1
|
Zhou J, Zheng X, Zhong X, Tan W, Ma C, Wang Y, Tian R, Yang S, Li X, Xia C, Kang Z, Chen X, Zhou X. Transfer of the high-temperature adult-plant stripe rust resistance gene Yr62 in four Chinese wheat cultivars. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:44. [PMID: 37313219 PMCID: PMC10248641 DOI: 10.1007/s11032-023-01393-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/04/2023] [Indexed: 06/15/2023]
Abstract
Wheat stripe rust is one of the diseases that seriously affect wheat production worldwide. Breeding resistant cultivars is an effective way to control this disease. The wheat stripe rust resistance gene Yr62 has high-temperature adult-plant resistance (HTAP). In this study, PI 660,060, a single Yr62 gene line, was crossed with four Chinese wheat cultivars, LunXuan987 (LX987), Bainongaikang58 (AK58), ZhengMai9023 (ZM9023), and HanMai6172 (H6172). F1 seeds of four cross combinations were planted and self-crossed to develop the advance generations in the field. The seeds of each cross were mixed harvested and about 2400 to 3000 seeds were sown in each generation for F1 to F4 to maintain the maximum possible genotypes. Forty-five lines were selected and evaluated for resistance to stripe rust and agronomic traits, including plant height, number of grains per spike, and tiller number, in F5 and F6. Then, 33 lines with good agronomic traits and high disease resistance were developed to F9 generation. SSR markers Xgwm251 and Xgwm192 flank linked with the Yr62 were used to detect the presence of Yr62 in these 33 F9 lines. Of these, 22 lines were confirmed with the resistance gene Yr62. Finally, nine lines with good agronomic traits and disease resistance were successfully selected. The selected wheat lines in this study provide material support for the future breeding of wheat for stripe rust resistance. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01393-1.
Collapse
Affiliation(s)
- Jianian Zhou
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan China
| | - Xiaochen Zheng
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan China
| | - Xiao Zhong
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan China
| | - Wenjing Tan
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan China
| | - Chunhua Ma
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan China
| | - Yuqi Wang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan China
| | - Ran Tian
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan China
| | - Suizhuang Yang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan China
| | - Xin Li
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan China
| | - Chongjing Xia
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi China
| | - Xianming Chen
- US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit and Department of Plant Pathology, Washington State University, Pullman, WA USA
| | - Xinli Zhou
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan China
| |
Collapse
|
2
|
Roy Choudhury A, Trivedi P, Choi J, Madhaiyan M, Park JH, Choi W, Walitang DI, Sa T. Inoculation of ACC deaminase-producing endophytic bacteria down-regulates ethylene-induced pathogenesis-related signaling in red pepper (Capsicum annuum L.) under salt stress. PHYSIOLOGIA PLANTARUM 2023; 175:e13909. [PMID: 37026423 DOI: 10.1111/ppl.13909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 05/22/2023]
Abstract
Pathogenesis-related (PR) signaling plays multiple roles in plant development under abiotic and biotic stress conditions and is regulated by a plethora of plant physiological as well as external factors. Here, our study was conducted to evaluate the role of an ACC deaminase-producing endophytic bacteria in regulating ethylene-induced PR signaling in red pepper plants under salt stress. We also evaluated the efficiency of the bacteria in down-regulating the PR signaling for efficient colonization and persistence in the plant endosphere. We used a characteristic endophyte, Methylobacterium oryzae CBMB20 and its ACC deaminase knockdown mutant (acdS- ). The wild-type M. oryzae CBMB20 was able to decrease ethylene emission by 23% compared to the noninoculated and acdS- M. oryzae CBMB20 inoculated plants under salt stress. The increase in ethylene emission resulted in enhanced hydrogen peroxide concentration, phenylalanine ammonia-lyase activity, β-1,3 glucanase activity, and expression profiles of WRKY, CaPR1, and CaPTI1 genes that are typical salt stress and PR signaling factors. Furthermore, the inoculation of both the bacterial strains had shown induction of PR signaling under normal conditions during the initial inoculation period. However, wild-type M. oryzae CBMB20 was able to down-regulate the ethylene-induced PR signaling under salt stress and enhance plant growth and stress tolerance. Collectively, ACC deaminase-producing endophytic bacteria down-regulate the salt stress-mediated PR signaling in plants by regulating the stress ethylene emission levels and this suggests a new paradigm in efficient colonization and persistence of ACC deaminase-producing endophytic bacteria for better plant growth and productivity.
Collapse
Affiliation(s)
- Aritra Roy Choudhury
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, South Korea
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Jeongyun Choi
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, South Korea
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Munusamy Madhaiyan
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea
- Department of Bioprocess Engineering, University of Science and Technology of Korea, Daejeon, South Korea
| | - Wonho Choi
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea
| | - Denver I Walitang
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, South Korea
- College of Agriculture, Fisheries and Forestry, Romblon State University, Romblon, Philippines
| | - Tongmin Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, South Korea
- The Korean Academy of Science and Technology, Seongnam, South Korea
| |
Collapse
|
3
|
Waris M, Baig JA, Talpur FN, Kazi TG, Afridi HI. An environmental field assessment of soil quality and phytoremediation of toxic metals from saline soil by selected halophytes. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:535-544. [PMID: 35669794 PMCID: PMC9163272 DOI: 10.1007/s40201-022-00800-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/03/2022] [Indexed: 05/22/2023]
Abstract
The current study has aims to investigate the soil quality and phytoextraction of cadmium (Cd), chromium (Cr), and lead (Pb) from saline soils using Alhagi maurorum (camelthorn), Tamarix aphylla (saltcedar), Salvadora persica (mustard bush), and Suaeda nigra (bush seep weed). The saline bulk soil, rhizospheric soil, and different parts of selected plants were oxidized using the acid mixture and determined Cd, Cr, and Pb by atomic absorption spectrometry. The bio-concentration factor (BCF) and translocation factor (TF) of also examined. The quality parameters of soil like pH (< 8.5), and electrical conductivity (EC; > 4.00 dS m-1) indicated the soil is saline. The salinity of soil was lower the organic matters, and total nitrogen contents in studied saline bulk soil due to deterioration condition of soils. However, the rhizospheric soil showed the improved quality of saline soil reflected the good phytoextraction of salts from saline soil. The high contents of Cd in roots and shoots (1.02 and 0.65 µg g-1) of Alhagi maurorum, Cr in the roots and shoots (6.20, and 6.75 µg g-1) of Tamarix aphylla and Pb in the roots and shoots (5.63, and 5.75 µg g-1) of Suaeda nigra. The BCF and TF showed the Tamarix aphylla and Alhagi maurorum for Pb, Alhagi maurorum, and Salvadora persica for Cr considered as hyperaccumulator plants. Based on BCF and TF values of Alhagi maurorum, Tamarix aphylla for Cd, and Salvadora persica for Cr and Pb have the efficiency to uptake toxic metals from saline soil. Thus, it can be concluded that selected plant species may have ability for the phytoextraction the Cd, Cr and Pb from saline soil.
Collapse
Affiliation(s)
- Muhammad Waris
- Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 Pakistan
| | - Jameel Ahmed Baig
- Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 Pakistan
- Young Welfare Society, Jamshoro, 76080 Sindh Pakistan
| | - Farah Naz Talpur
- Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 Pakistan
| | - Tasneem Gul Kazi
- Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 Pakistan
| | - Hassan Imran Afridi
- Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 Pakistan
| |
Collapse
|
4
|
Wheat Proteomics for Abiotic Stress Tolerance and Root System Architecture: Current Status and Future Prospects. Proteomes 2022; 10:proteomes10020017. [PMID: 35645375 PMCID: PMC9150004 DOI: 10.3390/proteomes10020017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
Wheat is an important staple cereal for global food security. However, climate change is hampering wheat production due to abiotic stresses, such as heat, salinity, and drought. Besides shoot architectural traits, improving root system architecture (RSA) traits have the potential to improve yields under normal and stressed environments. RSA growth and development and other stress responses involve the expression of proteins encoded by the trait controlling gene/genes. Hence, mining the key proteins associated with abiotic stress responses and RSA is important for improving sustainable yields in wheat. Proteomic studies in wheat started in the early 21st century using the two-dimensional (2-DE) gel technique and have extensively improved over time with advancements in mass spectrometry. The availability of the wheat reference genome has allowed the exploration of proteomics to identify differentially expressed or abundant proteins (DEPs or DAPs) for abiotic stress tolerance and RSA improvement. Proteomics contributed significantly to identifying key proteins imparting abiotic stress tolerance, primarily related to photosynthesis, protein synthesis, carbon metabolism, redox homeostasis, defense response, energy metabolism and signal transduction. However, the use of proteomics to improve RSA traits in wheat is in its infancy. Proteins related to cell wall biogenesis, carbohydrate metabolism, brassinosteroid biosynthesis, and transportation are involved in the growth and development of several RSA traits. This review covers advances in quantification techniques of proteomics, progress in identifying DEPs and/or DAPs for heat, salinity, and drought stresses, and RSA traits, and the limitations and future directions for harnessing proteomics in wheat improvement.
Collapse
|
5
|
Zahra N, Al Hinai MS, Hafeez MB, Rehman A, Wahid A, Siddique KHM, Farooq M. Regulation of photosynthesis under salt stress and associated tolerance mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 178:55-69. [PMID: 35276596 DOI: 10.1016/j.plaphy.2022.03.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/12/2022] [Accepted: 03/03/2022] [Indexed: 05/24/2023]
Abstract
Photosynthesis is crucial for the survival of all living biota, playing a key role in plant productivity by generating the carbon skeleton that is the primary component of all biomolecules. Salinity stress is a major threat to agricultural productivity and sustainability as it can cause irreversible damage to photosynthetic apparatus at any developmental stage. However, the capacity of plants to become photosynthetically active under adverse saline conditions remains largely untapped. This study addresses this discrepancy by exploring the current knowledge on the impact of salinity on chloroplast operation, metabolism, chloroplast ultrastructure, and leaf anatomy, and highlights the dire consequences for photosynthetic machinery and stomatal conductance. We also discuss enhancing photosynthetic capacity by modifying and redistributing electron transport between photosystems and improving photosystem stability using genetic approaches, beneficial microbial inoculations, and root architecture changes to improve salt stress tolerance under field conditions. Understanding chloroplast operations and molecular engineering of photosynthetic genes under salinity stress will pave the way for developing salt-tolerant germplasm to ensure future sustainability by rehabilitating saline areas.
Collapse
Affiliation(s)
- Noreen Zahra
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Marwa Sulaiman Al Hinai
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman
| | | | - Abdul Rehman
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Abdul Wahid
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia.
| |
Collapse
|
6
|
Kumar M, Tomar M, Potkule J, Reetu, Punia S, Dhakane-Lad J, Singh S, Dhumal S, Chandra Pradhan P, Bhushan B, Anitha T, Alajil O, Alhariri A, Amarowicz R, Kennedy JF. Functional characterization of plant-based protein to determine its quality for food applications. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.106986] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Chiconato DA, de Santana Costa MG, Balbuena TS, Munns R, Dos Santos DMM. Proteomic analysis of young sugarcane plants with contrasting salt tolerance. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:588-596. [PMID: 33581744 DOI: 10.1071/fp20314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/19/2021] [Indexed: 05/20/2023]
Abstract
Soil salinity affects sugarcane (Saccharum officinale L.) production in arid and semiarid climates, severely reducing productivity. This study aimed to identify differentially regulated proteins in two cultivars that differ markedly in tolerance of saline soil. Plants were grown for 30 days and then subjected to treatments of 0 and 160 mM NaCl for 15 days. The tolerant cultivar showed a 3-fold upregulation of lipid metabolising enzymes, GDSL-motif lipases, which are associated with defence to abiotic stress, and which were not upregulated in the sensitive cultivar. Lipoxygenase was 2-fold upregulated in the tolerant cultivar but not in the sensitive cultivar, as were Type III chlorophyll a/b binding proteins. Other differences were that in the sensitive cultivar, the key enzyme of C4 photosynthesis, phosphoenolpyruvate carboxylase was downregulated, along with other chloroplast enzymes. Na+ concentrations had not reached toxic concentrations in either cultivar by this time of exposure to salt, so these changes would be in response to the osmotic effect of the soil salinity, and likely be in common with plants undergoing drought stress.
Collapse
Affiliation(s)
- Denise A Chiconato
- Department of Biologia Aplicada à Agropecuária, Universidade Estadual Paulista 'Julio de Mesquita Filho', 14884-900 Jaboticabal, SP, Brasil; and CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Marília G de Santana Costa
- Department of Tecnologia, Universidade Estadual Paulista 'Julio de Mesquita Filho', 14884-900 Jaboticabal, SP, Brasil
| | - Tiago S Balbuena
- Department of Tecnologia, Universidade Estadual Paulista 'Julio de Mesquita Filho', 14884-900 Jaboticabal, SP, Brasil
| | - Rana Munns
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT 2601, Australia; and School of Agriculture and Environment, and ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, WA 6009, Australia; and Corresponding author.
| | - Durvalina M M Dos Santos
- Department of Biologia Aplicada à Agropecuária, Universidade Estadual Paulista 'Julio de Mesquita Filho', 14884-900 Jaboticabal, SP, Brasil
| |
Collapse
|
8
|
Weng Q, Zhao Y, Yanan Z, Song X, Yuan J, Liu Y. Identification of Salt Stress-Responsive Proteins in Maize (Zea may) Seedlings Using iTRAQ-Based Proteomic Technique. IRANIAN JOURNAL OF BIOTECHNOLOGY 2021; 19:e2512. [PMID: 34179187 PMCID: PMC8217532 DOI: 10.30498/ijb.2021.2512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Soil salinity is a major abiotic stress that limits plant growth and yield worldwide. OBJECTIVE To better understand the mechanism of salt stress adaptation in maize (Zea may), proteomic analysis of maize responses to salt stress were analyzed in seedling. MATERIALS AND METHODS Taking maize seedlings untreated and treated with NaCl for 24 h as material, isobaric tags for relative and absolute quantitation (iTRAQ) were used to analyze the protein expression profile of maize seedlings after salt stress. RESULTS The result showed that 270 differentially expression proteins (DEPs) were identified in maize seedlings after salt stress. The majority proteins had functions related to translation, ribosomal structure and biogenesis (15%), posttranslational modification, protein turnover, chaperones (14%) and others metabolism. Quantitative real-time PCR analysis showed that the EF-Tu, peroxiredoxin, FoF1-type ATP synthase, glutamate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, Acetyl-CoA acetyltransferase and nucleoside diphosphate kinase genes were up-regulated in the adaptation of maize to salt stress. CONCLUSIONS The coped with salt stress of maize seedlings might be included nitrogen and glutamate (Glu) metabolism and energy homeostasis, nucleotide transport and metabolism, soluble sugar, fatty acid and nucleoside triphosphates synthesis. Moreover, the enhancement of plant to scavenge ROS, such as peroxiredoxin, might play significant roles in the adaptation of maize to salt stress.Taken together, these proteins might have important roles in defense mechanisms against salt stress in maize.We hope that this study provides valuable information for the further utilization and study on the molecular mechanisms of defense mechanisms in maize.
Collapse
Affiliation(s)
- Qiaoyun Weng
- College of Agriculture and Forestry, Hebei North University, Zhangjiakou 075000, China
| | - Yanmin Zhao
- Zhangjiakou radio & TV University, Zhangjiakou 075000,China
| | - Zhao Yanan
- College of Agriculture and Forestry, Hebei North University, Zhangjiakou 075000, China
| | - Xiaoqing Song
- College of Agriculture and Forestry, Hebei North University, Zhangjiakou 075000, China
| | - Jincheng Yuan
- College of Agriculture and Forestry, Hebei North University, Zhangjiakou 075000, China
| | - Yinghui Liu
- College of Agriculture and Forestry, Hebei North University, Zhangjiakou 075000, China
| |
Collapse
|
9
|
Duan W, Zhu G, Zhu D, Yan Y. Dynamic proteome changes of wheat developing grains in response to water deficit and high-nitrogen fertilizer conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:471-483. [PMID: 33038690 DOI: 10.1016/j.plaphy.2020.08.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 05/12/2023]
Abstract
This study investigated grain proteomic profiles in response to water deficit, high nitrogen (N) fertilizer, and their combined treatments in elite Chinese bread wheat cultivar Jingdong 17, using a two-dimensional difference gel electrophoresis (2D-DIGE)-based approach. Water deficit negatively affected the main agronomic traits of wheat and grain yield, while high-N fertilizer had the opposite effects. The application of a high-N fertilizer under water deficit conditions moderately improved kernel development and grain yield. 2D-DIGE led to the identification of 124 differentially accumulated protein (DAP) spots during five different grain developmental stages, corresponding to 97 unique proteins. The more significant changes of DAPs occurred at 10-20 days after flowering. DAPs were involved in carbohydrate metabolism, protein turnover, protein folding, cell cycle control, stress response, nitrogen metabolism, photosynthesis, and energy metabolism. In particular, water deficit caused a significant downregulation of proteins involved in starch biosynthesis, whereas high-N fertilizer led to a significant upregulation of proteins involved in nitrogen metabolism, carbohydrate metabolism, and starch biosynthesis. The combined treatment resulted in a moderate upregulation of DAPs related to carbohydrate metabolism, starch biosynthesis, and nitrogen metabolism. Our results indicated that high-N fertilization could alleviate yield loss caused by water deficit by promoting the accumulation of proteins involved in nitrogen and carbohydrate metabolism.
Collapse
Affiliation(s)
- Wenjing Duan
- College of Life Science, Capital Normal University, 100048, Beijing, China.
| | - Gengrui Zhu
- College of Life Science, Capital Normal University, 100048, Beijing, China.
| | - Dong Zhu
- College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Yueming Yan
- College of Life Science, Capital Normal University, 100048, Beijing, China; Hubei Collaborative Innovation Center for Grain Industry (HCICGI), Yangtze University, 434025, Jingzhou, China.
| |
Collapse
|
10
|
Moosavi SS, Abdi F, Abdollahi MR, Tahmasebi-Enferadi S, Maleki M. Phenological, morpho-physiological and proteomic responses of Triticum boeoticum to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:95-104. [PMID: 32920225 DOI: 10.1016/j.plaphy.2020.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Drought is the most important abiotic stress limiting wheat production worldwide. Triticum boeoticum, as wild wheat, is a rich gene pool for breeding for drought stress tolerance. In this study, to identify the most drought-tolerant and susceptible genotypes, ten T. boeoticum accessions were evaluated under non-stress and drought-stress conditions for two years. Among the studied traits, water-use efficiency (WUE) was suggested as the most important trait to identify drought-tolerant genotypes. According to the desirable and undesirable areas of the bi-plot, Tb5 and Tb6 genotypes were less and more affected by drought stress, respectively. Therefore, their flag-leaves proteins were used for two-dimensional gel electrophoresis. While, Tb5 contained a high amount of yield, yield components, and WUE, Tb6 had higher levels of water use, phenological related traits, and root related characters. Of the 235 spots found in the studied accessions, 14 spots (11 and 3 spots of Tb5 and Tb6, respectively) were selected for sequencing. Of these 14 spots, 9 and 5 spots were upregulated and downregulated, respectively. The identified proteins were grouped into six functional protein clusters, which were mainly involved in photosynthesis (36%), carbohydrate metabolism (29%), chaperone (7%), oxidation and reduction (7%), lipid metabolism and biological properties of the membrane (7%) and unknown function (14%). We report for the first time that MICP, in the group of lipid metabolism proteins, was significantly changed into wild wheat in response to drought stress. Maybe, the present-identified proteins could play an important role to understand the molecular pathways of wheat drought tolerance. We believe comparing and evaluating the similarity-identified proteins of T. boeoticum with the previously identified proteins of Aegilops tauschii, can provide a new direction to improve wheat tolerance to drought stress.
Collapse
Affiliation(s)
- Sayyed Saeed Moosavi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
| | - Fatemeh Abdi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Reza Abdollahi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Sattar Tahmasebi-Enferadi
- Department of Molecular Plant Biotechnology, Faculty of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mahmood Maleki
- Department of Biotechnology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
11
|
Awana M, Jain N, Samota MK, Rani K, Kumar A, Ray M, Gaikwad K, Praveen S, Singh NK, Singh A. Protein and gene integration analysis through proteome and transcriptome brings new insight into salt stress tolerance in pigeonpea (Cajanus cajan L.). Int J Biol Macromol 2020; 164:3589-3602. [PMID: 32882275 DOI: 10.1016/j.ijbiomac.2020.08.223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/09/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023]
Abstract
Salt stress is a major constrain to the productivity of nutritionally rich pigeonpea, an important legume of SE Asia and other parts of the world. The present study provides a comprehensive insight on integrated proteomic and transcriptomic analysis of root and shoot tissues of contrasting pigeonpea varieties (ICP1071- salt-sensitive; ICP7- salt-tolerant) to unravel salt stress induced pathways. Proteome analysis revealed 82 differentially expressed proteins (DEPs) with ≥±1.5 fold expression on 2-Dimensional (2D) gel. Of these, 25 DEPs identified through MALDI-TOF/TOF were classified using Uniprot software into functional categories. Pathways analyses using KAAS server showed the highest abundance of functional genes regulating metabolisms of carbohydrate followed by protein folding/degradation, amino acids and lipids. Expression studies on six genes (triosephosphate isomerase, oxygen evolving enhancer protein 1, phosphoribulokinase, cysteine synthase, oxygen evolving enhancer protein 2 and early nodulin like protein 2) with ≥±3 fold change were performed, and five of these showed consistency in transcript and protein expressions. Transcript analysis of root and shoot led to positive identification of 25 differentially expressed salt-responsive genes, with seven genes having ≥±5 fold change have diverse biological functions. Our combinatorial analysis suggests important role of these genes/proteins in providing salt tolerance in pigeonpea.
Collapse
Affiliation(s)
- Monika Awana
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, India
| | - Neha Jain
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Mahesh Kumar Samota
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; Horticulture Crop Processing Division, ICAR - Central Institute of Post Harvest Engineering and Technology, Abohar, Punjab 152116, India
| | - Kirti Rani
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, India
| | - Arbind Kumar
- Psichem Biotech Private Limited, Uttar Pradesh 201005, India
| | - Mrinmoy Ray
- Division of Forecasting and Agricultural Systems Modelling, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Shelly Praveen
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Nagendra Kumar Singh
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Archana Singh
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
12
|
Patil S, Shinde M, Prashant R, Kadoo N, Upadhyay A, Gupta V. Comparative Proteomics Unravels the Differences in Salt Stress Response of Own-Rooted and 110R-Grafted Thompson Seedless Grapevines. J Proteome Res 2019; 19:583-599. [PMID: 31808345 DOI: 10.1021/acs.jproteome.9b00420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Thompson Seedless, a commonly grown table grape variety, is sensitive to salinity when grown on its own roots, and therefore, it is frequently grafted onto salinity-tolerant wild grapevine rootstocks. Rising soil salinity is a growing concern in irrigated agricultural systems. The accumulation of salts near the root zone severely hampers plant growth, leading to a decrease in the productive lifespan of grapevine and causing heavy yield losses to the farmer. In the present study, we investigated the differences in response to salinity between own-rooted Thompson Seedless (TSOR) and 110R-grafted Thompson Seedless (TS110R) grapevines, wherein 110R is reported to be a salt-tolerant rootstock. The grapevines were subjected to salt stress by treating them with a 150 mM NaCl solution. The stress-induced changes in protein abundance were investigated using a label-free shotgun proteomics approach at three time-points viz. 6 h, 48 h, and 7 days of salt treatment. A total of 2793 proteins were identified, of which 246 were differentially abundant at various time-points in TSOR and TS110R vines. The abundance of proteins involved in several biological processes such as photosynthesis, amino acid metabolism, translation, chlorophyll biosynthesis, and generation of precursor metabolites was significantly affected by salt stress in both the vines but at different stages of stress. The results revealed that TSOR vines responded fervently to salt stress, while TS110R vines adopted a preventive approach. The findings of this study add to the knowledge of salinity response in woody and grafted plants and hence open the scope for further studies on salt stress-specific differences induced by grafting.
Collapse
Affiliation(s)
- Sucheta Patil
- Biochemical Sciences Division , CSIR-National Chemical Laboratory , Pune 411008 , India.,Academy of Scientific and Innovative Research , Ghaziabad 201002 , India
| | - Manisha Shinde
- ICAR-National Research Centre for Grapes , Pune 412307 , India
| | - Ramya Prashant
- Biochemical Sciences Division , CSIR-National Chemical Laboratory , Pune 411008 , India
| | - Narendra Kadoo
- Biochemical Sciences Division , CSIR-National Chemical Laboratory , Pune 411008 , India.,Academy of Scientific and Innovative Research , Ghaziabad 201002 , India
| | | | - Vidya Gupta
- Biochemical Sciences Division , CSIR-National Chemical Laboratory , Pune 411008 , India.,Academy of Scientific and Innovative Research , Ghaziabad 201002 , India
| |
Collapse
|
13
|
Comparative Proteomics of Salt-Tolerant and Salt-Sensitive Maize Inbred Lines to Reveal the Molecular Mechanism of Salt Tolerance. Int J Mol Sci 2019; 20:ijms20194725. [PMID: 31554168 PMCID: PMC6801879 DOI: 10.3390/ijms20194725] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/31/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022] Open
Abstract
Salt stress is one of the key abiotic stresses that causes great loss of yield and serious decrease in quality in maize (Zea mays L.). Therefore, it is very important to reveal the molecular mechanism of salt tolerance in maize. To acknowledge the molecular mechanisms underlying maize salt tolerance, two maize inbred lines, including salt-tolerant 8723 and salt-sensitive P138, were used in this study. Comparative proteomics of seedling roots from two maize inbred lines under 180 mM salt stress for 10 days were performed by the isobaric tags for relative and absolute quantitation (iTRAQ) approach. A total of 1056 differentially expressed proteins (DEPs) were identified. In total, 626 DEPs were identified in line 8723 under salt stress, among them, 378 up-regulated and 248 down-regulated. There were 473 DEPs identified in P138, of which 212 were up-regulated and 261 were down-regulated. Venn diagram analysis showed that 17 DEPs were up-regulated and 12 DEPs were down-regulated in the two inbred lines. In addition, 8 DEPs were up-regulated in line 8723 but down-regulated in P138, 6 DEPs were down-regulated in line 8723 but up-regulated in P138. In salt-stressed 8723, the DEPs were primarily associated with phenylpropanoid biosynthesis, starch and sucrose metabolism, and the mitogen-activated protein kinase (MAPK) signaling pathway. Intriguingly, the DEPs were only associated with the nitrogen metabolism pathway in P138. Compared to P138, the root response to salt stress in 8723 could maintain stronger water retention capacity, osmotic regulation ability, synergistic effects of antioxidant enzymes, energy supply capacity, signal transduction, ammonia detoxification ability, lipid metabolism, and nucleic acid synthesis. Based on the proteome sequencing information, changes of 8 DEPs abundance were related to the corresponding mRNA levels by quantitative real-time PCR (qRT-PCR). Our results from this study may elucidate some details of salt tolerance mechanisms and salt tolerance breeding of maize.
Collapse
|
14
|
Arefian M, Vessal S, Malekzadeh-Shafaroudi S, Siddique KHM, Bagheri A. Comparative proteomics and gene expression analyses revealed responsive proteins and mechanisms for salt tolerance in chickpea genotypes. BMC PLANT BIOLOGY 2019; 19:300. [PMID: 31288738 PMCID: PMC6617847 DOI: 10.1186/s12870-019-1793-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/22/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Salinity is a major abiotic stress that limits the growth, productivity, and geographical distribution of plants. A comparative proteomics and gene expression analysis was performed to better understand salinity tolerance mechanisms in chickpea. RESULTS Ten days of NaCl treatments resulted in the differential expression of 364 reproducible spots in seedlings of two contrasting chickpea genotypes, Flip 97-43c (salt tolerant, T1) and Flip 97-196c (salt susceptible, S1). Notably, after 3 days of salinity, 80% of the identified proteins in T1 were upregulated, while only 41% in S2 had higher expression than the controls. The proteins were classified into eight functional categories, and three groups of co-expression profile. The second co-expressed group of proteins had higher and/or stable expression in T1, relative to S2, suggesting coordinated regulation and the importance of some processes involved in salinity acclimation. This group was mainly enriched in proteins associated with photosynthesis (39%; viz. chlorophyll a-b binding protein, oxygen-evolving enhancer protein, ATP synthase, RuBisCO subunits, carbonic anhydrase, and fructose-bisphosphate aldolase), stress responsiveness (21%; viz. heat shock 70 kDa protein, 20 kDa chaperonin, LEA-2 and ascorbate peroxidase), and protein synthesis and degradation (14%; viz. zinc metalloprotease FTSH 2 and elongation factor Tu). Thus, the levels and/or early and late responses in the activation of targeted proteins explained the variation in salinity tolerance between genotypes. Furthermore, T1 recorded more correlations between the targeted transcripts and their corresponding protein expression profiles than S2. CONCLUSIONS This study provides insight into the proteomic basis of a salt-tolerance mechanism in chickpea, and offers unexpected and poorly understood molecular resources as reliable starting points for further dissection.
Collapse
Affiliation(s)
- Mohammad Arefian
- Plant Biotechnology and Breeding Department, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saeedreza Vessal
- Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Saeid Malekzadeh-Shafaroudi
- Plant Biotechnology and Breeding Department, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Abdolreza Bagheri
- Plant Biotechnology and Breeding Department, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
15
|
Li X, Zhang X, Wang X, Yang X, Cui Z. Bioaugmentation-assisted phytoremediation of lead and salinity co-contaminated soil by Suaeda salsa and Trichoderma asperellum. CHEMOSPHERE 2019; 224:716-725. [PMID: 30851523 DOI: 10.1016/j.chemosphere.2019.02.184] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 02/21/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
The combined application of plant Suaeda salsa and indigenous fungus Trichoderma asperellum on the treatment of a lead (Pb) and salinity (Na+ and Ca2+) co-contaminated soil was investigated by a flowerpot experiment. As demonstrated by plant growth and selected antioxidant parameters, S. salsa was able to tolerate and grow in the co-contaminated soil, especially bioaugmented with T. asperellum, which promoted plant growth (9-23% and 5-13% increases for plant height and fresh weight, respectively) and appeared to alleviate plant oxidative damage (7-85% and 7-49% decreases for plant malondialdehyde and peroxidase levels, respectively). The SDS-PAGE fingerprints indicated that the total protein contents of S. salsa were affected under Pb and salinity stresses. The interactions of Na+ and Ca2+ ions on the phytotoxicity of Pb remained hormesis phenomenon that low-dose alleviation and high-dose enhancement. The analysis of phytoextraction parameters and bioavailability demonstrated that Pb was mainly concentrated in plant roots and poorly translocated, indicating the phytostabilization served as a major repair pathway. On the contrary, the Na+ and Ca2+ ions were concentrated in plant by the following order: shoot > root. Moreover, bioaugmentation of planted soil with T. asperellum generally led to the 9-42%, 13-58%, and 19-30% decreases of plant Pb, Na+, and Ca2+ concentrations and translocations, respectively, as well as a 6-21% decrease of soil Pb bioavailability. This study provided a bioaugmentation-assisted phytoremediation technique to make up the deficiencies of the long-term remediation for heavy metals and salinity.
Collapse
Affiliation(s)
- Xinxin Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xu Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xinlei Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xiaoyong Yang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zhaojie Cui
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
16
|
Zhao X, Bai X, Jiang C, Li Z. Phosphoproteomic Analysis of Two Contrasting Maize Inbred Lines Provides Insights into the Mechanism of Salt-Stress Tolerance. Int J Mol Sci 2019; 20:E1886. [PMID: 30995804 PMCID: PMC6515243 DOI: 10.3390/ijms20081886] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/06/2019] [Accepted: 04/09/2019] [Indexed: 01/17/2023] Open
Abstract
Salinity is a major abiotic stress that limits maize yield and quality throughout the world. We investigated phosphoproteomics differences between a salt-tolerant inbred line (Zheng58) and a salt-sensitive inbred line (Chang7-2) in response to short-term salt stress using label-free quantitation. A total of 9448 unique phosphorylation sites from 4116 phosphoproteins in roots and shoots of Zheng58 and Chang7-2 were identified. A total of 209 and 243 differentially regulated phosphoproteins (DRPPs) in response to NaCl treatment were detected in roots and shoots, respectively. Functional analysis of these DRPPs showed that they were involved in carbon metabolism, glutathione metabolism, transport, and signal transduction. Among these phosphoproteins, the expression of 6-phosphogluconate dehydrogenase 2, pyruvate dehydrogenase, phosphoenolpyruvate carboxykinase, glutamate decarboxylase, glutamate synthase, l-gulonolactone oxidase-like, potassium channel AKT1, high-affinity potassium transporter, sodium/hydrogen exchanger, and calcium/proton exchanger CAX1-like protein were significantly regulated in roots, while phosphoenolpyruvate carboxylase 1, phosphoenolpyruvate carboxykinase, sodium/hydrogen exchanger, plasma membrane intrinsic protein 2, glutathione transferases, and abscisic acid-insensitive 5-like protein were significantly regulated in shoots. Zheng58 may activate carbon metabolism, glutathione and ascorbic acid metabolism, potassium and sodium transportation, and the accumulation of glutamate to enhance its salt tolerance. Our results help to elucidate the mechanisms of salt response in maize seedlings. They also provide a basis for further study of the mechanism underlying salt response and tolerance in maize and other crops.
Collapse
Affiliation(s)
- Xiaoyun Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Xue Bai
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Caifu Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
17
|
iTRAQ-Based Protein Profiling and Biochemical Analysis of Two Contrasting Rice Genotypes Revealed Their Differential Responses to Salt Stress. Int J Mol Sci 2019; 20:ijms20030547. [PMID: 30696055 PMCID: PMC6387323 DOI: 10.3390/ijms20030547] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 12/17/2022] Open
Abstract
Salt stress is one of the key abiotic stresses causing huge productivity losses in rice. In addition, the differential sensitivity to salinity of different rice genotypes during different growth stages is a major issue in mitigating salt stress in rice. Further, information on quantitative proteomics in rice addressing such an issue is scarce. In the present study, an isobaric tags for relative and absolute quantitation (iTRAQ)-based comparative protein quantification was carried out to investigate the salinity-responsive proteins and related biochemical features of two contrasting rice genotypes—Nipponbare (NPBA, japonica) and Liangyoupeijiu (LYP9, indica), at the maximum tillering stage. The rice genotypes were exposed to four levels of salinity: 0 (control; CK), 1.5 (low salt stress; LS), 4.5 (moderate salt stress; MS), and 7.5 g of NaCl/kg dry soil (high salt stress, HS). The iTRAQ protein profiling under different salinity conditions identified a total of 5340 proteins with 1% FDR in both rice genotypes. In LYP9, comparisons of LS, MS, and HS compared with CK revealed the up-regulation of 28, 368, and 491 proteins, respectively. On the other hand, in NPBA, 239 and 337 proteins were differentially upregulated in LS and MS compared with CK, respectively. Functional characterization by KEGG and COG, along with the GO enrichment results, suggests that the differentially expressed proteins are mainly involved in regulation of salt stress responses, oxidation-reduction responses, photosynthesis, and carbohydrate metabolism. Biochemical analysis of the rice genotypes revealed that the Na+ and Cl− uptake from soil to the leaves via the roots was increased with increasing salt stress levels in both rice genotypes. Further, increasing the salinity levels resulted in increased cell membrane injury in both rice cultivars, however more severely in NPBA. Moreover, the rice root activity was found to be higher in LYP9 roots compared with NPBA under salt stress conditions, suggesting the positive role of rice root activity in mitigating salinity. Overall, the results from the study add further insights into the differential proteome dynamics in two contrasting rice genotypes with respect to salt tolerance, and imply the candidature of LYP9 to be a greater salt tolerant genotype over NPBA.
Collapse
|
18
|
Nazari M, Moosavi SS, Maleki M. Morpho-physiological and proteomic responses of Aegilops tauschii to imposed moisture stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:445-452. [PMID: 30292161 DOI: 10.1016/j.plaphy.2018.09.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
Moisture stress is the most important limitation of wheat production in the worldwide. Among the tribe Triticeae, Aegilops tauschii is one of the most valuable gene sources of resistance to abiotic stresses. In order to identify the most tolerant accession to moisture stress, and to understand its adaptive mechanisms at the molecular level, the present experiment was carried out on ten Ae. tauschii accessions under normal (95% soil pot capacity) and moisture stress (45% soil pot capacity) conditions. At the start of the heading time, the expanded flag leaves of treated and untreated plants were sampled for two-dimensional electrophoresis (2-DE) based on proteomics approach. A19 accession was less affected by the imposed moisture stress; therefore, it was used for the proteomics experiment. Among 252 protein spots which were reproducibly detected in each given 2-DE gels, 25 spots showed significant differences between the two moisture treatments; 17 spots were upregulated and 8 spots were downregulated. The identified proteins by MALDI-TOF/TOF, were allocated to seven functional protein groups, which were mainly involved in photosynthesis/respiration (28.5%), carbohydrate metabolism (14.2%), energy metabolism (7.1%), chaperone (14.2%), protein translation and processing (14.2%), repair and stability of the genome (7.1%) and unknown function (14.2%). We report this for the first time that RMI2 protein (in the group of repair and stability of the genome) was significantly changed in wheat in response to moisture stress. We believe that, the identified proteins could play important roles in acclimation and tolerance to moisture stress and provide the genetic pathways for improving tolerance to moisture stress in wheat.
Collapse
Affiliation(s)
- Maryam Nazari
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Sayyed Saeed Moosavi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
| | - Mahmood Maleki
- Department of Biotechnology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
19
|
Liu Y, Han C, Deng X, Liu D, Liu N, Yan Y. Integrated physiology and proteome analysis of embryo and endosperm highlights complex metabolic networks involved in seed germination in wheat (Triticum aestivum L.). JOURNAL OF PLANT PHYSIOLOGY 2018; 229:63-76. [PMID: 30041047 DOI: 10.1016/j.jplph.2018.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to investigate the physiological and proteomic changes in the embryo and endosperm during seed germination in the elite Chinese bread wheat cultivar Zhengmai 366. Upon imbibition, seed size and water content increased rapidly, followed by a series of metabolic changes including increases in soluble sugar content and α-amylase activity, a decrease in starch content, and a rapid increase in plant hormones. In total, 57 and 45 differentially accumulated proteins (DAPs) from the embryo and endosperm, respectively, were identified at five germination stages (0, 6, 12, 18, and 24 h). Principal component analysis revealed a significant proteome difference between embryo and endosperm as well as the different germination stages. The largest proteome changes occurred 24 h after seed imbibition. Embryo DAP spots were mainly involved in energy metabolism, amino acid metabolism, stress/defense, and protein metabolism; those from the endosperm were primarily related to storage protein and carbohydrate metabolism. Protein-protein interaction analysis revealed a complicated interaction network between energy-related proteins and other proteins. Metabolic pathway analysis highlighted complex regulatory networks in the embryo and endosperm that regulate wheat seed germination. These results provide new insights into the molecular mechanisms of seed germination.
Collapse
Affiliation(s)
- Yue Liu
- College of Life Science, Capital Normal University, 100048 Beijing, China.
| | - Caixia Han
- College of Life Science, Capital Normal University, 100048 Beijing, China.
| | - Xiong Deng
- College of Life Science, Capital Normal University, 100048 Beijing, China.
| | - Dongmiao Liu
- College of Life Science, Capital Normal University, 100048 Beijing, China.
| | - Nannan Liu
- College of Life Science, Capital Normal University, 100048 Beijing, China.
| | - Yueming Yan
- College of Life Science, Capital Normal University, 100048 Beijing, China; Hubei Collaborative Innovation Center for Grain Industry (HCICGI), Yangtze University, 434025 Jingzhou, China.
| |
Collapse
|
20
|
Rezaee F, Lahouti M, Maleki M, Ganjeali A. Comparative proteomics analysis of whitetop (Lepidium draba L.) seedlings in response to exogenous glucose. Int J Biol Macromol 2018; 120:2458-2465. [PMID: 30193920 DOI: 10.1016/j.ijbiomac.2018.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/02/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022]
Abstract
In this research, a comparative proteomics approach was conducted to understand the physiological processes behind the sulforaphane formation in whitetop seedlings in response to exogenous glucose. Initially, 5-day-old whitetop seedlings were elicited by different concentrations (0, 166, 250, 277, 360 mM) of glucose for 72 h. According to the results, sulforaphane formation was influenced in a dose-dependent manner by glucose, and was maximized with the concentrations of 166 and 250 mM. Consequently, 2-dimensional gel electrophoresis was performed on the 166 mM glucose-elicited seedlings and it was shown that 25 protein spots were differentially expressed between glucose-elicited seedlings and control. Two hypothetical (were down-regulated) and 9 unique proteins (44% and 56% up- and down-regulated, respectively) were identified based on the Mass spectrometry analysis. According to the functional classification of the unique proteins, photosynthetic, chaperone, energy metabolism, signaling and sorting related proteins are marked in response to the glucose elicitation. This is the first report to successfully identify the Abscisic acid receptor PYR1-like and sorting nexin 1 isoform X1 by proteomics technique. In addition, the role of the sorting nexin 1 isoform X1 in the glucose-elicited whitetop seedling is reported for the first time.
Collapse
Affiliation(s)
- Fatemeh Rezaee
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehrdad Lahouti
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mahmood Maleki
- Department of Biotechnology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran
| | - Ali Ganjeali
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
21
|
Shah T, Xu J, Zou X, Cheng Y, Nasir M, Zhang X. Omics Approaches for Engineering Wheat Production under Abiotic Stresses. Int J Mol Sci 2018; 19:E2390. [PMID: 30110906 PMCID: PMC6121627 DOI: 10.3390/ijms19082390] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/14/2018] [Accepted: 07/24/2018] [Indexed: 02/05/2023] Open
Abstract
Abiotic stresses greatly influenced wheat productivity executed by environmental factors such as drought, salt, water submergence and heavy metals. The effective management at the molecular level is mandatory for a thorough understanding of plant response to abiotic stress. Understanding the molecular mechanism of stress tolerance is complex and requires information at the omic level. In the areas of genomics, transcriptomics and proteomics enormous progress has been made in the omics field. The rising field of ionomics is also being utilized for examining abiotic stress resilience in wheat. Omic approaches produce a huge amount of data and sufficient developments in computational tools have been accomplished for efficient analysis. However, the integration of omic-scale information to address complex genetics and physiological questions is still a challenge. Though, the incorporation of omic-scale data to address complex genetic qualities and physiological inquiries is as yet a challenge. In this review, we have reported advances in omic tools in the perspective of conventional and present day approaches being utilized to dismember abiotic stress tolerance in wheat. Attention was given to methodologies, for example, quantitative trait loci (QTL), genome-wide association studies (GWAS) and genomic selection (GS). Comparative genomics and candidate genes methodologies are additionally talked about considering the identification of potential genomic loci, genes and biochemical pathways engaged with stress resilience in wheat. This review additionally gives an extensive list of accessible online omic assets for wheat and its effective use. We have additionally addressed the significance of genomics in the integrated approach and perceived high-throughput multi-dimensional phenotyping as a significant restricting component for the enhancement of abiotic stress resistance in wheat.
Collapse
Affiliation(s)
- Tariq Shah
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Jinsong Xu
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Xiling Zou
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Yong Cheng
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Mubasher Nasir
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling 712100, China.
| | - Xuekun Zhang
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| |
Collapse
|
22
|
Lakra N, Kaur C, Anwar K, Singla-Pareek SL, Pareek A. Proteomics of contrasting rice genotypes: Identification of potential targets for raising crops for saline environment. PLANT, CELL & ENVIRONMENT 2018; 41:947-969. [PMID: 28337760 DOI: 10.1111/pce.12946] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/13/2017] [Accepted: 02/19/2017] [Indexed: 05/23/2023]
Abstract
High salinity is one of the major problems in crop productivity, affecting seed germination as well as yield. In order to enhance tolerance of crops towards salinity, it is essential to understand the underlying physiological and molecular mechanisms. In this endeavor, study of contrasting genotypes of the same species differing in their response towards salinity stress can be very useful. In the present study, we have investigated temporal differences in morphological, physiological and proteome profiles of two contrasting genotypes of rice to understand the basis of salt tolerance. When compared to IR64 rice, Pokkali, the salt-tolerant wild genotype, has enhanced capacity to cope with stress, better growth rate and possesses efficient antioxidant system, as well as better photosynthetic machinery. Our proteome studies revealed a higher and an early abundance of proteins involved in stress tolerance and photosynthesis in Pokkali in comparison with IR64, which, in contrast, showed greater changes in metabolic machinery even during early duration of stress. Our findings suggest important differences in physicochemical and proteome profiles of the two genotypes, which may be the basis of observed stress tolerance in the salt-tolerant Pokkali.
Collapse
Affiliation(s)
- Nita Lakra
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Charanpreet Kaur
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Khalid Anwar
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
23
|
Tan BC, Lim YS, Lau SE. Proteomics in commercial crops: An overview. J Proteomics 2017; 169:176-188. [PMID: 28546092 DOI: 10.1016/j.jprot.2017.05.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/21/2017] [Accepted: 05/19/2017] [Indexed: 02/06/2023]
Abstract
Proteomics is a rapidly growing area of biological research that is positively affecting plant science. Recent advances in proteomic technology, such as mass spectrometry, can now identify a broad range of proteins and monitor their modulation during plant growth and development, as well as during responses to abiotic and biotic stresses. In this review, we highlight recent proteomic studies of commercial crops and discuss the advances in understanding of the proteomes of these crops. We anticipate that proteomic-based research will continue to expand and contribute to crop improvement. SIGNIFICANCE Plant proteomics study is a rapidly growing area of biological research that is positively impacting plant science. With the recent advances in new technologies, proteomics not only allows us to comprehensively analyses crop proteins, but also help us to understand the functions of the genes. In this review, we highlighted recent proteomic studies in commercial crops and updated the advances in our understanding of the proteomes of these crops. We believe that proteomic-based research will continue to grow and contribute to the improvement of crops.
Collapse
Affiliation(s)
- Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia.
| | - Yin Sze Lim
- School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Su-Ee Lau
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Jiang Q, Li X, Niu F, Sun X, Hu Z, Zhang H. iTRAQ-based quantitative proteomic analysis of wheat roots in response to salt stress. Proteomics 2017; 17. [PMID: 28191739 DOI: 10.1002/pmic.201600265] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 12/28/2016] [Accepted: 02/07/2017] [Indexed: 11/05/2022]
Abstract
Salinity is a major abiotic stress that affects plant growth and development. Plant roots are the sites of salt uptake. Here, an isobaric tag for a relative and absolute quantitation based proteomic technique was employed to identify the differentially expressed proteins (DEPs) from seedling roots of the salt-tolerant genotype Han 12 and the salt-sensitive genotype Jimai 19 in response to salt treatment. A total of 121 NaCl-responsive DEPs were observed in Han 12 and Jimai 19. The main DEPs were ubiquitination-related proteins, transcription factors, pathogen-related proteins, membrane intrinsic protein transporters and antioxidant enzymes, which may work together to obtain cellular homeostasis in roots and to determine the overall salt tolerance of different wheat varieties in response to salt stress. Functional analysis of three salt-responsive proteins was performed in transgenic plants as a case study to confirm the salt-related functions of the detected proteins. Taken together, the results of this study may be helpful in further elucidating salt tolerance mechanisms in wheat.
Collapse
Affiliation(s)
- Qiyan Jiang
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, P. R., China
| | - Xiaojuan Li
- College of Life Sciences, Agriculture University of Hebei, Baoding, P. R., China
| | - Fengjuan Niu
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, P. R., China
| | - Xianjun Sun
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, P. R., China
| | - Zheng Hu
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, P. R., China
| | - Hui Zhang
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, P. R., China
| |
Collapse
|
25
|
Cheng J, Wang L, Zeng P, He Y, Zhou R, Zhang H, Wang Z. Identification of genes involved in rice seed priming in the early imbibition stage. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:61-69. [PMID: 26833720 DOI: 10.1111/plb.12438] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 01/29/2016] [Indexed: 05/23/2023]
Abstract
Phase II of seed imbibition is a critical process during seed priming. To identify genes involved in rice seed priming, the altered proteins between the dry and imbibed (24 h) seeds were compared using a two-dimensional gel electrophoresis system in this study. Ten significantly changed proteins (fold change ≥ twofold; P < 0.01) were successfully identified, which could be categorised as carbohydrate and protein biosynthesis and metabolism-related, signalling-related, storage and stress-related proteins. A meta-analysis indicated that the highest expression of the identified genes was at the milk and dough stages and in the endosperm tissue. Quantitative real-time PCR analysis showed that there was significant variation in gene expression (except FAD-dependent oxidoreductase) in embryos during seed priming (0-48 h). The expression of genes associated with stress appeared at the early imbibition stage, while those associated with carbohydrate metabolism, protein synthesis and signalling increased at the late imbibition stage. Three identified proteins (glucose-1-phosphate adenylyltransferase large subunit, aminotransferase and prolamin precursor) had similar transcript and protein expression patterns in embryos. Based on phenotype and gene expression, the optimal stop time for seed priming is 24 h, when these three genes have relatively low expression, followed by significant induction during imbibition in embryos. These three genes are ideal candidate biomarkers for rice seed priming.
Collapse
Affiliation(s)
- J Cheng
- Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - L Wang
- Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - P Zeng
- Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Y He
- Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - R Zhou
- Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - H Zhang
- Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Z Wang
- Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
26
|
Banaei-Asl F, Farajzadeh D, Bandehagh A, Komatsu S. Comprehensive proteomic analysis of canola leaf inoculated with a plant growth-promoting bacterium, Pseudomonas fluorescens, under salt stress. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1222-1236. [DOI: 10.1016/j.bbapap.2016.04.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 04/24/2016] [Accepted: 04/28/2016] [Indexed: 01/10/2023]
|
27
|
Ma J, Dong W, Zhang D, Gao X, Jiang L, Shao Y, Tong D, Li C. Proteomic profiling analysis reveals that glutathione system plays important roles responding to osmotic stress in wheat (Triticum aestivum L.) roots. PeerJ 2016; 4:e2334. [PMID: 27602297 PMCID: PMC4991857 DOI: 10.7717/peerj.2334] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 07/16/2016] [Indexed: 12/05/2022] Open
Abstract
Wheat is one of the most important crops in the world, and osmotic stress has become one of the main factors affecting wheat production. Understanding the mechanism of the response of wheat to osmotic stress would be greatly significant. In the present study, isobaric tag for relative and absolute quantification (iTRAQ) was used to analyze the changes of protein expression in the wheat roots exposed to different osmotic stresses. A total of 2,228 expressed proteins, including 81 differentially expressed proteins, between osmotic stress and control, were found. The comprehensive analysis of these differentially expressed proteins revealed that osmotic stress increased the variety of expressed proteins and suppressed the quantity of expressed proteins in wheat roots. Furthermore, the proteins for detoxifying and reactive oxygen species scavenging, especially the glutathione system, played important roles in maintaining organism balance in response to osmotic stress in wheat roots. Thus, the present study comprehensively describes the protein expression changes in wheat roots in response to osmotic stress, providing firmer foundation to further study the mechanism of osmotic resistance in wheat.
Collapse
Affiliation(s)
- Jianhui Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Wen Dong
- China Rural Technology Development Center, Beijing, China
| | - Daijing Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Xiaolong Gao
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Lina Jiang
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Yun Shao
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Doudou Tong
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Chunxi Li
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
28
|
Diagonal two-dimensional electrophoresis (D-2DE): a new approach to study the effect of osmotic stress induced by polyethylene glycol in durum wheat (Triticum durum Desf.). Mol Biol Rep 2016; 43:897-909. [PMID: 27317377 DOI: 10.1007/s11033-016-4028-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 06/10/2016] [Indexed: 12/23/2022]
Abstract
Acclimatization to stress is associated with profound changes in proteome composition. The use of plant cell and tissue culture offers a means to investigate the physiological and biochemical processes involved in the adaptation to osmotic stress. We employed a new proteomic approach to further understand the response of calli to dehydration induced by polyethylene glycol (PEG6000). Calli of three durum wheat genotypes Djenah Khetifa, Oued Zenati and Waha were treated with two concentrations of polyethylene glycol to mimic osmotic stress. Changes in protein relative abundance were analyzed using a new electrophoretic approach named diagonal two-dimensional electrophoresis (D-2DE), combined with mass spectrometry. Total proteins were extracted from 30-day-old calli from three durum wheat genotypes that showed contrasting levels of drought stress tolerance in the field. The combination of one-dimensional electrophoresis and D-2DE gave a specific imprint of the protein extracts under osmotic stress, as well as characterizing and identifying individual target proteins. Of the variously expressed proteins, three were selected (globulin, GAPDH and peroxidase) and further analyzed using qRT-PCR at the transcriptome level in order to compare the results with the proteomic data. Western blot analysis was used to further validate the differences in relative abundance pattern. The proteins identified through this technique provide new insights as to how calli respond to osmotic stress. Our method of study provides an original and relevant approach of analyzing the osmotic-responsive mechanisms at the cellular level of durum wheat with agronomic perspectives.
Collapse
|
29
|
Cao H, He M, Zhu C, Yuan L, Dong L, Bian Y, Zhang W, Yan Y. Distinct metabolic changes between wheat embryo and endosperm during grain development revealed by 2D-DIGE-based integrative proteome analysis. Proteomics 2016; 16:1515-36. [PMID: 26968330 DOI: 10.1002/pmic.201500371] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 02/23/2016] [Accepted: 03/05/2016] [Indexed: 12/31/2022]
Abstract
Two Chinese bread wheat cultivars, Jinghua 9 and Zhongmai 175, distinct in grain weight and dough quality, were used to study proteome changes in the embryo and endosperm during grain development using a two-dimensional difference gel electrophoresis (2D-DIGE)-based proteomics approach. In total, 138 and 127 differentially expressed protein (DEP) spots representing 116 and 113 unique DEPs were identified in the embryo and endosperm, respectively. Among them, 54 (31%) DEPs were commonly present in both organs while 62 (35%) and 59 (34%) DEPs occurred only in the embryo and endosperm, respectively. Embryonic DEPs are primarily stress-related proteins and involved in carbohydrate and lipid metabolism, while those from the endosperm are related primarily to carbohydrate metabolism and storage. Principal component analysis (PCA) indicated that the proteome differences in the endosperm caused by different cultivars were greater than those by development stages, while the differences in the embryo showed the opposite pattern. Protein-protein interaction (PPI) analysis revealed a complex network centered primarily on enzymes involved in carbohydrate and protein metabolism. The transcriptional levels of fourteen important DEPs encoding genes showed high similarity between organs and cultivars. In particular, some key DEPs of the endosperm, such as phosphoglucomutase, ADP-glucose pyrophosphorylase (AGPase), and sucrose synthase (SUS), showed significantly upregulated expression, indicating their key roles in starch biosynthesis and grain yield. Moreover, upregulated expression of some storage proteins in the endosperm could improve wheat bread-making quality.
Collapse
Affiliation(s)
- Hui Cao
- College of Life Science, Capital Normal University, Beijing, P. R. China
| | - Miao He
- College of Life Science, Capital Normal University, Beijing, P. R. China
| | - Chong Zhu
- College of Life Science, Capital Normal University, Beijing, P. R. China
| | - Linlin Yuan
- College of Life Science, Capital Normal University, Beijing, P. R. China
| | - Liwei Dong
- College of Life Science, Capital Normal University, Beijing, P. R. China
| | - Yanwei Bian
- College of Life Science, Capital Normal University, Beijing, P. R. China
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, P. R. China
| | - Yueming Yan
- College of Life Science, Capital Normal University, Beijing, P. R. China.,Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, P. R. China
| |
Collapse
|
30
|
Lv DW, Zhu GR, Zhu D, Bian YW, Liang XN, Cheng ZW, Deng X, Yan YM. Proteomic and phosphoproteomic analysis reveals the response and defense mechanism in leaves of diploid wheat T. monococcum under salt stress and recovery. J Proteomics 2016; 143:93-105. [PMID: 27095598 DOI: 10.1016/j.jprot.2016.04.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/05/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
UNLABELLED Salinity is a major abiotic stress factor affecting crops production and productivity. Triticum monococcum is closely related to Triticum urartu (A(U)A(U)), which is used as a model plant of wheat A genome study. Here, salt stress induced dynamic proteome and phosphoproteome profiling was focused. The T. monococcum seedlings were initially treated with different concentrations of NaCl ranging from 80 to 320mM for 48h followed by a recovery process for 48h prior to proteomic and phosphoproteomic analysis. As a result, a total of 81 spots corresponding to salt stress and recovery were identified by MALDI-TOF/TOF-MS from 2-DE gels. These proteins were mainly involved in regulatory, stress defense, protein folding/assembly/degradation, photosynthesis, carbohydrate metabolism, energy production and transportation, protein metabolism, and cell structure. Pro-Q Diamond staining was used to detect the phosphoproteins. Finally, 20 spots with different phosphorylation levels during salt treatment or recovery compared with controls were identified. A set of potential salt stress response and defense biomarkers was identified, such as cp31BHv, betaine-aldehyde dehydrogenase, leucine aminopeptidase 2, Cu/Zn superoxide dismutase, and 2-Cys peroxiredoxin BAS1, which could lead to a better understanding of the molecular basis of salt response and defense in food crops. BIOLOGICAL SIGNIFICANCE Soil salinity reduces the yield of the major crops, which is one of the severest problems in irrigated agriculture worldwide. However, how crops response and defense during different levels of salt treatment and recovery processes is still unclear, especially at the post-translational modification level. T. monococcum is a useful model for common wheat. Thus, proteomic and phosphoproteomic analyses of T. monococcum leaves were performed in our study, which provided novel insights into the underlying salt response and defense mechanisms in wheat and other crops.
Collapse
Affiliation(s)
- Dong-Wen Lv
- College of Life Science, Capital Normal University, 100048 Beijing, China; VCU Philips Institute for Oral Health Research, Virginia Commonwealth University, School of Dentistry, Department of Oral and Craniofacial Molecular Biology, 23298 Richmond, VA, USA
| | - Geng-Rui Zhu
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Dong Zhu
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Yan-Wei Bian
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Xiao-Na Liang
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Zhi-Wei Cheng
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Xiong Deng
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Yue-Ming Yan
- College of Life Science, Capital Normal University, 100048 Beijing, China.
| |
Collapse
|
31
|
Silveira JAG, Carvalho FEL. Proteomics, photosynthesis and salt resistance in crops: An integrative view. J Proteomics 2016; 143:24-35. [PMID: 26957143 DOI: 10.1016/j.jprot.2016.03.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/12/2016] [Accepted: 03/05/2016] [Indexed: 12/31/2022]
Abstract
Salinity is a stressful condition that causes a significant decrease in crop production worldwide. Salt stress affects several photosynthetic reactions, including the modulation of several important proteins. Despite these effects, few molecular-biochemical markers have been identified and evaluated for their importance in improving plant salt resistance. Proteomics is a powerful tool that allows the analysis of multigenic events at the post-translational level that has been widely used to evaluate protein modulation changes in plants exposed to salt stress. However, these studies are frequently fragmented and the results regarding photosynthesis proteins in response to salinity are limited. These constraints could be related to the low number of important photosynthetic proteins differently modulated in response to salinity, as has been commonly revealed by conventional proteomics. In this review, we present an evaluation and perspective on the integrated application of proteomics for the identification of photosynthesis proteins to improve salt resistance. We propose the use of phospho-, thiol- and redox-proteomics, associated with the utilization of isolated chloroplasts or photosynthetic sub-organellar components. This strategy may allow the characterization of essential proteins, providing a better understanding of photosynthesis regulation. Furthermore, this may contribute to the selection of molecular markers to improve salt resistance in crops.
Collapse
Affiliation(s)
- Joaquim A G Silveira
- Department of Biochemistry and Molecular Biology, Laboratory of Plant Metabolism, Federal University of Ceara, Fortaleza CEP 60451-970, Brazil.
| | - Fabricio E L Carvalho
- Department of Biochemistry and Molecular Biology, Laboratory of Plant Metabolism, Federal University of Ceara, Fortaleza CEP 60451-970, Brazil.
| |
Collapse
|
32
|
|
33
|
Chen T, Zhang L, Shang H, Liu S, Peng J, Gong W, Shi Y, Zhang S, Li J, Gong J, Ge Q, Liu A, Ma H, Zhao X, Yuan Y. iTRAQ-Based Quantitative Proteomic Analysis of Cotton Roots and Leaves Reveals Pathways Associated with Salt Stress. PLoS One 2016; 11:e0148487. [PMID: 26841024 PMCID: PMC4739606 DOI: 10.1371/journal.pone.0148487] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/19/2016] [Indexed: 01/24/2023] Open
Abstract
Salinity is a major abiotic stress that affects plant growth and development. In this study, we performed a proteomic analysis of cotton roots and leaf tissue following exposure to saline stress. 611 and 1477 proteins were differentially expressed in the roots and leaves, respectively. In the roots, 259 (42%) proteins were up-regulated and 352 (58%) were down-regulated. In the leaves, 748 (51%) proteins were up-regulated and 729 (49%) were down-regulated. On the basis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, we concluded that the phenylalanine metabolism and starch and sucrose metabolism were active for energy homeostasis to cope with salt stress in cotton roots. Moreover, photosynthesis, pyruvate metabolism, glycolysis / gluconeogenesis, carbon fixation in photosynthetic organisms and phenylalanine metabolism were inhabited to reduce energy consumption. Characterization of the signaling pathways will help elucidate the mechanism activated by cotton in response to salt stress.
Collapse
Affiliation(s)
- Tingting Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, P. R. China
| | - Lei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, P. R. China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, P. R. China
| | - Shaodong Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, P. R. China
| | - Jun Peng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, P. R. China
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, P. R. China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, P. R. China
| | - Siping Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, P. R. China
| | - Junwen Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, P. R. China
| | - Juwu Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, P. R. China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, P. R. China
| | - Aiying Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, P. R. China
| | - Huijuan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, P. R. China
| | - Xinhua Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, P. R. China
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, P. R. China
| |
Collapse
|
34
|
Li Y, Zhao J, Li YF, Xu X, Zhang B, Liu Y, Cui L, Li B, Gao Y, Chai Z. Comparative metalloproteomic approaches for the investigation proteins involved in the toxicity of inorganic and organic forms of mercury in rice (Oryza sativa L.) roots. Metallomics 2016; 8:663-71. [DOI: 10.1039/c5mt00264h] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The toxicity mechanisms of rice roots under inorganic mercury (IHg) or methylmercury (MeHg) stress were investigated using metalloproteomic approaches.
Collapse
Affiliation(s)
- Yunyun Li
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Jiating Zhao
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Yu-Feng Li
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Xiaohan Xu
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Bowen Zhang
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Yongjie Liu
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Liwei Cui
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Bai Li
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Yuxi Gao
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Zhifang Chai
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| |
Collapse
|
35
|
Proteome Dynamics and Physiological Responses to Short-Term Salt Stress in Brassica napus Leaves. PLoS One 2015; 10:e0144808. [PMID: 26691228 PMCID: PMC4686907 DOI: 10.1371/journal.pone.0144808] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/24/2015] [Indexed: 11/29/2022] Open
Abstract
Salt stress limits plant growth and crop productivity and is an increasing threat to agriculture worldwide. In this study, proteomic and physiological responses of Brassica napus leaves under salt stress were investigated. Seedlings under salt treatment showed growth inhibition and photosynthesis reduction. A comparative proteomic analysis of seedling leaves exposed to 200 mM NaCl for 24 h, 48 h and 72 h was conducted. Forty-four protein spots were differentially accumulated upon NaCl treatment and 42 of them were identified, including several novel salt-responsive proteins. To determine the functional roles of these proteins in salt adaptation, their dynamic changes in abundance were analyzed. The results suggested that the up-accumulated proteins, which were associated with protein metabolism, damage repair and defense response, might contribute to the alleviation of the deleterious effect of salt stress on chlorophyll biosynthesis, photosynthesis, energy synthesis and respiration in Brassica napus leaves. This study will lead to a better understanding of the molecular basis of salt stress adaptation in Brassica napus and provides a basis for genetic engineering of plants with improved salt tolerance in the future.
Collapse
|
36
|
Hu WJ, Wu Q, Liu X, Shen ZJ, Chen J, Liu TW, Chen J, Zhu CQ, Wu FH, Chen L, Wei J, Qiu XY, Shen GX, Zheng HL. Comparative Proteomic Analysis Reveals the Effects of Exogenous Calcium against Acid Rain Stress in Liquidambar formosana Hance Leaves. J Proteome Res 2015; 15:216-28. [PMID: 26616104 DOI: 10.1021/acs.jproteome.5b00771] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Acid rain (AR) impacts forest health by leaching calcium (Ca) away from soils and plants. Ca is an essential element and participates in various plant physiological responses. In the present study, the protective role of exogenous Ca in alleviating AR stress in Liquidambar formosana Hance at the physiological and proteomic levels was examined. Our results showed that low Ca condition resulted in the chlorophyll content and photosynthesis decreasing significantly in L. formosana leaves; however, these effects could be reversed by high Ca supplementation. Further proteomic analyses successfully identified 81 differentially expressed proteins in AR-treated L. formosana under different Ca levels. In particular, some of the proteins are involved in primary metabolism, photosynthesis, energy production, antioxidant defense, transcription, and translation. Moreover, quantitative real time polymerase chain reaction (qRT-PCR) results indicated that low Ca significantly increased the expression level of the investigated Ca-related genes, which can be reversed by high Ca supplementation under AR stress. Further, Western blotting analysis revealed that exogenous Ca supply reduced AR damage by elevating the expression of proteins involved in the Calvin cycle, reactive oxygen species (ROS) scavenging system. These findings allowed us to better understand how woody plants respond to AR stress at various Ca levels and the protective role of exogenous Ca against AR stress in forest tree species.
Collapse
Affiliation(s)
- Wen-Jun Hu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, P. R. China.,Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University , Xiamen, Fujian 361005, P. R. China
| | - Qian Wu
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University , Xiamen, Fujian 361005, P. R. China
| | - Xiang Liu
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University , Xiamen, Fujian 361005, P. R. China
| | - Zhi-Jun Shen
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University , Xiamen, Fujian 361005, P. R. China
| | - Juan Chen
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University , Xiamen, Fujian 361005, P. R. China
| | - Ting-Wu Liu
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University , Xiamen, Fujian 361005, P. R. China
| | - Juan Chen
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University , Xiamen, Fujian 361005, P. R. China
| | - Chun-Quan Zhu
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University , Xiamen, Fujian 361005, P. R. China
| | - Fei-Hua Wu
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University , Xiamen, Fujian 361005, P. R. China.,College of Life and Environmental Sciences, Hangzhou Normal University , Hangzhou, Zhejiang 310036, P. R. China
| | - Lin Chen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, P. R. China
| | - Jia Wei
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, P. R. China
| | - Xiao-Yun Qiu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, P. R. China
| | - Guo-Xin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, P. R. China
| | - Hai-Lei Zheng
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University , Xiamen, Fujian 361005, P. R. China
| |
Collapse
|
37
|
Zhang X, Shi Z, Tian Y, Zhou Q, Cai J, Dai T, Cao W, Pu H, Jiang D. Salt stress increases content and size of glutenin macropolymers in wheat grain. Food Chem 2015; 197:516-21. [PMID: 26616983 DOI: 10.1016/j.foodchem.2015.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/25/2015] [Accepted: 11/02/2015] [Indexed: 11/17/2022]
Abstract
Addition of salt solution in making wheat dough improves viscoelasticity. However, the effect of native salt fortification on dough quality is unclear. Here, wheat plants were subjected to post-anthesis salt stress to modify salt ion content in grains. The contents of Na(+) and K(+), high-molecular-weight glutenin subunits (HMW-GS), glutenin macropolyers (GMP) and amino acids in mature grains were measured. As NaCl concentration in soil increased, grain yield decreased while Na(+) and K(+) contents increased. The contents of amino acids, HMW-GS and GMP in grains also increased, especially when NaCl concentration exceeded 0.45%. Fraction of GMP larger than 10 μm was also increased. Na(+) and K(+) contents were significantly positively correlated to GMP and total HMW-GS contents, and to large GMP fraction.
Collapse
Affiliation(s)
- Xiaxiang Zhang
- National Technology Innovation Center for Regional Wheat Production, National Engineering and Technology Center for Information Agriculture, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, PR China
| | - Zhiqiang Shi
- National Technology Innovation Center for Regional Wheat Production, National Engineering and Technology Center for Information Agriculture, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, PR China
| | - Youjia Tian
- National Technology Innovation Center for Regional Wheat Production, National Engineering and Technology Center for Information Agriculture, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, PR China
| | - Qin Zhou
- National Technology Innovation Center for Regional Wheat Production, National Engineering and Technology Center for Information Agriculture, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, PR China
| | - Jian Cai
- National Technology Innovation Center for Regional Wheat Production, National Engineering and Technology Center for Information Agriculture, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, PR China
| | - Tingbo Dai
- National Technology Innovation Center for Regional Wheat Production, National Engineering and Technology Center for Information Agriculture, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, PR China
| | - Weixing Cao
- National Technology Innovation Center for Regional Wheat Production, National Engineering and Technology Center for Information Agriculture, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, PR China
| | - Hanchun Pu
- Lianyungang Academy of Agricultural Sciences, Jiangsu Province, PR China.
| | - Dong Jiang
- National Technology Innovation Center for Regional Wheat Production, National Engineering and Technology Center for Information Agriculture, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, PR China.
| |
Collapse
|
38
|
Kosová K, Vítámvás P, Urban MO, Klíma M, Roy A, Prášil IT. Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops--A Proteomic Perspective. Int J Mol Sci 2015; 16:20913-42. [PMID: 26340626 PMCID: PMC4613235 DOI: 10.3390/ijms160920913] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/16/2015] [Accepted: 08/10/2015] [Indexed: 12/26/2022] Open
Abstract
Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under altered environmental conditions. Proteins play a crucial role in plant stress response since they are directly involved in shaping the final phenotype. In the review, results of proteomic studies focused on stress response of major crops grown in temperate climate including cereals: common wheat (Triticum aestivum), durum wheat (Triticum durum), barley (Hordeum vulgare), maize (Zea mays); leguminous plants: alfalfa (Medicago sativa), soybean (Glycine max), common bean (Phaseolus vulgaris), pea (Pisum sativum); oilseed rape (Brassica napus); potato (Solanum tuberosum); tobacco (Nicotiana tabaccum); tomato (Lycopersicon esculentum); and others, to a wide range of abiotic stresses (cold, drought, salinity, heat, imbalances in mineral nutrition and heavy metals) are summarized. The dynamics of changes in various protein functional groups including signaling and regulatory proteins, transcription factors, proteins involved in protein metabolism, amino acid metabolism, metabolism of several stress-related compounds, proteins with chaperone and protective functions as well as structural proteins (cell wall components, cytoskeleton) are briefly overviewed. Attention is paid to the differences found between differentially tolerant genotypes. In addition, proteomic studies aimed at proteomic investigation of multiple stress factors are discussed. In conclusion, contribution of proteomic studies to understanding the complexity of crop response to abiotic stresses as well as possibilities to identify and utilize protein markers in crop breeding processes are discussed.
Collapse
Affiliation(s)
- Klára Kosová
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research Institute, Drnovská 507/73, 16106 Prague, Czech Republic.
| | - Pavel Vítámvás
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research Institute, Drnovská 507/73, 16106 Prague, Czech Republic.
| | - Milan Oldřich Urban
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research Institute, Drnovská 507/73, 16106 Prague, Czech Republic.
| | - Miroslav Klíma
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research Institute, Drnovská 507/73, 16106 Prague, Czech Republic.
| | - Amitava Roy
- Research Institute of Agricultural Engineering, Drnovská 507, 16106 Prague, Czech Republic.
| | - Ilja Tom Prášil
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research Institute, Drnovská 507/73, 16106 Prague, Czech Republic.
| |
Collapse
|
39
|
Chakraborty S, Salekdeh GH, Yang P, Woo SH, Chin CF, Gehring C, Haynes PA, Mirzaei M, Komatsu S. Proteomics of Important Food Crops in the Asia Oceania Region: Current Status and Future Perspectives. J Proteome Res 2015; 14:2723-44. [DOI: 10.1021/acs.jproteome.5b00211] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | | | - Pingfang Yang
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Sun Hee Woo
- Chungbuk National University, Cheongju 362-763, Korea
| | - Chiew Foan Chin
- University of Nottingham Malaysia Campus, 43500 Semenyih, Selangor, Malaysia
| | - Chris Gehring
- King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | | | | - Setsuko Komatsu
- National Institute of Crop Science, Tsukuba, Ibaraki 305-8518, Japan
| |
Collapse
|
40
|
Wang N, Zhao J, He X, Sun H, Zhang G, Wu F. Comparative proteomic analysis of drought tolerance in the two contrasting Tibetan wild genotypes and cultivated genotype. BMC Genomics 2015; 16:432. [PMID: 26044796 PMCID: PMC4456048 DOI: 10.1186/s12864-015-1657-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 05/28/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Drought is one of major abiotic stresses constraining crop productivity worldwide. To adapt to drought stress, plants have evolved sophisticated defence mechanisms. Wild barley germplasm is a treasure trove of useful genes and offers rich sources of genetic variation for crop improvement. In this study, a proteome analysis was performed to identify the genetic resources and to understand the mechanisms of drought tolerance in plants that could result in high levels of tolerance to drought stress. RESULTS A greenhouse pot experiment was performed to compare proteomic characteristics of two contrasting Tibetan wild barley genotypes (drought-tolerant XZ5 and drought-sensitive XZ54) and cv. ZAU3, in response to drought stress at soil moisture content 10% (SMC10) and 4% (SMC4) and subsequently 2 days (R1) and 5 days (R2) of recovery. More than 1700 protein spots were identified that are involved in each gel, wherein 132, 92, 86, 242 spots in XZ5 and 261, 137, 156, 187 in XZ54 from SMC10, SMC4, R1 and R2 samples were differentially expressed by drought over the control, respectively. Thirty-eight drought-tolerance-associated proteins were identified using mass spectrometry and data bank analysis. These proteins were categorized mainly into photosynthesis, stress response, metabolic process, energy and amino-acid biosynthesis. Among them, 6 protein spots were exclusively expressed or up-regulated under drought stress in XZ5 but not in XZ54, including melanoma-associated antigen p97, type I chlorophyll a/b-binding protein b, glutathione S-transferase 1, ribulosebisphosphate carboxylase large chain. Moreover, type I chlorophyll a/b-binding protein b was specifically expressed in XZ5 (Spots A4, B1 and C3) but not in both of XZ54 and ZAU3. These proteins may play crucial roles in drought-tolerance in XZ5. Coding Sequences (CDS) of rbcL and Trx-M genes from XZ5, XZ54 and ZAU3 were cloned and sequenced. CDS length of rbcL and Trx-M was 1401 bp (the partial-length CDS region) and 528 bp (full-length CDS region), respectively, encoding 467 and 176 amino acids. Comparison of gene sequences among XZ5, XZ54 and ZAU3 revealed 5 and 2 SNPs for rbcL and Trx-M, respectively, with two 2 SNPs of missense mutation in the both genes. CONCLUSIONS Our findings highlight the significance of specific-proteins associated with drought tolerance, and verified the potential value of Tibetan wild barley in improving drought tolerance of barley as well as other cereal crops.
Collapse
Affiliation(s)
- Nanbo Wang
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Jing Zhao
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Xiaoyan He
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Hongyan Sun
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Guoping Zhang
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Feibo Wu
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China. .,Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
41
|
He M, Zhu C, Dong K, Zhang T, Cheng Z, Li J, Yan Y. Comparative proteome analysis of embryo and endosperm reveals central differential expression proteins involved in wheat seed germination. BMC PLANT BIOLOGY 2015; 15:97. [PMID: 25888100 PMCID: PMC4407426 DOI: 10.1186/s12870-015-0471-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 03/16/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Wheat seeds provide a staple food and an important protein source for the world's population. Seed germination is vital to wheat growth and development and directly affects grain yield and quality. In this study, we performed the first comparative proteomic analysis of wheat embryo and endosperm during seed germination. RESULTS The proteomic changes in embryo and endosperm during the four different seed germination stages of elite Chinese bread wheat cultivar Zhengmai 9023 were first investigated. In total, 74 and 34 differentially expressed protein (DEP) spots representing 63 and 26 unique proteins were identified in embryo and endosperm, respectively. Eight common DEP were present in both tissues, and 55 and 18 DEP were specific to embryo and endosperm, respectively. These identified DEP spots could be sorted into 13 functional groups, in which the main group was involved in different metabolism pathways, particularly in the reserves necessary for mobilization in preparation for seed germination. The DEPs from the embryo were mainly related to carbohydrate metabolism, proteometabolism, amino acid metabolism, nucleic acid metabolism, and stress-related proteins, whereas those from the endosperm were mainly involved in protein storage, carbohydrate metabolism, inhibitors, stress response, and protein synthesis. During seed germination, both embryo and endosperm had a basic pattern of oxygen consumption, so the proteins related to respiration and energy metabolism were up-regulated or down-regulated along with respiration of wheat seeds. When germination was complete, most storage proteins from the endosperm began to be mobilized, but only a small amount was degraded during germination. Transcription expression of six representative DEP genes at the mRNA level was consistent with their protein expression changes. CONCLUSION Wheat seed germination is a complex process with imbibition, stirring, and germination stages, which involve a series of physiological, morphological, and proteomic changes. The first process is a rapid water uptake, in which the seed coat becomes softer and the physical state of storage materials change gradually. Then the germinated seed enters the second process (a plateau phase) and the third process (the embryonic axes elongation). Seed embryo and endosperm display distinct differentially expressed proteins, and their synergistic expression mechanisms provide a basis for the normal germination of wheat seeds.
Collapse
Affiliation(s)
- Miao He
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Chong Zhu
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Kun Dong
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Ting Zhang
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Zhiwei Cheng
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Jiarui Li
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA.
| | - Yueming Yan
- College of Life Science, Capital Normal University, Beijing, 100048, China.
- Hubei Collaborative Innovation Center for Grain Industry, 434025, Jingzhou, China.
| |
Collapse
|
42
|
Proteome analysis of dormancy-released seeds of Fraxinus mandshurica Rupr. in response to re-dehydration under different conditions. Int J Mol Sci 2015; 16:4713-30. [PMID: 25739084 PMCID: PMC4394444 DOI: 10.3390/ijms16034713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 02/09/2015] [Accepted: 02/17/2015] [Indexed: 01/18/2023] Open
Abstract
Desiccation tolerance is the ability of orthodox seeds to achieve equilibrium with atmospheric relative humidity and to survive in this state. Understanding how orthodox seeds respond to dehydration is important for improving quality and long-term storage of seeds under low temperature and drought stress conditions. Long-term storage of seeds is an artificial situation, because in most natural situations a seed that has been shed may not remain in a desiccated state for very long, and if dormant it may undergo repeated cycles of hydration. Different types of seeds are differentially sensitive to desiccation and this directly affects long-term storage. For these reasons, many researchers are investigating loss of desiccation tolerance during orthodox seed development to understand how it is acquired. In this study, the orthodox seed proteome response of Fraxinus mandshurica Rupr. to dehydration (to a relative water content of 10%, which mimics seed dehydration) was investigated under four different conditions viz. 20 °C; 20 °C with silica gel; 1 °C; and 1 °C after pretreatment with Ca2+. Proteins from seeds dehydrated under different conditions were extracted and separated by two-dimensional difference gel electrophoresis (2D-DIGE). A total of 2919 protein spots were detected, and high-resolution 2D-DIGE indicated there were 27 differentially expressed. Seven of these were identified using MALDI TOF/TOF mass spectrometry. Inferences from bioinformatics annotations of these proteins established the possible involvement of detoxifying enzymes, transport proteins, and nucleotide metabolism enzymes in response to dehydration. Of the seven differentially abundant proteins, the amounts of six were down-regulated and one was up-regulated. Also, a putative acyl-coenzyme A oxidase of the glyoxylate cycle increased in abundance. In particular, the presence of kinesin-1, a protein important for regulation and cargo interaction, was up-regulated in seeds exposed to low temperature dehydration. Kinesin-1 is present in all major lineages, but it is rarely detected in seed desiccation tolerance of woody species. These observations provide new insight into the proteome of seeds in deep dormancy under different desiccation conditions.
Collapse
|
43
|
Lin KH, Chen LFO, Li SD, Lo HF. Comparative proteomic analysis of cauliflower under high temperature and flooding stresses. SCIENTIA HORTICULTURAE 2015; 183:118-129. [PMID: 32287882 PMCID: PMC7116940 DOI: 10.1016/j.scienta.2014.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/15/2014] [Accepted: 12/13/2014] [Indexed: 05/04/2023]
Abstract
High-temperature and waterlogging are major abiotic stresses that affect the yield and quality of cauliflower. Cauliflower cultivars 'H41' and 'H69' are tolerant to high temperature and flooding, respectively; however, 'H71' is sensitive to both stresses. The objectives of this study were to identify the proteins that were differentially regulated and the physiological changes that occurred during different time periods in 'H41', 'H69', and 'H71' when responding to treatments of flooding, 40 °C, and both stresses combined. Changes in the leaf proteome were analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) and identified by Mascot peptide mass fingerprint (PMF) and database searching. Stress treatments caused significant reductions in electrolyte leakage, chlorophyll fluorescence Fv/Fm, chlorophyll content, and water potential as stress times were prolonged. By the comparative proteomic analysis, 85 protein peaks that were differentially expressed in response to combination treatments at 0, 6, and 24 h, 69 (33 in 'H41', 29 in 'H69', and 9 in 'H71') were identified, of which were cultivar specific. Differentially regulated proteins predominantly functioned in photosynthesis and to a lesser extent in energy metabolism, cellular homeostasis, transcription and translation, signal transduction, and protein biosynthesis. This is the first report that utilizes proteomics to discover changes in the protein expression profile of cauliflower in response to heat and flooding.
Collapse
Affiliation(s)
- K H Lin
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei 111, Taiwan
| | - L F O Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - S D Li
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei 111, Taiwan
| | - H F Lo
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
44
|
Mostek A, Börner A, Badowiec A, Weidner S. Alterations in root proteome of salt-sensitive and tolerant barley lines under salt stress conditions. JOURNAL OF PLANT PHYSIOLOGY 2015; 174:166-76. [PMID: 25462980 DOI: 10.1016/j.jplph.2014.08.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/08/2014] [Accepted: 08/17/2014] [Indexed: 05/21/2023]
Abstract
Salinity is one of the most important abiotic stresses causing a significant reduction of crop plants yield. To gain a better understanding of salinity tolerance mechanisms in barley (Hordeum vulgare), we investigated the changes in root proteome of salt-sensitive (DH14) and tolerant (DH187) lines in response to salt-stress. The seeds of both barley lines were germinating in water or in 100mM NaCl for 6 days. The root proteins were separated by two-dimensional gel electrophoresis. To identify proteins regulated in response to salt stress, MALDI-TOF/TOF mass spectrometry was applied. It was demonstrated that the sensitive and tolerant barley lines respond differently to salt stress. Some of the identified proteins are well-documented as markers of salinity resistance, but several proteins have not been detected in response to salt stress earlier, although they are known to be associated with other abiotic stresses. The most significant differences concerned the proteins that are involved in signal transduction (annexin, translationally-controlled tumor protein homolog, lipoxygenases), detoxification (osmotin, vacuolar ATP-ase), protein folding processes (protein disulfide isomerase) and cell wall metabolism (UDP-glucuronic acid decarboxylase, β-d-glucan exohydrolase, UDP-glucose pyrophosphorylase). The results suggest that the enhanced salinity tolerance of DH187 line results mainly from an increased activity of signal transduction mechanisms eventually leading to the accumulation of stress protective proteins and cell wall structure changes.
Collapse
Affiliation(s)
- Agnieszka Mostek
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 1a, 10-957 Olsztyn, Poland.
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Anna Badowiec
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 1a, 10-957 Olsztyn, Poland
| | - Stanisław Weidner
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 1a, 10-957 Olsztyn, Poland
| |
Collapse
|
45
|
Song Q, Wang S, Zhang G, Li Y, Li Z, Guo J, Niu N, Wang J, Ma S. Comparative proteomic analysis of a membrane-enriched fraction from flag leaves reveals responses to chemical hybridization agent SQ-1 in wheat. FRONTIERS IN PLANT SCIENCE 2015; 6:669. [PMID: 26379693 PMCID: PMC4549638 DOI: 10.3389/fpls.2015.00669] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/13/2015] [Indexed: 05/21/2023]
Abstract
The induction of wheat male fertile lines by using the chemical hybridizing agent SQ-1 (CHA-SQ-1) is an effective approach in the utilization of heterosis; however, the molecular basis of male fertility remains unknown. Wheat flag leaves are the initial receptors of CHA-SQ-1 and their membrane structure plays a vital role in response to CHA-SQ-1 stress. To investigate the response of wheat flag leaves to CHA-SQ-1 stress, we compared their quantitative proteomic profiles in the absence and presence of CHA-SQ-1. Our results indicated that wheat flag leaves suffered oxidative stress during CHA-SQ-1 treatments. Leaf O2 (-), H2O2, and malonaldehyde levels were significantly increased within 10 h after CHA-SQ-1 treatment, while the activities of major antioxidant enzymes such as superoxide dismutase, catalase, and guaiacol peroxidase were significantly reduced. Proteome profiles of membrane-enriched fraction showed a change in the abundance of a battery of membrane proteins involved in multiple biological processes. These variable proteins mainly impaired photosynthesis, ATP synthesis protein mechanisms and were involved in the response to stress. These results provide an explanation of the relationships between membrane proteomes and anther abortion and the practical application of CHA for hybrid breeding.
Collapse
Affiliation(s)
| | | | - Gaisheng Zhang
- *Correspondence: Gaisheng Zhang, College of Agronomy, Northwest Agriculture and Forestry University, National Yangling Agricultural Biotechnology and Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling 712100, China,
| | | | | | | | | | | | | |
Collapse
|
46
|
Wei L, Wang L, Yang Y, Wang P, Guo T, Kang G. Abscisic acid enhances tolerance of wheat seedlings to drought and regulates transcript levels of genes encoding ascorbate-glutathione biosynthesis. FRONTIERS IN PLANT SCIENCE 2015; 6:458. [PMID: 26175737 PMCID: PMC4485351 DOI: 10.3389/fpls.2015.00458] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/08/2015] [Indexed: 05/20/2023]
Abstract
Glutathione (GSH) and ascorbate (ASA) are associated with the abscisic acid (ABA)-induced abiotic tolerance in higher plant, however, its molecular mechanism remains obscure. In this study, exogenous application (10 μM) of ABA significantly increased the tolerance of seedlings of common wheat (Triticum aestivum L.) suffering from 5 days of 15% polyethylene glycol (PEG)-stimulated drought stress, as demonstrated by increased shoot lengths and shoot and root dry weights, while showing decreased content of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Under drought stress conditions, ABA markedly increased content of GSH and ASA in both leaves and roots of ABA-treated plants. Temporal and spatial expression patterns of eight genes encoding ASA and GSH synthesis-related enzymes were measured using quantitative real-time reverse transcription polymerase chain reaction (qPCR). The results showed that ABA temporally regulated the transcript levels of genes encoding ASA-GSH cycle enzymes. Moreover, these genes exhibited differential expression patterns between the root and leaf organs of ABA-treated wheat seedlings during drought stress. These results implied that exogenous ABA increased the levels of GSH and ASA in drought-stressed wheat seedlings in time- and organ-specific manners. Moreover, the transcriptional profiles of ASA-GSH synthesis-related enzyme genes in the leaf tissue were compared between ABA- and salicylic acid (SA)-treated wheat seedlings under PEG-stimulated drought stress, suggesting that they increased the content of ASA and GSH by differentially regulating expression levels of ASA-GSH synthesis enzyme genes. Our results increase our understanding of the molecular mechanism of ABA-induced drought tolerance in higher plants.
Collapse
Affiliation(s)
- Liting Wei
- The Collaborative Innovation Center of Henan Food Crops, College of Agronomy, Henan Agricultural UniversityZhengzhou, China
- The National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural UniversityZhengzhou, China
| | - Lina Wang
- The National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural UniversityZhengzhou, China
| | - Yang Yang
- The National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural UniversityZhengzhou, China
| | - Pengfei Wang
- The Collaborative Innovation Center of Henan Food Crops, College of Agronomy, Henan Agricultural UniversityZhengzhou, China
| | - Tiancai Guo
- The Collaborative Innovation Center of Henan Food Crops, College of Agronomy, Henan Agricultural UniversityZhengzhou, China
| | - Guozhang Kang
- The Collaborative Innovation Center of Henan Food Crops, College of Agronomy, Henan Agricultural UniversityZhengzhou, China
- The National Engineering Research Centre for Wheat, Henan Agricultural UniversityZhengzhou, China
- *Correspondence: Guozhang Kang, The National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou, #62, Nongye Road, 450002 Henan Province, China
| |
Collapse
|
47
|
Komatsu S, Kamal AHM, Hossain Z. Wheat proteomics: proteome modulation and abiotic stress acclimation. FRONTIERS IN PLANT SCIENCE 2014; 5:684. [PMID: 25538718 PMCID: PMC4259124 DOI: 10.3389/fpls.2014.00684] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 11/18/2014] [Indexed: 05/21/2023]
Abstract
Cellular mechanisms of stress sensing and signaling represent the initial plant responses to adverse conditions. The development of high-throughput "Omics" techniques has initiated a new era of the study of plant molecular strategies for adapting to environmental changes. However, the elucidation of stress adaptation mechanisms in plants requires the accurate isolation and characterization of stress-responsive proteins. Because the functional part of the genome, namely the proteins and their post-translational modifications, are critical for plant stress responses, proteomic studies provide comprehensive information about the fine-tuning of cellular pathways that primarily involved in stress mitigation. This review summarizes the major proteomic findings related to alterations in the wheat proteomic profile in response to abiotic stresses. Moreover, the strengths and weaknesses of different sample preparation techniques, including subcellular protein extraction protocols, are discussed in detail. The continued development of proteomic approaches in combination with rapidly evolving bioinformatics tools and interactive databases will facilitate understanding of the plant mechanisms underlying stress tolerance.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research OrganizationTsukuba, Japan
| | - Abu H. M. Kamal
- National Institute of Crop Science, National Agriculture and Food Research OrganizationTsukuba, Japan
| | - Zahed Hossain
- Plant Stress Biology Lab, Department of Botany, West Bengal State UniversityKolkata, India
| |
Collapse
|
48
|
Lv DW, Li X, Zhang M, Gu AQ, Zhen SM, Wang C, Li XH, Yan YM. Large-scale phosphoproteome analysis in seedling leaves of Brachypodium distachyon L. BMC Genomics 2014; 15:375. [PMID: 24885693 PMCID: PMC4079959 DOI: 10.1186/1471-2164-15-375] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 05/06/2014] [Indexed: 01/03/2023] Open
Abstract
Background Protein phosphorylation is one of the most important post-translational modifications involved in the regulation of plant growth and development as well as diverse stress response. As a member of the Poaceae, Brachypodium distachyon L. is a new model plant for wheat and barley as well as several potential biofuel grasses such as switchgrass. Vegetative growth is vital for biomass accumulation of plants, but knowledge regarding the role of protein phosphorylation modification during vegetative growth, especially in biofuel plants, is far from comprehensive. Results In this study, we carried out the first large-scale phosphoproteome analysis of seedling leaves in Brachypodium accession Bd21 using TiO2 microcolumns combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and MaxQuant software. A total of 1470 phosphorylation sites in 950 phosphoproteins were identified, and these phosphoproteins were implicated in various molecular functions and basic cellular processes by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Among the 950 phosphoproteins identified, 127 contained 3 to 8 phosphorylation sites. Conservation analysis showed that 93.4% of the 950 phosphoproteins had phosphorylation orthologs in other plant species. Motif-X analysis of the phosphorylation sites identified 13 significantly enriched phosphorylation motifs, of which 3 were novel phosphorylation motifs. Meanwhile, there were 91 phosphoproteins with both multiple phosphorylation sites and multiple phosphorylation motifs. In addition, we identified 58 phosphorylated transcription factors across 21 families and found out 6 significantly over-represented transcription factor families (C3H, Trihelix, CAMTA, TALE, MYB_related and CPP). Eighty-four protein kinases (PKs), 8 protein phosphatases (PPs) and 6 CESAs were recognized as phosphoproteins. Conclusions Through a large-scale bioinformatics analysis of the phosphorylation data in seedling leaves, a complicated PKs- and PPs- centered network related to rapid vegetative growth was deciphered in B. distachyon. We revealed a MAPK cascade network that might play the crucial roles during the phosphorylation signal transduction in leaf growth and development. The phosphoproteins and phosphosites identified from our study expanded our knowledge of protein phosphorylation modification in plants, especially in monocots. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-375) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yue-Ming Yan
- College of Life Science, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
49
|
Barkla BJ, Vera-Estrella R, Pantoja O. Progress and challenges for abiotic stress proteomics of crop plants. Proteomics 2014; 13:1801-15. [PMID: 23512887 DOI: 10.1002/pmic.201200401] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 12/12/2022]
Abstract
Plants are continually challenged to recognize and respond to adverse changes in their environment to avoid detrimental effects on growth and development. Understanding the mechanisms that crop plants employ to resist and tolerate abiotic stress is of considerable interest for designing agriculture breeding strategies to ensure sustainable productivity. The application of proteomics technologies to advance our knowledge in crop plant abiotic stress tolerance has increased dramatically in the past few years as evidenced by the large amount of publications in this area. This is attributed to advances in various technology platforms associated with MS-based techniques as well as the accessibility of proteomics units to a wider plant research community. This review summarizes the work which has been reported for major crop plants and evaluates the findings in context of the approaches that are widely employed with the aim to encourage broadening the strategies used to increase coverage of the proteome.
Collapse
Affiliation(s)
- Bronwyn J Barkla
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
| | | | | |
Collapse
|
50
|
Hu WJ, Chen J, Liu TW, Simon M, Wang WH, Chen J, Wu FH, Liu X, Shen ZJ, Zheng HL. Comparative proteomic analysis of differential responses of Pinus massoniana and Taxus wallichiana var. mairei to simulated acid rain. Int J Mol Sci 2014; 15:4333-55. [PMID: 24625662 PMCID: PMC3975401 DOI: 10.3390/ijms15034333] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/05/2014] [Accepted: 02/17/2014] [Indexed: 01/19/2023] Open
Abstract
Acid rain (AR), a serious environmental issue, severely affects plant growth and development. As the gymnosperms of conifer woody plants, Pinus massoniana (AR-sensitive) and Taxus wallichiana var. mairei (AR-resistant) are widely distributed in southern China. Under AR stress, significant necrosis and collapsed lesions were found in P. massoniana needles with remarkable yellowing and wilting tips, whereas T. wallichiana var. mairei did not exhibit chlorosis and visible damage. Due to the activation of a large number of stress-related genes and the synthesis of various functional proteins to counteract AR stress, it is important to study the differences in AR-tolerance mechanisms by comparative proteomic analysis of tolerant and sensitive species. This study revealed a total of 65 and 26 differentially expressed proteins that were identified in P. massoniana and T. wallichiana var. mairei, respectively. Among them, proteins involved in metabolism, photosynthesis, signal transduction and transcription were drastically down-regulated in P. massoniana, whereas most of the proteins participating in metabolism, cell structure, photosynthesis and transcription were increased in T. wallichiana var. mairei. These results suggest the distinct patterns of protein expression in the two woody species in response to AR, allowing a deeper understanding of diversity on AR tolerance in forest tree species.
Collapse
Affiliation(s)
- Wen-Jun Hu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China.
| | - Juan Chen
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China.
| | - Ting-Wu Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China.
| | - Martin Simon
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China.
| | - Wen-Hua Wang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China.
| | - Juan Chen
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China.
| | - Fei-Hua Wu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China.
| | - Xiang Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China.
| | - Zhi-Jun Shen
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China.
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China.
| |
Collapse
|