1
|
Yue Y, Wang X, Xia Z, Deng Z, Wang D, Li Y, Yin H, Li D. Bark transcriptome analyses reveals molecular mechanisms involved in tapping panel dryness occurrence and development in rubber tree (Hevea brasiliensis). Gene 2024; 892:147894. [PMID: 37832804 DOI: 10.1016/j.gene.2023.147894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Tapping panel dryness (TPD) has become the mostimportant limiting factor for increasing natural rubber yield, whereas illuminating the molecular mechanisms underlying TPD is the prerequisite for solving the problem of TPD. However, molecular mechanisms underlying TPD are largely unknown. In this study, healthy and different stages of TPD-affected rubber trees were utilized to analyze TPD for the first time. We found that the changing tendencies of key latex physiological parameters were closely related to TPD occurrence and development. To reveal the molecular mechanisms underlying TPD, we sequenced and compared bark transcriptomes among healthy rubber tree, and TPD-affected ones at initial and advanced stages. In total, 8607 genes were identified as TPD-related genes in contrast to healthy rubber tree. According to gene expression profiles, the five samples were divided into three groups including healthy rubber tree, and TPD-affected rubber tree in the initial and advanced stages, which was consistent with the stages of TPD occurrence and development. Interestingly, only asmall proportionof the TPD-related genes were constantly down- or up-regulated with TPD occurrence and development. The TPD-related genes in KEGG pathways significantly enriched were closely associated with protein metabolism, cell division and differentiation, PCD, stress responses, terpene biosynthesis, and various metabolism processes. Moreover, overexpression of HbAPX2 identified as a TPD-related gene enhanced oxidative stress tolerance in S. cerevisiae. The typical symptoms of TPD, partial or complete dry zone (no latex flow) on tapping panel, might attribute to lower IPP available for rubber biosynthesis, and downregulation of the genes in post-IPP steps of rubber biosynthesis and the genes involved in latex flow. Our results not only provide new insights into molecular mechanisms underlying TPD occurrence and development but also contribute to developing effective measures to control TPD in rubber trees.
Collapse
Affiliation(s)
- Yifan Yue
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs/Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Xuncheng Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Zhihui Xia
- Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya, Hainan 570228, China.
| | - Zhi Deng
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs/Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.
| | - Difei Wang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs/Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Yao Li
- Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya, Hainan 570228, China.
| | - Han Yin
- Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya, Hainan 570228, China.
| | - Dejun Li
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs/Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.
| |
Collapse
|
2
|
Zhang B, Lewis JA, Kovacs F, Sattler SE, Sarath G, Kang C. Activity of Cytosolic Ascorbate Peroxidase (APX) from Panicum virgatum against Ascorbate and Phenylpropanoids. Int J Mol Sci 2023; 24:1778. [PMID: 36675291 PMCID: PMC9864165 DOI: 10.3390/ijms24021778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
APX is a key antioxidant enzyme in higher plants, scavenging H2O2 with ascorbate in several cellular compartments. Here, we report the crystal structures of cytosolic ascorbate peroxidase from switchgrass (Panicum virgatum L., Pvi), a strategic feedstock plant with several end uses. The overall structure of PviAPX was similar to the structures of other APX family members, with a bound ascorbate molecule at the ɣ-heme edge pocket as in other APXs. Our results indicated that the H2O2-dependent oxidation of ascorbate displayed positive cooperativity. Significantly, our study suggested that PviAPX can oxidize a broad range of phenylpropanoids with δ-meso site in a rather similar efficiency, which reflects its role in the fortification of cell walls in response to insect feeding. Based on detailed structural and kinetic analyses and molecular docking, as well as that of closely related APX enzymes, the critical residues in each substrate-binding site of PviAPX are proposed. Taken together, these observations shed new light on the function and catalysis of PviAPX, and potentially benefit efforts improve plant health and biomass quality in bioenergy and forage crops.
Collapse
Affiliation(s)
- Bixia Zhang
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Jacob A. Lewis
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Frank Kovacs
- Chemistry Department, University of Nebraska-Kearney, Kearney, NE 68849, USA
| | - Scott E. Sattler
- Wheat, Sorghum and Forage Research Unit, U.S. Department of Agriculture—Agricultural Research Service, Lincoln, NE 68583, USA
| | - Gautam Sarath
- Wheat, Sorghum and Forage Research Unit, U.S. Department of Agriculture—Agricultural Research Service, Lincoln, NE 68583, USA
| | - ChulHee Kang
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
3
|
Ascorbate Peroxidase Neofunctionalization at the Origin of APX-R and APX-L: Evidence from Basal Archaeplastida. Antioxidants (Basel) 2021; 10:antiox10040597. [PMID: 33924520 PMCID: PMC8069737 DOI: 10.3390/antiox10040597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 11/17/2022] Open
Abstract
Ascorbate peroxidases (APX) are class I members of the Peroxidase-Catalase superfamily, a large group of evolutionarily related but rather divergent enzymes. Through mining in public databases, unusual subsets of APX homologs were identified, disclosing the existence of two yet uncharacterized families of peroxidases named ascorbate peroxidase-related (APX-R) and ascorbate peroxidase-like (APX-L). As APX, APX-R harbor all catalytic residues required for peroxidatic activity. Nevertheless, proteins of this family do not contain residues known to be critical for ascorbate binding and therefore cannot use it as an electron donor. On the other hand, APX-L proteins not only lack ascorbate-binding residues, but also every other residue known to be essential for peroxidase activity. Through a molecular phylogenetic analysis performed with sequences derived from basal Archaeplastida, the present study discloses the existence of hybrid proteins, which combine features of these three families. The results here presented show that the prevalence of hybrid proteins varies among distinct groups of organisms, accounting for up to 33% of total APX homologs in species of green algae. The analysis of this heterogeneous group of proteins sheds light on the origin of APX-R and APX-L and suggests the occurrence of a process characterized by the progressive deterioration of ascorbate-binding and catalytic sites towards neofunctionalization.
Collapse
|
4
|
Lazzarotto F, Wahni K, Piovesana M, Maraschin F, Messens J, Margis-Pinheiro M. Arabidopsis APx-R Is a Plastidial Ascorbate-Independent Peroxidase Regulated by Photomorphogenesis. Antioxidants (Basel) 2021; 10:65. [PMID: 33430242 PMCID: PMC7825652 DOI: 10.3390/antiox10010065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 01/08/2023] Open
Abstract
Peroxidases are enzymes that catalyze the reduction of hydrogen peroxide, thus minimizing cell injury and modulating signaling pathways as response to this reactive oxygen species. Using a phylogenetic approach, we previously identified a new peroxidase family composed of a small subset of ascorbate peroxidase (APx) homologs with distinguished features, which we named ascorbate peroxidase-related (APx-R). In this study, we showed that APx-R is an ascorbate-independent heme peroxidase. Despite being annotated as a cytosolic protein in public databases, transient expression of AtAPx-R-YFP in Arabidopsis thaliana protoplasts and stable overexpression in plants showed that the protein is targeted to plastids. To characterize APx-R participation in the antioxidant metabolism, we analyzed loss-of-function mutants and AtAPx-R overexpressing lines. Molecular analysis showed that glutathione peroxidase 7 (GPx07) is specifically induced to compensate the absence of APx-R. APx-R overexpressing lines display faster germination rates, further confirming the involvement of APx-R in seed germination. The constitutive overexpression of AtAPx-R-YFP unraveled the existence of a post-translational mechanism that eliminates APx-R from most tissues, in a process coordinated with photomorphogenesis. Our results show a direct role of APx-R during germinative and post-germinative development associated with etioplasts differentiation.
Collapse
Affiliation(s)
- Fernanda Lazzarotto
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, Brazil; (F.L.); (M.P.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, Brazil;
| | - Khadija Wahni
- VIB-VUB Center for Structural Biology, B-1050 Brussels, Belgium;
- Brussels Center for Redox Biology, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Maiara Piovesana
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, Brazil; (F.L.); (M.P.)
| | - Felipe Maraschin
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, Brazil;
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, Brazil
| | - Joris Messens
- VIB-VUB Center for Structural Biology, B-1050 Brussels, Belgium;
- Brussels Center for Redox Biology, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Marcia Margis-Pinheiro
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, Brazil; (F.L.); (M.P.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, Brazil;
| |
Collapse
|
5
|
4-Coumarate 3-hydroxylase in the lignin biosynthesis pathway is a cytosolic ascorbate peroxidase. Nat Commun 2019; 10:1994. [PMID: 31040279 PMCID: PMC6491607 DOI: 10.1038/s41467-019-10082-7] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 04/15/2019] [Indexed: 12/04/2022] Open
Abstract
Lignin biosynthesis is evolutionarily conserved among higher plants and features a critical 3-hydroxylation reaction involving phenolic esters. However, increasing evidence questions the involvement of a single pathway to lignin formation in vascular plants. Here we describe an enzyme catalyzing the direct 3-hydroxylation of 4-coumarate to caffeate in lignin biosynthesis as a bifunctional peroxidase that oxidizes both ascorbate and 4-coumarate at comparable rates. A combination of biochemical and genetic evidence in the model plants Brachypodium distachyon and Arabidopsis thaliana supports a role for this coumarate 3-hydroxylase (C3H) in the early steps of lignin biosynthesis. The subsequent efficient O-methylation of caffeate to ferulate in grasses is substantiated by in vivo biochemical assays. Our results identify C3H as the only non-membrane bound hydroxylase in the lignin pathway and revise the currently accepted models of lignin biosynthesis, suggesting new gene targets to improve forage and bioenergy crops. Lignin biosynthesis in higher plants relies upon a 3-hydroxylation reaction that can occur via shikimate esters of 4-coumarate. Here, Barros et al. define an alternative biosynthetic pathway via cytosolic ascorbate peroxidase that can catalyze direct 3-hydroxylation of 4-coumarate.
Collapse
|
6
|
Anjum NA, Sharma P, Gill SS, Hasanuzzaman M, Khan EA, Kachhap K, Mohamed AA, Thangavel P, Devi GD, Vasudhevan P, Sofo A, Khan NA, Misra AN, Lukatkin AS, Singh HP, Pereira E, Tuteja N. Catalase and ascorbate peroxidase-representative H2O2-detoxifying heme enzymes in plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:19002-29. [PMID: 27549233 DOI: 10.1007/s11356-016-7309-6] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 07/21/2016] [Indexed: 05/24/2023]
Abstract
Plants have to counteract unavoidable stress-caused anomalies such as oxidative stress to sustain their lives and serve heterotrophic organisms including humans. Among major enzymatic antioxidants, catalase (CAT; EC 1.11.1.6) and ascorbate peroxidase (APX; EC 1.11.1.11) are representative heme enzymes meant for metabolizing stress-provoked reactive oxygen species (ROS; such as H2O2) and controlling their potential impacts on cellular metabolism and functions. CAT mainly occurs in peroxisomes and catalyzes the dismutation reaction without requiring any reductant; whereas, APX has a higher affinity for H2O2 and utilizes ascorbate (AsA) as specific electron donor for the reduction of H2O2 into H2O in organelles including chloroplasts, cytosol, mitochondria, and peroxisomes. Literature is extensive on the glutathione-associated H2O2-metabolizing systems in plants. However, discussion is meager or scattered in the literature available on the biochemical and genomic characterization as well as techniques for the assays of CAT and APX and their modulation in plants under abiotic stresses. This paper aims (a) to introduce oxidative stress-causative factors and highlights their relationship with abiotic stresses in plants; (b) to overview structure, occurrence, and significance of CAT and APX in plants;
Collapse
Affiliation(s)
- Naser A Anjum
- CESAM-Centre for Environmental and Marine Studies and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Pallavi Sharma
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu Lohardaga Road, Brambe, Ranchi, 435020, India.
| | - Sarvajeet S Gill
- Stress Physiology and Molecular Biology Laboratory, Centre for Biotechnology, MD University, Rohtak, 124001, India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Ekhlaque A Khan
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu Lohardaga Road, Brambe, Ranchi, 435020, India
| | - Kiran Kachhap
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu Lohardaga Road, Brambe, Ranchi, 435020, India
| | - Amal A Mohamed
- Plant Biochemistry Department, National Research Centre (NRC), Dokki, Egypt
| | - Palaniswamy Thangavel
- Department of Environmental Science, School of Life Sciences, Periyar University, Periyar Palkalai Nagar, Salem, Tamil Nadu, -636011, India
| | - Gurumayum Devmanjuri Devi
- Department of Environmental Science, School of Life Sciences, Periyar University, Periyar Palkalai Nagar, Salem, Tamil Nadu, -636011, India
| | - Palanisamy Vasudhevan
- Department of Environmental Science, School of Life Sciences, Periyar University, Periyar Palkalai Nagar, Salem, Tamil Nadu, -636011, India
| | - Adriano Sofo
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell'Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Nafees A Khan
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Amarendra Narayan Misra
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu Lohardaga Road, Brambe, Ranchi, 435020, India.
| | - Alexander S Lukatkin
- Department of Botany, Physiology and Ecology of Plants, N.P. Ogarev Mordovia State University, Bolshevistskaja Str., 68, Saransk, 430005, Russia
| | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Eduarda Pereira
- CESAM-Centre for Environmental and Marine Studies and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Narendra Tuteja
- Amity Institute of Microbial Technology (AIMT), Amity University Uttar Pradesh, E3 Block, Sector 125, Noida, UP, 201303, India.
| |
Collapse
|
7
|
Lazzarotto F, Turchetto-Zolet AC, Margis-Pinheiro M. Revisiting the Non-Animal Peroxidase Superfamily. TRENDS IN PLANT SCIENCE 2015; 20:807-813. [PMID: 26463217 DOI: 10.1016/j.tplants.2015.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/04/2015] [Accepted: 08/12/2015] [Indexed: 06/05/2023]
Abstract
Peroxidases reduce peroxide through substrate oxidation in order to alleviate oxidative stress in aerobic organisms. Since the initial description of the non-animal peroxidase superfamily, great effort has been made to characterize this large and heterogeneous group of proteins. Next generation sequencing data have permitted an in-depth study of the molecular evolution of this superfamily and allowed us to perform a phylogenetic reconstruction. Through this analysis, we identified two additional class I members and, here, we discuss the similarities and differences among members of this class. Our results provide new insights into the organization of these antioxidant enzymes, allowing us to propose a new model for the emergence and evolution of this superfamily.
Collapse
Affiliation(s)
- Fernanda Lazzarotto
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Andreia Carina Turchetto-Zolet
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Márcia Margis-Pinheiro
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Chao J, Zhang S, Chen Y, Tian WM. Cloning, heterologous expression and characterization of ascorbate peroxidase (APX) gene in laticifer cells of rubber tree (Hevea brasiliensis Muell. Arg.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:331-8. [PMID: 26519821 DOI: 10.1016/j.plaphy.2015.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/16/2015] [Accepted: 10/16/2015] [Indexed: 05/01/2023]
Abstract
Ascorbate peroxidases (APXs) are a kind of crucial enzymes for removing reactive oxygen species (ROS) in plant cell. In the present study, a full-length cDNA encoding an APX, designated HbAPX, was isolated from Hevea brasiliensis by the rapid amplification of cDNA ends (RACE) method. HbAPX was 1174-bp in length and contained a 912-bp open reading frame (ORF) encoding a putative protein of 304 amino acids. The predicted molecular mass of HbAPX was 27.6 kDa (kDa) with an isoelectric point (pI) of 6.73. The phylogenetic analysis showed that HbAPX belonged to the cytosolic subgroup and was more relative to PtAPX and MdAPX2. By using PlantCare online analysis, such cis-acting elements as W-box and MRE were detected in the promoter region of HbAPX. Overproduction of recombinant HbAPX protein either in Escherichia coli or yeast enhanced their tolerance to such abiotic stresses as Cu(2+), Zn(2+), Na(2+) and hydrogen peroxide (H2O2). Ethrel application significantly down-regulated the expression of HbAPX and inhibited the activity of HbAPX in vivo. The ethrel-caused down-regulation of HbAPX may disturb the redox homeostasis in laticifer cells of rubber tree.
Collapse
Affiliation(s)
- Jinquan Chao
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou Hainan 571737, PR China.
| | - Shixin Zhang
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou Hainan 571737, PR China.
| | - Yueyi Chen
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou Hainan 571737, PR China.
| | - Wei-Min Tian
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou Hainan 571737, PR China.
| |
Collapse
|