1
|
Sun Y, Xin J, Xu Y, Wang X, Zhao F, Niu C, Liu S. Research Progress on Sesquiterpene Compounds from Artabotrys Plants of Annonaceae. Molecules 2024; 29:1648. [PMID: 38611927 PMCID: PMC11013193 DOI: 10.3390/molecules29071648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Artabotrys, a pivotal genus within the Annonaceae family, is renowned for its extensive biological significance and medicinal potential. The genus's sesquiterpene compounds have attracted considerable interest from the scientific community due to their structural complexity and diverse biological activities. These compounds exhibit a range of biological activities, including antimalarial, antibacterial, anti-inflammatory analgesic, and anti-tumor properties, positioning them as promising candidates for medical applications. This review aims to summarize the current knowledge on the variety, species, and structural characteristics of sesquiterpene compounds isolated from Artabotrys plants. Furthermore, it delves into their pharmacological activities and underlying mechanisms, offering a comprehensive foundation for future research.
Collapse
Affiliation(s)
- Yupei Sun
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (Y.X.); (X.W.)
| | - Jianzeng Xin
- School of Life Sciences, Yantai University, Yantai 264005, China;
| | - Yaxi Xu
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (Y.X.); (X.W.)
| | - Xuyan Wang
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (Y.X.); (X.W.)
| | - Feng Zhao
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (Y.X.); (X.W.)
| | - Changshan Niu
- College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA
| | - Sheng Liu
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (Y.X.); (X.W.)
| |
Collapse
|
2
|
Nosenko T, Zimmer I, Ghirardo A, Köllner TG, Weber B, Polle A, Rosenkranz M, Schnitzler JP. Predicting functions of putative fungal sesquiterpene synthase genes based on multiomics data analysis. Fungal Genet Biol 2023; 165:103779. [PMID: 36706978 DOI: 10.1016/j.fgb.2023.103779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023]
Abstract
Sesquiterpenes (STs) are secondary metabolites, which mediate biotic interactions between different organisms. Predicting the species-specific ST repertoires can contribute to deciphering the language of communication between organisms of the same or different species. High biochemical plasticity and catalytic promiscuity of sesquiterpene synthases (STSs), however, challenge the homology-based prediction of the STS functions. Using integrated analyses of genomic, transcriptomic, volatilomic, and metabolomic data, we predict product profiles for 116 out of 146 putative STS genes identified in the genomes of 30 fungal species from different trophic groups. Our prediction method is based on the observation that STSs encoded by genes closely related phylogenetically are likely to share the initial enzymatic reactions of the ST biosynthesis pathways and, therefore, produce STs via the same reaction route. The classification by reaction routes allows to assign STs known to be emitted by a particular species to the putative STS genes from this species. Gene expression information helps to further specify these ST-to-STS assignments. Validation of the computational predictions of the STS functions using both in silico and experimental approaches shows that integrated multiomic analyses are able to correctly link cyclic STs of non-cadalane type to genes. In the process of the experimental validation, we characterized catalytic properties of several putative STS genes from the mycorrhizal fungus Laccaria bicolor. We show that the STSs encoded by the L.bicolor mycorrhiza-induced genes emit either nerolidol or α-cuprenene and α-cuparene, and discuss the possible roles of these STs in the mycorrhiza formation.
Collapse
Affiliation(s)
- Tetyana Nosenko
- Helmholtz Zentrum München, Research Unit Environmental Simulation, 85764 Neuherberg, Germany.
| | - Ina Zimmer
- Helmholtz Zentrum München, Research Unit Environmental Simulation, 85764 Neuherberg, Germany
| | - Andrea Ghirardo
- Helmholtz Zentrum München, Research Unit Environmental Simulation, 85764 Neuherberg, Germany
| | - Tobias G Köllner
- Max Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, 07745 Jena, Germany
| | - Baris Weber
- Helmholtz Zentrum München, Research Unit Environmental Simulation, 85764 Neuherberg, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, 37077 Göttingen, Germany
| | - Maaria Rosenkranz
- Helmholtz Zentrum München, Research Unit Environmental Simulation, 85764 Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Helmholtz Zentrum München, Research Unit Environmental Simulation, 85764 Neuherberg, Germany
| |
Collapse
|
3
|
Zhang N, Jiang H, Ma Z. Concise Synthesis of (±)-Myrioneurinol Enabled by Sequential [2+2] Cycloaddition/Retro-Mannich Fragmentation/Mannich Reaction. Angew Chem Int Ed Engl 2022; 61:e202200085. [PMID: 35289970 DOI: 10.1002/anie.202200085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 01/21/2023]
Abstract
A concise total synthesis of (±)-myrioneurinol has been achieved in 14 steps. An efficient AgSbF6 /t-BuCl-catalyzed intramolecular [2+2] cycloaddition reaction of the alkynone-tethered enamine was developed to prepare the highly strained cyclobutene. It was used in combination with a subsequent retro-Mannich fragmentation/Mannich reaction to efficiently construct the tricyclic core of myrioneurinol.
Collapse
Affiliation(s)
- Nanping Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, P.R. China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, P.R. China
| | - Zhiqiang Ma
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, P.R. China.,State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University, Shenzhen Graduate School, Shenzhen, Guangdong, 518055, P.R. China
| |
Collapse
|
4
|
Zhang N, Jiang H, Ma Z. Concise Synthesis of (±)‐Myrioneurinol Enabled by Sequential [2+2] Cycloaddition/Retro‐Mannich Fragmentation/Mannich Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nanping Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 P.R. China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 P.R. China
| | - Zhiqiang Ma
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 P.R. China
- State Key Laboratory of Chemical Oncogenomics Guangdong Provincial Key Laboratory of Chemical Genomics Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 P.R. China
| |
Collapse
|
5
|
Antipova TV, Zhelifonova VP, Litovka YA, Pavlov IN, Baskunov BP, Timofeev AA, Kozlovsky AG. Secondary Metabolites of the Siberian Strains Heterobasidion annosum sensu lato. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820020039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Antonsen S, Østby RB, Stenstrøm Y. Naturally Occurring Cyclobutanes: Their Biological Significance and Synthesis. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2018. [DOI: 10.1016/b978-0-444-64057-4.00001-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
7
|
Mgbeahuruike AC, Kovalchuk A, Ubhayasekera W, Nelson DR, Yadav JS. CYPome of the conifer pathogen Heterobasidion irregulare: Inventory, phylogeny, and transcriptional analysis of the response to biocontrol. Fungal Biol 2016; 121:158-171. [PMID: 28089047 DOI: 10.1016/j.funbio.2016.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 10/25/2016] [Accepted: 11/26/2016] [Indexed: 01/16/2023]
Abstract
The molecular mechanisms underlying the interaction of the pathogen, Heterobasidion annosum s.l., the conifer tree and the biocontrol fungus, Phlebiopsis gigantea have not been fully elucidated. Members of the cytochrome P450 (CYP) protein family may contribute to the detoxification of components of chemical defence of conifer trees by H. annosum during infection. Additionally, they may also be involved in the interaction between H. annosum and P. gigantea. A genome-wide analysis of CYPs in Heterobasidion irregulare was carried out alongside gene expression studies. According to the Standardized CYP Nomenclature criteria, the H. irregulare genome has 121 CYP genes and 17 CYP pseudogenes classified into 11 clans, 35 families, and 64 subfamilies. Tandem CYP arrays originating from gene duplications and belonging to the same family and subfamily were found. Phylogenetic analysis showed that all the families of H. irregulare CYPs were monophyletic groups except for the family CYP5144. Microarray analysis revealed the transcriptional pattern for 130 transcripts of CYP-encoding genes during growth on culture filtrate produced by P. gigantea. The high level of P450 gene diversity identified in this study could result from extensive gene duplications presumably caused by the high metabolic demands of H. irregulare in its ecological niches.
Collapse
Affiliation(s)
- Anthony C Mgbeahuruike
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, PMB, 420001, Enugu State, Nigeria; Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, PMB, 420001, Enugu State, Nigeria.
| | - Andriy Kovalchuk
- Department of Forest Sciences, University of Helsinki, P.O. Box 27, FIN-00014 Helsinki, Finland
| | - Wimal Ubhayasekera
- Structure and Molecular Biology Program, Department of Cell and Molecular Biology, Uppsala University, Box 596, Biomedical Center, SE-751 24, Uppsala, Sweden
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee, Memphis, TN 38163, USA
| | - Jagjit S Yadav
- Environmental Genetics and Molecular Toxicology Division, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| |
Collapse
|
8
|
Schwenk D, Brandt P, Blanchette RA, Nett M, Hoffmeister D. Unexpected Metabolic Versatility in a Combined Fungal Fomannoxin/Vibralactone Biosynthesis. JOURNAL OF NATURAL PRODUCTS 2016; 79:1407-1414. [PMID: 27104866 DOI: 10.1021/acs.jnatprod.6b00147] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The secondary metabolome of an undescribed stereaceous basidiomycete (BY1) was investigated for bioactive compounds. Along with a known fomannoxin derivative and two known vibralactones, we here describe three new compounds of these natural product families, whose structures were elucidated using 1D and 2D NMR spectroscopy and high-resolution mass spectrometry. The new compound vibralactone S (4) shows a 3,6-substituted oxepin-2(7H)-one ring system, which is unprecedented for the vibralactone/fomannoxin class of compounds. Stable isotope labeling established a biosynthetic route that is dissimilar to the two published cascades of oxepinone formation. Another new compound, the antifungal methyl seco-fomannoxinate (6), features a 2-methylprop-1-enyl ether moiety, which is only rarely observed with natural products. The structure of 6 was confirmed by total synthesis. (13)C-labeling experiments revealed that the unusual 2-methylprop-1-enyl ether residue derives from an isoprene unit. The diversity of BY1's combined fomannoxin/vibralactone metabolism is remarkable in that these compound families, although biosynthetically related, usually occur in different organisms.
Collapse
Affiliation(s)
- Daniel Schwenk
- Department of Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-Universität , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Philip Brandt
- Department of Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-Universität , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Robert A Blanchette
- Plant Pathology, University of Minnesota , 1991 Upper Buford Circle, Saint Paul, Minnesota 55108, United States
| | - Markus Nett
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute , Beutenbergstrasse 11a, 07745 Jena, Germany
- Department of Biochemical and Chemical Engineering, Technical Biology, Technical University Dortmund , Emil-Figge-Strasse 66, 44227 Dortmund, Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-Universität , Beutenbergstrasse 11a, 07745 Jena, Germany
| |
Collapse
|
9
|
Hansson D, Wubshet S, Olson Å, Karlsson M, Staerk D, Broberg A. Secondary metabolite comparison of the species within the Heterobasidion annosum s.l. complex. PHYTOCHEMISTRY 2014; 108:243-51. [PMID: 25260338 DOI: 10.1016/j.phytochem.2014.08.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/25/2014] [Accepted: 08/30/2014] [Indexed: 05/20/2023]
Abstract
The metabolite production of the five members of the fungal species complex Heterobasidion annosum s.l., i.e. H. annosum s.s., H. abietinum, H. parviporum, H. occidentale and H. irregulare, was analyzed by LC-HRMS. The five members are described to have differences in host preferences: H. annosum s.s. and H. irregulare are pine infecting species, and H. parviporum, H. occidentale and H. abietinum are non-pine infecting. Principal component analysis (PCA) of the LC-HRMS data showed that samples from the five species could be separated into five groups and in accordance with the differences in host preferences. Twenty-three compounds, important to the observed PCA grouping, were isolated and identified. The main contributor to the separation of the pine infecting species from the non-pine infecting species in PC1 was the benzohydrofuran fomannoxin, which was only detected in the pine infecting species H. annosum s.s. and H. irregulare. These two species were further separated in PC3, and one major contributor here was the sesquiterpene deoxyfomannosin A. The three non-pine infecting species were separated in PC2, by epoxydrimenol that was detected in only two of the species and further in PC4, where a few fomannoxin related compounds were important for the grouping. During the work, three unknown compounds were isolated and described: 3-hydroxy-2-(1,3-dihydroxypropan-2-yl)-2,3-dihydrobenzofuran-5-carbaldehyde, 3-hydroxy-2-(1,2,3-trihydroxypropan-2-yl)-2,3-dihydrobenzofuran-5-carbaldehyde and 3-hydroxy-2,3-dihydrobenzofuran-5-carboxylic acid.
Collapse
Affiliation(s)
- David Hansson
- Department of Chemistry and Biotechnology, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-75007 Uppsala, Sweden
| | - Sileshi Wubshet
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Åke Olson
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007 Uppsala, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007 Uppsala, Sweden
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Anders Broberg
- Department of Chemistry and Biotechnology, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-75007 Uppsala, Sweden.
| |
Collapse
|
10
|
Gene expression associated with intersterility in Heterobasidion. Fungal Genet Biol 2014; 73:104-19. [PMID: 25459536 DOI: 10.1016/j.fgb.2014.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/10/2014] [Accepted: 10/08/2014] [Indexed: 12/18/2022]
Abstract
Intersterility (IS) is thought to prevent mating compatibility between homokaryons that belong to different species. Although IS in Heterobasidion is regulated by the genes located at the IS loci, it is not yet known how the IS genes influence sexual compatibility and heterokaryon formation. To increase our understanding of the molecular events underlying IS, we studied mRNA abundance changes during IS compatible and incompatible interactions over time. The clustering of the transcripts into expression profiles, followed by the application of Gene Ontology (GO) enrichment pathway analysis of each of the clusters, allowed inference of biological processes participating in IS. These analyses identified events involved in mating and sexual development (i.e., linked with IS compatibility), which included processes associated with cell-cell adhesion and recognition, cell cycle control and signal transduction. We also identified events potentially involved in overriding mating between individuals belonging to different species (i.e., linked with IS incompatibility), which included reactive oxygen species (ROS) production, responses to stress (especially to oxidative stress), signal transduction and metabolic biosynthesis. Our findings thus enabled detection and characterization of gene expression changes associated with IS in Heterobasidion, as well as identification of important processes and pathways associated with this phenomenon. Overall, the results of this study increase current knowledge regarding the molecular mechanisms underpinning IS in Heterobasidion and allowed for the establishment of a vital baseline for further studies.
Collapse
|
11
|
Abstract
This review covers the isolation, structural determination, synthesis and chemical and microbiological transformations of natural sesquiterpenoids. The literature from January to December 2012 is reviewed, and 471 references are cited.
Collapse
Affiliation(s)
- Braulio M Fraga
- Instituto de Productos Naturales y Agrobiología, CSIC, 38206-La Laguna, Tenerife, Canary Islands, Spain
| |
Collapse
|