1
|
Ishibashi Y, Goda H, Hamaguchi R, Sakaguchi K, Sekiguchi T, Ishiwata Y, Okita Y, Mochinaga S, Ikeuchi S, Mizobuchi T, Takao Y, Mori K, Tashiro K, Okino N, Honda D, Hayashi M, Ito M. PUFA synthase-independent DHA synthesis pathway in Parietichytrium sp. and its modification to produce EPA and n-3DPA. Commun Biol 2021; 4:1378. [PMID: 34887503 PMCID: PMC8660808 DOI: 10.1038/s42003-021-02857-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/26/2021] [Indexed: 01/09/2023] Open
Abstract
The demand for n-3 long-chain polyunsaturated fatty acids (n-3LC-PUFAs), such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), will exceed their supply in the near future, and a sustainable source of n-3LC-PUFAs is needed. Thraustochytrids are marine protists characterized by anaerobic biosynthesis of DHA via polyunsaturated fatty acid synthase (PUFA-S). Analysis of a homemade draft genome database suggested that Parietichytrium sp. lacks PUFA-S but possesses all fatty acid elongase (ELO) and desaturase (DES) genes required for DHA synthesis. The reverse genetic approach and a tracing experiment using stable isotope-labeled fatty acids revealed that the ELO/DES pathway is the only DHA synthesis pathway in Parietichytrium sp. Disruption of the C20 fatty acid ELO (C20ELO) and ∆4 fatty acid DES (∆4DES) genes with expression of ω3 fatty acid DES in this thraustochytrid allowed the production of EPA and n-3docosapentaenoic acid (n-3DPA), respectively, at the highest level among known microbial sources using fed-batch culture.
Collapse
Affiliation(s)
- Yohei Ishibashi
- grid.177174.30000 0001 2242 4849Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Hatsumi Goda
- grid.177174.30000 0001 2242 4849Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Rie Hamaguchi
- grid.177174.30000 0001 2242 4849Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Keishi Sakaguchi
- grid.177174.30000 0001 2242 4849Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Takayoshi Sekiguchi
- grid.509816.30000 0001 2161 8131Central Research Laboratory, Nippon Suisan Kaisha, Ltd., Tokyo, 192-0991 Japan
| | - Yuko Ishiwata
- grid.509816.30000 0001 2161 8131Central Research Laboratory, Nippon Suisan Kaisha, Ltd., Tokyo, 192-0991 Japan
| | - Yuji Okita
- grid.509816.30000 0001 2161 8131Central Research Laboratory, Nippon Suisan Kaisha, Ltd., Tokyo, 192-0991 Japan
| | - Seiya Mochinaga
- grid.177174.30000 0001 2242 4849Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Shingo Ikeuchi
- grid.177174.30000 0001 2242 4849Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Takahiro Mizobuchi
- grid.177174.30000 0001 2242 4849Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Yoshitake Takao
- Department of Marine Science and Technology, Faculty of Marine Science and Technology, Fukui Prefecture University, Fukui, 917-0003 Japan
| | - Kazuki Mori
- grid.177174.30000 0001 2242 4849Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Kosuke Tashiro
- grid.177174.30000 0001 2242 4849Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Nozomu Okino
- grid.177174.30000 0001 2242 4849Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Daiske Honda
- grid.258669.60000 0000 8565 5938Department of Biology, Faculty of Science and Engineering, Konan University, Hyogo, 658-8501 Japan ,grid.258669.60000 0000 8565 5938Institute for Integrative Neurobiology, Konan University, Hyogo, 658-8501 Japan
| | - Masahiro Hayashi
- grid.410849.00000 0001 0657 3887Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192 Japan
| | - Makoto Ito
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan. .,Innovative Bio-architecture Center, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
4
|
Guihéneuf F, Mimouni V, Tremblin G, Ulmann L. Light Intensity Regulates LC-PUFA Incorporation into Lipids of Pavlova lutheri and the Final Desaturase and Elongase Activities Involved in Their Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:1261-1267. [PMID: 25592433 DOI: 10.1021/jf504863u] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The microalga Pavlova lutheri is a candidate for the production of omega-3 long-chain polyunsaturated fatty acid (LC-PUFA), due to its ability to accumulate both eicosapentaenoic (EPA) and docosahexaenoic acids. Outstanding questions need to be solved to understand the complexity of n-3 LC-PUFA synthesis and partitioning into lipids, especially its metabolic regulation, and which enzymes and/or abiotic factors control their biosynthesis. In this study, the radioactivity of 14C-labeled arachidonic acid incorporated into the total lipids of P. lutheri grown under different light intensities and its conversion into labeled LC-PUFA were monitored. The results highlighted for the first time the light-dependent incorporation of LC-PUFA into lipids and the light-dependent activity of the final desaturation and elongation steps required to synthesize and accumulate n-3 C20/C22 LC-PUFA. The incorporation of arachidonic acid into lipids under low light and the related Δ17-desaturation activity measured explain the variations in fatty acid profile of P. lutheri, especially the accumulation of n-3 LC-PUFA such as EPA under low light conditions.
Collapse
Affiliation(s)
- Freddy Guihéneuf
- Botany and Plant Science, School of Natural Sciences, Ryan Institute, National University of Ireland Galway , Galway, County of Galway, Ireland
| | - Virginie Mimouni
- PRES LUNAM, Université du Maine, Institut Universitaire Mer et Littoral FR-3473 CNRS, EA 2160 Mer Molécules Santé, UFR Sciences et Techniques, 72085 Le Mans Cedex, France
- IUT Génie Biologique, 53020 Laval Cedex, Pays de la Loire, France
| | - Gérard Tremblin
- PRES LUNAM, Université du Maine, Institut Universitaire Mer et Littoral FR-3473 CNRS, EA 2160 Mer Molécules Santé, UFR Sciences et Techniques, 72085 Le Mans Cedex, France
| | - Lionel Ulmann
- PRES LUNAM, Université du Maine, Institut Universitaire Mer et Littoral FR-3473 CNRS, EA 2160 Mer Molécules Santé, UFR Sciences et Techniques, 72085 Le Mans Cedex, France
- IUT Génie Biologique, 53020 Laval Cedex, Pays de la Loire, France
| |
Collapse
|
5
|
Peng KT, Zheng CN, Xue J, Chen XY, Yang WD, Liu JS, Bai W, Li HY. Delta 5 fatty acid desaturase upregulates the synthesis of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:8773-6. [PMID: 25109502 DOI: 10.1021/jf5031086] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Microalgae are important primary producers in the marine ecosystem and excellent sources of lipids and other bioactive compounds. The marine diatom Phaeodactylum tricornutum accumulates eicosapentaenoic acid (EPA, 20:5n-3) as its major component of fatty acids. To improve the EPA production, delta 5 desaturase, which plays a role in EPA biosynthetic pathway, was characterized in P. tricornutum. An annotated delta 5 desaturase PtD5b gene was cloned and overexpressed in P. tricornutum. The transgene was integrated into the genome demonstrated by Southern blot, and the overexpression of PtD5b was verified by qPCR and Western blot analysis. Fatty acid composition exhibited a significant increase in the unsaturated fatty acids. Monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) showed an increase of 75% and 64%, respectively. In particular, EPA showed an increase of 58% in engineered microalgae. Meanwhile, neutral lipid content showed an increase up to 65% in engineered microalgae. More importantly, engineered cells showed a similar growth rate with the wild type, thus keeping high biomass productivity. This work provides an effective way to improve the production of microalgal value-added bioproducts by metabolic engineering.
Collapse
Affiliation(s)
- Kun-Tao Peng
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and §Department of Food Science, Jinan University , Guangzhou, Guangdong 510632, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Mühlroth A, Li K, Røkke G, Winge P, Olsen Y, Hohmann-Marriott MF, Vadstein O, Bones AM. Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of Chromista. Mar Drugs 2013; 11:4662-97. [PMID: 24284429 PMCID: PMC3853752 DOI: 10.3390/md11114662] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/05/2013] [Accepted: 11/07/2013] [Indexed: 12/19/2022] Open
Abstract
The importance of n-3 long chain polyunsaturated fatty acids (LC-PUFAs) for human health has received more focus the last decades, and the global consumption of n-3 LC-PUFA has increased. Seafood, the natural n-3 LC-PUFA source, is harvested beyond a sustainable capacity, and it is therefore imperative to develop alternative n-3 LC-PUFA sources for both eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3). Genera of algae such as Nannochloropsis, Schizochytrium, Isochrysis and Phaedactylum within the kingdom Chromista have received attention due to their ability to produce n-3 LC-PUFAs. Knowledge of LC-PUFA synthesis and its regulation in algae at the molecular level is fragmentary and represents a bottleneck for attempts to enhance the n-3 LC-PUFA levels for industrial production. In the present review, Phaeodactylum tricornutum has been used to exemplify the synthesis and compartmentalization of n-3 LC-PUFAs. Based on recent transcriptome data a co-expression network of 106 genes involved in lipid metabolism has been created. Together with recent molecular biological and metabolic studies, a model pathway for n-3 LC-PUFA synthesis in P. tricornutum has been proposed, and is compared to industrialized species of Chromista. Limitations of the n-3 LC-PUFA synthesis by enzymes such as thioesterases, elongases, acyl-CoA synthetases and acyltransferases are discussed and metabolic bottlenecks are hypothesized such as the supply of the acetyl-CoA and NADPH. A future industrialization will depend on optimization of chemical compositions and increased biomass production, which can be achieved by exploitation of the physiological potential, by selective breeding and by genetic engineering.
Collapse
Affiliation(s)
- Alice Mühlroth
- Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway; E-Mails: (A.M.); (K.L.); (P.W.); (Y.O.)
| | - Keshuai Li
- Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway; E-Mails: (A.M.); (K.L.); (P.W.); (Y.O.)
| | - Gunvor Røkke
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim 7491, Norway; E-Mails: (G.R.); (M.F.H.-M.); (O.V.)
| | - Per Winge
- Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway; E-Mails: (A.M.); (K.L.); (P.W.); (Y.O.)
| | - Yngvar Olsen
- Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway; E-Mails: (A.M.); (K.L.); (P.W.); (Y.O.)
| | - Martin F. Hohmann-Marriott
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim 7491, Norway; E-Mails: (G.R.); (M.F.H.-M.); (O.V.)
| | - Olav Vadstein
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim 7491, Norway; E-Mails: (G.R.); (M.F.H.-M.); (O.V.)
| | - Atle M. Bones
- Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway; E-Mails: (A.M.); (K.L.); (P.W.); (Y.O.)
| |
Collapse
|
7
|
Plastids of marine phytoplankton produce bioactive pigments and lipids. Mar Drugs 2013; 11:3425-71. [PMID: 24022731 PMCID: PMC3806458 DOI: 10.3390/md11093425] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/02/2013] [Accepted: 07/24/2013] [Indexed: 12/20/2022] Open
Abstract
Phytoplankton is acknowledged to be a very diverse source of bioactive molecules. These compounds play physiological roles that allow cells to deal with changes of the environmental constrains. For example, the diversity of light harvesting pigments allows efficient photosynthesis at different depths in the seawater column. Identically, lipid composition of cell membranes can vary according to environmental factors. This, together with the heterogenous evolutionary origin of taxa, makes the chemical diversity of phytoplankton compounds much larger than in terrestrial plants. This contribution is dedicated to pigments and lipids synthesized within or from plastids/photosynthetic membranes. It starts with a short review of cyanobacteria and microalgae phylogeny. Then the bioactivity of pigments and lipids (anti-oxidant, anti-inflammatory, anti-mutagenic, anti-cancer, anti-obesity, anti-allergic activities, and cardio- neuro-, hepato- and photoprotective effects), alone or in combination, is detailed. To increase the cellular production of bioactive compounds, specific culture conditions may be applied (e.g., high light intensity, nitrogen starvation). Regardless of the progress made in blue biotechnologies, the production of bioactive compounds is still limited. However, some examples of large scale production are given, and perspectives are suggested in the final section.
Collapse
|