1
|
Moreno-Robles A, Cala Peralta A, Zorrilla JG, Soriano G, Masi M, Vilariño-Rodríguez S, Cimmino A, Fernández-Aparicio M. Structure-Activity Relationship (SAR) Study of trans-Cinnamic Acid and Derivatives on the Parasitic Weed Cuscuta campestris. PLANTS (BASEL, SWITZERLAND) 2023; 12:697. [PMID: 36840045 PMCID: PMC9962612 DOI: 10.3390/plants12040697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/11/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Cuscuta campestris Yunck. is a parasitic weed responsible for severe yield losses in crops worldwide. The selective control of this weed is scarce due to the difficult application of methods that kill the parasite without negatively affecting the infected crop. trans-Cinnamic acid is secreted by plant roots naturally into the rhizosphere, playing allelopathic roles in plant-plant communities, although its activity in C. campestris has never been investigated. In the search for natural molecules with phytotoxic activity against parasitic weeds, this work hypothesized that trans-cinnamic acid could be active in inhibiting C. campestris growth and that a study of a series of analogs could reveal key structural features for its growth inhibition activity. In the present structure-activity relationship (SAR) study, we determined in vitro the inhibitory activity of trans-cinnamic acid and 24 analogs. The results showed that trans-cinnamic acid's growth inhibition of C. campestris seedlings is enhanced in eight of its derivatives, namely hydrocinnamic acid, 3-phenylpropionaldehyde, trans-cinnamaldehyde, trans-4-(trifluoromethyl)cinnamic acid, trans-3-chlorocinnamic acid, trans-4-chlorocinnamic acid, trans-4-bromocinnamic acid, and methyl trans-cinnamate. Among the derivatives studied, the methyl ester derivative of trans-cinnamic acid was the most active compound. The findings of this SAR study provide knowledge for the design of herbicidal treatments with enhanced activity against parasitic weeds.
Collapse
Affiliation(s)
- Antonio Moreno-Robles
- Department of Plant Breeding, Institute for Sustainable Agriculture (IAS), CSIC, Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Antonio Cala Peralta
- Allelopathy Group, Department of Organic Chemistry, Facultad de Ciencias, Institute of Biomolecules (INBIO), University of Cadiz, C/Avenida República Saharaui, s/n, 11510 Puerto Real, Spain
| | - Jesús G. Zorrilla
- Allelopathy Group, Department of Organic Chemistry, Facultad de Ciencias, Institute of Biomolecules (INBIO), University of Cadiz, C/Avenida República Saharaui, s/n, 11510 Puerto Real, Spain
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy
| | - Gabriele Soriano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy
| | - Marco Masi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy
| | | | - Alessio Cimmino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy
| | - Mónica Fernández-Aparicio
- Department of Plant Breeding, Institute for Sustainable Agriculture (IAS), CSIC, Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
| |
Collapse
|
2
|
Chotpatiwetchkul W, Chotsaeng N, Laosinwattana C, Charoenying P. Structure-Activity Relationship Study of Xanthoxyline and Related Small Methyl Ketone Herbicides. ACS OMEGA 2022; 7:29002-29012. [PMID: 36033657 PMCID: PMC9404509 DOI: 10.1021/acsomega.2c02704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/29/2022] [Indexed: 05/26/2023]
Abstract
Xanthoxyline (1), a small natural methyl ketone, was previously reported as a plant growth inhibitor. In this research, related methyl ketones bearing electron-donating and electron-withdrawing groups, together with heteroaromatics, were investigated against seed germination and seedling growth of Chinese amaranth (Amaranthus tricolor L.) and barnyard grass [Echinochloa crus-galli (L.) Beauv]. The structure-activity relationships (SARs) of methyl ketone herbicides were clarified, and which types and positions of substituents were crucially important for activity were also clarified. Indole derivatives, namely, 3-acetylindole (43) and 3-acetyl-7-azaindole (44) were found to be the most active methyl ketones that highly suppressed plant growth at low concentrations. The molecular docking on the 4-hydroxyphenylpyruvate dioxygenase (HPPD) enzyme indicated that carbonyl, aromatic, and azaindole were key interactions of HPPD inhibitors. This finding would be useful for the development of small ketone herbicides.
Collapse
Affiliation(s)
- Warot Chotpatiwetchkul
- Department
of Chemistry, School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Nawasit Chotsaeng
- Department
of Chemistry, School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
- Integrated
Applied Chemistry Research Unit, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Chamroon Laosinwattana
- Department
of Plant Production Technology, School of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Patchanee Charoenying
- Department
of Chemistry, School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
3
|
Grammatoglou K, Jirgensons A. Functionalization of 1 N-Protected Tetrazoles by Deprotonation with the Turbo Grignard Reagent. J Org Chem 2022; 87:3810-3816. [PMID: 35081306 DOI: 10.1021/acs.joc.1c02926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
1N-PMB-protected tetrazole undergoes C-H deprotonation with the turbo Grignard reagent, providing a metalated intermediate with increased stability. This can be used for the reaction with electrophiles such as aldehydes, ketones, Weinreb amides, and iodine. C-H deprotonation with the turbo Grignard reagent is compatible with the PMB-protecting group at the tetrazole, which can be cleaved using oxidative hydrogenolysis and acidic conditions. The method enables the tetrazole functionalization at the fifth position by overcoming the difficulties associated with retro [2 + 3] cycloaddition of the metalated intermediates.
Collapse
Affiliation(s)
| | - Aigars Jirgensons
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| |
Collapse
|
4
|
Aldrich CC, Buonomo JA, Cole MS, Eiden CG. 1,3-Diphenyldisiloxane Enables Additive-Free Redox Recycling Reactions and Catalysis with Triphenylphosphine. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The recently reported chemoselective reduction of phosphine oxides with 1,3-diphenyldisiloxane (DPDS) has opened up the possibility of additive-free phosphine oxide reductions in catalytic systems. Herein we disclose the use of this new reducing agent as an enabler of phosphorus redox recycling in Wittig, Staudinger, and alcohol substitution reactions. DPDS was successfully utilized in ambient-temperature additive-free redox recycling variants of the Wittig olefination, Appel halogenation, and Staudinger reduction. Triphenylphosphine-promoted catalytic recycling reactions were also facilitated by DPDS. Additive-free triphenylphosphine-promoted catalytic Staudinger reductions could even be performed at ambient temperature due to the rapid nature of phosphinimine reduction, for which we characterized kinetic and thermodynamic parameters. These results demonstrate the utility of DPDS as an excellent reducing agent for the development of phosphorus redox recycling reactions.
Collapse
|
5
|
Shindo M, Makigawa S, Kodama K, Sugiyama H, Matsumoto K, Iwata T, Wasano N, Kano A, Morita MT, Fujii Y. Design and chemical synthesis of root gravitropism inhibitors: Bridged analogues of ku-76 have more potent activity. PHYTOCHEMISTRY 2020; 179:112508. [PMID: 32905916 DOI: 10.1016/j.phytochem.2020.112508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Previously, we found (2Z,4E)-5-phenylpenta-2,4-dienoic acid (ku-76) to be a selective inhibitor of root gravitropic bending of lettuce radicles at 5 μM, with no concomitant growth inhibition, and revealed the structure-activity relationship in this inhibitory activity. The conformation of ku-76 is flexible owing to the open-chain structure of pentan-2,4-dienoic acid with freely rotating single bonds, and the (2Z)-alkene moiety may be isomerized by external factors. To develop more potent inhibitors and obtain insight into the target biomolecules, various analogues of ku-76, fixed through conformation and/or configuration, were synthesized and evaluated. Stereochemical fixation was effective in improving the potency of gravitropic bending inhibition. Finally, we found highly potent conformational and/or configurational analogues (ku-257, ku-294 and ku-308), that did not inhibit root growth. The inhibition of root curvature by these analogues was comparable to that of naptalam.
Collapse
Affiliation(s)
- Mitsuru Shindo
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan.
| | - Saki Makigawa
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Kozue Kodama
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Hiromi Sugiyama
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Kenji Matsumoto
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Takayuki Iwata
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Naoya Wasano
- International Environmental and Agricultural Sciences, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Arihiro Kano
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Miyo Terao Morita
- Division of Plant Environmental Responses, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan
| | - Yoshiharu Fujii
- International Environmental and Agricultural Sciences, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|
6
|
Rodríguez RB, Zapata RL, Salum ML, Erra-Balsells R. Understanding the role played by protic ionic liquids (PILs) and the substituent effect for enhancing the generation of Z-cinnamic acid derivatives†. Photochem Photobiol Sci 2020; 19:819-830. [PMID: 33856671 DOI: 10.1039/d0pp00072h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/30/2020] [Indexed: 11/21/2022]
Abstract
Photoisomerization of a series of substituted E-cinnamic acids in MeCN in their acid forms and as their corresponding protic ionic liquids (PILs) with light of 300 nm is studied. The nature, strength, number, and position effects of substituents on the photochemical behavior of E-cinnamic derivatives are investigated. The photosensitization of the reaction in the presence of Michler's ketone is also studied at 366 nm and it demonstrates that the triplet-excited state is involved in the reaction. As the presence of n-butylamine needed to form the PILs significantly increases the photoproduct yields in all cases, the role of the PILs is also discussed. Thus, understanding of these fundamental aspects has allowed us to establish an excellent and practical synthetic protocol for successfully synthesizing Z-cinnamic acids.
Collapse
Affiliation(s)
- Rocío B Rodríguez
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Orgánica. Pabellón II, 3er P., Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
- Design and Chemistry of Macromolecules Group, Institute of Technology in Polymers and Nanotechnology (ITPN), UBA-CONICET, FADU, University of Buenos Aires, Intendente Güiraldes 2160, Pabellón III, subsuelo, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - Ramiro L Zapata
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Orgánica. Pabellón II, 3er P., Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - María L Salum
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Orgánica. Pabellón II, 3er P., Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.
- CONICET, Universidad de Buenos Aires. Centro de Investigación en Hidratos de Carbono (CIHIDECAR). Facultad de Ciencias Exactas y Naturales Pabellón II, 3er P. Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.
| | - Rosa Erra-Balsells
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Orgánica. Pabellón II, 3er P., Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
- CONICET, Universidad de Buenos Aires. Centro de Investigación en Hidratos de Carbono (CIHIDECAR). Facultad de Ciencias Exactas y Naturales Pabellón II, 3er P. Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
7
|
Shindo M, Makigawa S, Matsumoto K, Iwata T, Wasano N, Kano A, Morita MT, Fujii Y. Essential structural features of (2Z,4E)-5-phenylpenta-2,4-dienoic acid for inhibition of root gravitropism. PHYTOCHEMISTRY 2020; 172:112287. [PMID: 32018089 DOI: 10.1016/j.phytochem.2020.112287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Previously, we found (2Z,4E)-5-phenylpenta-2,4-dienoic acid (ku-76) to be a selective inhibitor of root gravitropic bending of lettuce radicles at 5 μM, with no concomitant growth inhibition. Here, we describe a structure-activity relationship study of ku-76 to determine the essential structural features for the inhibitory activity. A series of ku-76 analogues was synthesized and the key features of ku-76 that are necessary for inhibition of lettuce root gravitropic bending were determined. The (2E,4E)-, (2Z,4Z)- (2E,4Z)- analogues were inactive, and 4,5-saturated and 4,5-alkynyl analogues also did not show inhibitory activity, demonstrating the importance of the (2Z,4E) diene unit. The aromatic ring was also crucial and could not be replaced with an alkyl chain. Derivatives in which the carboxylic acid was replaced with amides, alcohols, or esters were much less potent. These results suggest that the (2Z,4E)-diene, the carboxylic acid moiety, and the aromatic ring are essential for potent inhibitory activity against gravitropic bending.
Collapse
Affiliation(s)
- Mitsuru Shindo
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan.
| | - Saki Makigawa
- Faculty of Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Kenji Matsumoto
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Takayuki Iwata
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Naoya Wasano
- International Environmental and Agricultural Sciences, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Arihiro Kano
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Miyo Terao Morita
- Division of Plant Environmental Responses, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan
| | - Yoshiharu Fujii
- International Environmental and Agricultural Sciences, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|
8
|
Chotsaeng N, Laosinwattana C, Charoenying P. Herbicidal Activity of Flavokawains and Related trans-Chalcones against Amaranthus tricolor L. and Echinochloa crus-galli (L.) Beauv. ACS OMEGA 2019; 4:20748-20755. [PMID: 31858061 PMCID: PMC6906942 DOI: 10.1021/acsomega.9b03144] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/13/2019] [Indexed: 05/14/2023]
Abstract
Flavokawains have a broad spectrum of biological activities; however, the herbicidal activity of these naturally occurring chalcones has been less investigated. Flavokawains and their analogues were prepared by the Claisen-Schmidt condensation reaction between xanthoxyline (or aromatic ketones) and a variety of aromatic and heteroaromatic aldehydes. These compounds were then evaluated for their inhibitory effect against representative dicot and monocot plants. Among 45 synthetic chalcones, derivatives containing phenoxyacetic acid, 4-(N,N-dimethylamino)phenyl, N-methylpyrrole, or thiophenyl groups inhibited the germination and growth of Chinese amaranth (Amaranthus tricolor L.) with moderate to high degrees compared to commercial butachlor. For barnyardgrass (Echinochloa crus-galli (L.) Beauv.), most of the thiophenyl chalcones interrupted shoot and root emergence. This finding highlighted the importance of functional groups on the herbicidal activity of chalcones. The level of inhibition also depended on the applied concentrations, plant species, and plant organs. (E)-2-(2-(3-Oxo-3-(thiophen-2-yl)prop-1-enyl)phenoxy)acetic acid (14f) was the most active compound among 45 derivatives. This chalcone could be a promising structure for controlling the germination and growth of weeds. The structure-activity relationship results provide useful information about the development of active chalconoids as novel natural product-like herbicides.
Collapse
Affiliation(s)
- Nawasit Chotsaeng
- Department
of Chemistry, Faculty of Science, Integrated Applied Chemistry Research
Unit, Faculty of Science, and Department of Plant Production Technology, Faculty
of Agricultural Technology, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
- E-mail: . Phone: +66-2329-8400 ext.
6228. Fax: +662-3298428
| | - Chamroon Laosinwattana
- Department
of Chemistry, Faculty of Science, Integrated Applied Chemistry Research
Unit, Faculty of Science, and Department of Plant Production Technology, Faculty
of Agricultural Technology, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Patchanee Charoenying
- Department
of Chemistry, Faculty of Science, Integrated Applied Chemistry Research
Unit, Faculty of Science, and Department of Plant Production Technology, Faculty
of Agricultural Technology, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
9
|
Steenackers W, El Houari I, Baekelandt A, Witvrouw K, Dhondt S, Leroux O, Gonzalez N, Corneillie S, Cesarino I, Inzé D, Boerjan W, Vanholme B. cis-Cinnamic acid is a natural plant growth-promoting compound. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6293-6304. [PMID: 31504728 PMCID: PMC6859716 DOI: 10.1093/jxb/erz392] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/19/2019] [Indexed: 05/20/2023]
Abstract
Agrochemicals provide vast potential to improve plant productivity, because they are easy to implement at low cost while not being restricted by species barriers as compared with breeding strategies. Despite the general interest, only a few compounds with growth-promoting activity have been described so far. Here, we add cis-cinnamic acid (c-CA) to the small portfolio of existing plant growth stimulators. When applied at low micromolar concentrations to Arabidopsis roots, c-CA stimulates both cell division and cell expansion in leaves. Our data support a model explaining the increase in shoot biomass as the consequence of a larger root system, which allows the plant to explore larger areas for resources. The requirement of the cis-configuration for the growth-promoting activity of CA was validated by implementing stable structural analogs of both cis- and trans-CA in this study. In a complementary approach, we used specific light conditions to prevent cis/trans-isomerization of CA during the experiment. In both cases, the cis-form stimulated plant growth, whereas the trans-form was inactive. Based on these data, we conclude that c-CA is an appealing lead compound representing a novel class of growth-promoting agrochemicals. Unraveling the underlying molecular mechanism could lead to the development of innovative strategies for boosting plant biomass.
Collapse
Affiliation(s)
- Ward Steenackers
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Gent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, Gent, Belgium
| | - Ilias El Houari
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Gent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, Gent, Belgium
| | - Alexandra Baekelandt
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Gent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, Gent, Belgium
| | - Klaas Witvrouw
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Gent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, Gent, Belgium
| | - Stijn Dhondt
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Gent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, Gent, Belgium
| | | | - Nathalie Gonzalez
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Gent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, Gent, Belgium
| | - Sander Corneillie
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Gent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, Gent, Belgium
| | - Igor Cesarino
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Gent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, Gent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Gent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, Gent, Belgium
| | - Wout Boerjan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Gent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, Gent, Belgium
| | - Bartel Vanholme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Gent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, Gent, Belgium
| |
Collapse
|
10
|
Vanholme B, El Houari I, Boerjan W. Bioactivity: phenylpropanoids’ best kept secret. Curr Opin Biotechnol 2019; 56:156-162. [DOI: 10.1016/j.copbio.2018.11.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/10/2018] [Accepted: 11/14/2018] [Indexed: 11/24/2022]
|
11
|
Verma AM, Agrawal K, Kishore N. Elucidation of novel mechanisms to produce value-added chemicals from vapour phase conversion of ferulic acid. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2311-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Shablykin OV, Volosheniuk MA, Brovarets VS. Synthesis of New 2-(Oxiran-2-yl)-1,3-oxazoles. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s1070363218070307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Liu R, Yang Z, Ni Y, Song K, Shen K, Lin S, Pan Q. Pd(II)/Bipyridine-Catalyzed Conjugate Addition of Arylboronic Acids to α,β-Unsaturated Carboxylic Acids. Synthesis of β-Quaternary Carbons Substituted Carboxylic Acids. J Org Chem 2017; 82:8023-8030. [PMID: 28699747 DOI: 10.1021/acs.joc.7b01248] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rui Liu
- State and Local
Joint Engineering
Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory
of Advanced Functional Polymer Design and Application, Key Laboratory
of Organic Synthesis of Jiangsu Province, Green Polymer and Catalysis
Technology Laboratory (GAPCT), College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Zhenyu Yang
- State and Local
Joint Engineering
Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory
of Advanced Functional Polymer Design and Application, Key Laboratory
of Organic Synthesis of Jiangsu Province, Green Polymer and Catalysis
Technology Laboratory (GAPCT), College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Yuxin Ni
- State and Local
Joint Engineering
Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory
of Advanced Functional Polymer Design and Application, Key Laboratory
of Organic Synthesis of Jiangsu Province, Green Polymer and Catalysis
Technology Laboratory (GAPCT), College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Kaixuan Song
- State and Local
Joint Engineering
Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory
of Advanced Functional Polymer Design and Application, Key Laboratory
of Organic Synthesis of Jiangsu Province, Green Polymer and Catalysis
Technology Laboratory (GAPCT), College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Kai Shen
- State and Local
Joint Engineering
Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory
of Advanced Functional Polymer Design and Application, Key Laboratory
of Organic Synthesis of Jiangsu Province, Green Polymer and Catalysis
Technology Laboratory (GAPCT), College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Shaohui Lin
- State and Local
Joint Engineering
Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory
of Advanced Functional Polymer Design and Application, Key Laboratory
of Organic Synthesis of Jiangsu Province, Green Polymer and Catalysis
Technology Laboratory (GAPCT), College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Qinmin Pan
- State and Local
Joint Engineering
Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory
of Advanced Functional Polymer Design and Application, Key Laboratory
of Organic Synthesis of Jiangsu Province, Green Polymer and Catalysis
Technology Laboratory (GAPCT), College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| |
Collapse
|
14
|
Metternich JB, Artiukhin DG, Holland MC, von Bremen-Kühne M, Neugebauer J, Gilmour R. Photocatalytic E → Z Isomerization of Polarized Alkenes Inspired by the Visual Cycle: Mechanistic Dichotomy and Origin of Selectivity. J Org Chem 2017; 82:9955-9977. [DOI: 10.1021/acs.joc.7b01281] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jan B. Metternich
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Denis G. Artiukhin
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Mareike C. Holland
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Maximilian von Bremen-Kühne
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Johannes Neugebauer
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Ryan Gilmour
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
15
|
Ashida Y, Honda A, Sato Y, Nakatsuji H, Tanabe Y. Divergent Synthetic Access to E- and Z-Stereodefined All-Carbon-Substituted Olefin Scaffolds: Application to Parallel Synthesis of ( E)- and ( Z)-Tamoxifens. ChemistryOpen 2017; 6:73-89. [PMID: 28168153 PMCID: PMC5288768 DOI: 10.1002/open.201600124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/29/2016] [Indexed: 11/30/2022] Open
Abstract
A highly substrate-general synthesis of all-carbon-substituted E- and Z-stereodefined olefins is performed. The method comprises two sets of parallel and stereocomplementary preparations of (E)- and (Z)-α,β-unsaturated esters involving two robust and distinctive reactions: 1) stereocomplementary enol tosylations using readily available TsCl/diamine/(LiCl) base reagents, and 2) stereoretentive Negishi cross-coupling using the catalysts [Pd(dppe)Cl2] (for E) and [Pd(dppb)Cl2] (for Z). The present parallel approach is categorized as both type I (convergent approach: 16 examples, 56-87 % yield) and type II (divergent approach: 18 examples, 70-95 % yield). The obtained (E)- and (Z)-α,β-unsaturated ester scaffolds are successfully transformed into various E- and Z-stereodefined known and novel olefins (8×2 derivatization arrays). As a demonstration, application to the parallel synthesis of both (E)- and (Z)-tamoxifens, a representative motif of all-carbon-substituted olefins, is accomplished in a total of eight steps with an overall yield of 58 % (average 93 %) and 57 % (average 93 %), respectively.
Collapse
Affiliation(s)
- Yuichiro Ashida
- Department of ChemistrySchool of Science and TechnologyKwansei Gakuin University2-1 Gakuen, SandaHyogo669-1337Japan
| | - Atsushi Honda
- Department of ChemistrySchool of Science and TechnologyKwansei Gakuin University2-1 Gakuen, SandaHyogo669-1337Japan
| | - Yuka Sato
- Department of ChemistrySchool of Science and TechnologyKwansei Gakuin University2-1 Gakuen, SandaHyogo669-1337Japan
| | - Hidefumi Nakatsuji
- Department of ChemistrySchool of Science and TechnologyKwansei Gakuin University2-1 Gakuen, SandaHyogo669-1337Japan
| | - Yoo Tanabe
- Department of ChemistrySchool of Science and TechnologyKwansei Gakuin University2-1 Gakuen, SandaHyogo669-1337Japan
| |
Collapse
|
16
|
Fukuda H, Nishikawa K, Fukunaga Y, Okuda K, Kodama K, Matsumoto K, Kano A, Shindo M. Synthesis of fluorescent molecular probes based on cis-cinnamic acid and molecular imaging of lettuce roots. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.08.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Yan Q, Kong D, Zhao W, Zi G, Hou G. Enantioselective Hydrogenation of β,β-Disubstituted Unsaturated Carboxylic Acids under Base-Free Conditions. J Org Chem 2016; 81:2070-7. [DOI: 10.1021/acs.joc.6b00018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qiaozhi Yan
- Key Laboratory
of Radiopharmaceuticals,
College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Duanyang Kong
- Key Laboratory
of Radiopharmaceuticals,
College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei Zhao
- Key Laboratory
of Radiopharmaceuticals,
College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Key Laboratory
of Radiopharmaceuticals,
College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Key Laboratory
of Radiopharmaceuticals,
College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
18
|
Parella R, Babu SA. Pd(OAc)2-Catalyzed, AgOAc-Promoted Z Selective Directed β-Arylation of Acrylamide Systems and Stereoselective Construction of Z-Cinnamamide Scaffolds. J Org Chem 2015; 80:12379-96. [DOI: 10.1021/acs.joc.5b02264] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ramarao Parella
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli
P.O., Sector 81, SAS Nagar, Mohali,
Knowledge City, Punjab 140306, India
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli
P.O., Sector 81, SAS Nagar, Mohali,
Knowledge City, Punjab 140306, India
| |
Collapse
|
19
|
Ai T, Xu Y, Qiu L, Geraghty RJ, Chen L. Hydroxamic Acids Block Replication of Hepatitis C Virus. J Med Chem 2014; 58:785-800. [DOI: 10.1021/jm501330g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Teng Ai
- Center for Drug Design, Academic
Health Center, University of Minnesota, 516 Delaware Street S.E., Minneapolis, Minnesota 55455, United States
| | - Yanli Xu
- Center for Drug Design, Academic
Health Center, University of Minnesota, 516 Delaware Street S.E., Minneapolis, Minnesota 55455, United States
| | - Li Qiu
- Center for Drug Design, Academic
Health Center, University of Minnesota, 516 Delaware Street S.E., Minneapolis, Minnesota 55455, United States
| | - Robert J. Geraghty
- Center for Drug Design, Academic
Health Center, University of Minnesota, 516 Delaware Street S.E., Minneapolis, Minnesota 55455, United States
| | - Liqiang Chen
- Center for Drug Design, Academic
Health Center, University of Minnesota, 516 Delaware Street S.E., Minneapolis, Minnesota 55455, United States
| |
Collapse
|
20
|
Okuda K, Nishikawa K, Fukuda H, Fujii Y, Shindo M. cis-Cinnamic acid selective suppressors distinct from auxin inhibitors. Chem Pharm Bull (Tokyo) 2014; 62:600-7. [PMID: 24881667 DOI: 10.1248/cpb.c14-00169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The activity of cis-cinnamic acid (cis-CA), one of the allelochemicals, in plants is very similar to that of indole-3-acetic acid (IAA), a natural auxin, and thus cis-CA has long been believed to be an analog of auxin. We have reported some structure-activity relationships studies by synthesizing over 250 cis-CA derivatives and estimating their inhibitory activities on root growth inhibition in lettuce. In this study, the compounds that showed low- or no-activity on root growth inhibition were recruited as candidates suppressors against cis-CA and/or auxin and tested for their activity. In the presence of cis-CA, lettuce root growth was inhibited; however, the addition of some cis-CA derivatives restored control-level root growth. Four compounds, (Z)-3-(4-isopropylphenyl)acrylic acid, (Z)-3-(3-butoxyphenyl)acrylic acid, (Z)-3-[3-(pentyloxy)phenyl]acrylic acid, and (Z)-3-(naphthalen-1-yl)acrylic acid were selected as candidates for a cis-CA selective suppressor they allowed the recovery of root growth from inhibition by cis-CA treatment without any effects on the IAA-induced effect or elongating activity by themselves. Three candidates significantly ameliorated the root shortening by the potent inhibitor derived from cis-CA. In brief, we have found some cis-CA selective suppressors which have never been reported from inactive cis-CA derivatives for root growth inhibition. cis-CA selective suppressors will play an important role in elucidating the mechanism of plant growth regulation.
Collapse
Affiliation(s)
- Katsuhiro Okuda
- Institute for Materials Chemistry and Engineering, Kyushu University
| | | | | | | | | |
Collapse
|
21
|
Rasheed DM, El Zalabani SM, Koheil MA, El-Hefnawy HM, Farag MA. Metabolite profiling driven analysis ofSalsolaspecies and their anti-acetylcholinesterase potential. Nat Prod Res 2013; 27:2320-7. [DOI: 10.1080/14786419.2013.832676] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Nishikawa K, Fukuda H, Abe M, Nakanishi K, Taniguchi T, Nomura T, Yamaguchi C, Hiradate S, Fujii Y, Okuda K, Shindo M. Substituent effects of cis-cinnamic acid analogues as plant growh inhibitors. PHYTOCHEMISTRY 2013; 96:132-47. [PMID: 24070619 DOI: 10.1016/j.phytochem.2013.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 07/18/2013] [Accepted: 08/21/2013] [Indexed: 06/02/2023]
Abstract
1-O-cis-Cinnamoyl-β-D-glucopyranose is one of the most potent allelochemicals that has been isolated from Spiraea thunbergii Sieb by Hiradate et al. It derives its strong inhibitory activity from cis-cinnamic acid (cis-CA), which is crucial for phytotoxicity. By preparing and assaying a series of cis-CA analogues, it was previously found that the key features of cis-CA for lettuce root growth inhibition are a phenyl ring, cis-configuration of the alkene moiety, and carboxylic acid. On the basis of a structure-activity relationship study, the substituent effects on the aromatic ring of cis-CA were examined by systematic synthesis and the lettuce root growth inhibition assay of a series of cis-CA analogues having substituents on the aromatic ring. While ortho- and para-substituted analogues exhibited low potency in most cases, meta-substitution was not critical for potency, and analogues having a hydrophobic and sterically small substituent were more likely to be potent. Finally, several cis-CA analogues were found to be more potent root growth inhibitors than cis-CA.
Collapse
Affiliation(s)
- Keisuke Nishikawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga 816-8580, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nishikawa K, Fukuda H, Abe M, Nakanishi K, Tazawa Y, Yamaguchi C, Hiradate S, Fujii Y, Okuda K, Shindo M. Design and synthesis of conformationally constrained analogues of cis-cinnamic acid and evaluation of their plant growth inhibitory activity. PHYTOCHEMISTRY 2013; 96:223-34. [PMID: 24176527 DOI: 10.1016/j.phytochem.2013.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 09/19/2013] [Accepted: 10/01/2013] [Indexed: 06/02/2023]
Abstract
1-O-cis-Cinnamoyl-β-D-glucopyranose is known to be one of the most potent allelochemical candidates and was isolated from Spiraea thunbergii Sieb by Hiradate et al. (2004), who suggested that it derived its strong inhibitory activity from cis-cinnamic acid, which is crucial for phytotoxicity. In this study, key structural features and substituent effects of cis-cinnamic acid (cis-CA) on lettuce root growth inhibition was investigated. These structure-activity relationship studies indicated the importance of the spatial relationship of the aromatic ring and carboxylic acid moieties. In this context, conformationally constrained cis-CA analogues, in which the aromatic ring and cis-olefin were connected by a carbon bridge, were designed, synthesized, and evaluated as plant growth inhibitors. The results of the present study demonstrated that the inhibitory activities of the five-membered and six-membered bridged compounds were enhanced, up to 0.27 μM, and were ten times higher than cis-CA, while the potency of the other compounds was reduced.
Collapse
Affiliation(s)
- Keisuke Nishikawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga 816-8580, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|