activity, anti-fungal activity. In addition, the peptide lyses human erythrocytes. The expression of ASABF is upregulated after exposure to the apoptosis-inducing agent 2,2′-dipyridyl. During the process of apoptosis of surface tissue of S. domuncula, grazing gastropods (Bittium sp.) are attracted by quinolinic acid which is synthesized through the kynurenine pathway by the enzyme 3-hydroxyanthranilate 3,4-dioxygenase (HAD). Finally, the gastropods are repelled from the sponge tissue by the ASABF. It is shown that the effector peptide ASABF is sequentially expressed after the induction of the HAD gene and a caspase, as a central enzyme executing apoptosis.
Collapse
Affiliation(s)
- Matthias Wiens
- ERC Advanced Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz D-55128, Germany; E-Mails: (M.W.); (H.C.S.); (M.K.); (X.-H.W.)
| | - Heinz C. Schröder
- ERC Advanced Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz D-55128, Germany; E-Mails: (M.W.); (H.C.S.); (M.K.); (X.-H.W.)
| | - Michael Korzhev
- ERC Advanced Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz D-55128, Germany; E-Mails: (M.W.); (H.C.S.); (M.K.); (X.-H.W.)
| | - Xiao-Hong Wang
- ERC Advanced Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz D-55128, Germany; E-Mails: (M.W.); (H.C.S.); (M.K.); (X.-H.W.)
| | - Renato Batel
- Rudjer Boskovic Institute, Center for Marine Research, Giordano Paliaga 5, Rovinj HR-52210, Croatia; E-Mail:
| | - Werner E. G. Müller
- ERC Advanced Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz D-55128, Germany; E-Mails: (M.W.); (H.C.S.); (M.K.); (X.-H.W.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-611-3925910; Fax: +49-611-3925243
| |
Collapse
|
48
|
Beeble A, Calestani C. Expression pattern of polyketide synthase-2 during sea urchin development. Gene Expr Patterns 2011; 12:7-10. [PMID: 22001775 DOI: 10.1016/j.gep.2011.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 09/26/2011] [Accepted: 09/28/2011] [Indexed: 10/17/2022]
Abstract
Polyketide synthases (PKSs) are a large group of proteins responsible for the biosynthesis of polyketide compounds, which are mainly found in bacteria, fungi, and plants. Polyketides have a wide array of biological functions, including antibiotic, antifungal, predator defense, and light responses. In this study, we describe the developmental expression pattern of pks2, one of two pks found in the sea urchin genome. Throughout development, pks2 expression was restricted to skeletogenic cells and their precursors. Pks2 was first detected during the blastula stage. The transcript level peaked at hatched blastula, when all skeletogenic cell precursors expressed pks2. This was followed by a steady decline in expression in the skeletogenic cells on the aboral side of the embryo. By the prism stage, pks2 expression was limited to only 3-4 skeletogenic cells localized on the oral side.
Collapse
Affiliation(s)
- Adam Beeble
- Department of Biology, University of Central Florida, Orlando, FL 32816, USA
| | | |
Collapse
|
49
|
Zhou K, Zhang X, Zhang F, Li Z. Phylogenetically diverse cultivable fungal community and polyketide synthase (PKS), non-ribosomal peptide synthase (NRPS) genes associated with the South China Sea sponges. MICROBIAL ECOLOGY 2011; 62:644-654. [PMID: 21519913 DOI: 10.1007/s00248-011-9859-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Accepted: 04/10/2011] [Indexed: 05/30/2023]
Abstract
Compared with sponge-associated bacteria, the phylogenetic diversity of fungi in sponge and the association of sponge fungi remain largely unknown. Meanwhile, no detection of polyketide synthase (PKS) or non-ribosomal peptide synthase (NRPS) genes in sponge-associated fungi has been attempted. In this study, diverse and novel cultivable fungi including 10 genera (Aspergillus, Ascomycete, Fusarium, Isaria, Penicillium, Plectosphaerella, Pseudonectria, Simplicillium, Trichoderma, and Volutella) in four orders (Eurotiales, Hypocreales, Microascales, and Phyllachorales) of phylum Ascomycota were isolated from 10 species marine sponges in the South China Sea. Eurotiales and Hypocreales fungi were suggested as sponge generalists. The predominant isolates were Penicillium and Aspergillus in Eurotiales followed by Volutella in Hypocreales. Based on the conserved Beta-ketosynthase of PKS and A domain of NRPS, 15 polyketide synthases, and four non-ribosomal peptides synthesis genes, including non-reducing and reducing PKSs and hybrid PKS-NRPS, were detected in these fungal isolates. A lateral gene transfer event was indicated in the comparison between the phylogenetic diversity of 18S rRNA genes and β-ketoacyl synthase domain sequences. Some fungi, especially those with PKS or NRPS genes, showed antimicrobial activity against P. fluorescens, S. aureus and B. subtilis. It was the first time to investigate PKS and NRPS genes in sponge-associated fungi. Based on the detected antibiotics biosynthesis-related PKS and NRPS genes and antimicrobial activity, the potential ecological role of sponge-associated fungi in the chemical defense for sponge host was suggested. This study extended our knowledge of sponge-associated fungal phylogenetic diversity and their potential roles in the chemical defense.
Collapse
Affiliation(s)
- Kang Zhou
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | | | | | | |
Collapse
|
50
|
O’ Halloran J, Barbosa T, Morrissey J, Kennedy J, O’ Gara F, Dobson A. Diversity and antimicrobial activity of Pseudovibrio spp. from Irish marine sponges. J Appl Microbiol 2011; 110:1495-508. [DOI: 10.1111/j.1365-2672.2011.05008.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|