1
|
Gupta A, Meshram V, Gupta M, Goyal S, Qureshi KA, Jaremko M, Shukla KK. Fungal Endophytes: Microfactories of Novel Bioactive Compounds with Therapeutic Interventions; A Comprehensive Review on the Biotechnological Developments in the Field of Fungal Endophytic Biology over the Last Decade. Biomolecules 2023; 13:1038. [PMID: 37509074 PMCID: PMC10377637 DOI: 10.3390/biom13071038] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
The seminal discovery of paclitaxel from endophytic fungus Taxomyces andreanae was a milestone in recognizing the immense potential of endophytic fungi as prolific producers of bioactive secondary metabolites of use in medicine, agriculture, and food industries. Following the discovery of paclitaxel, the research community has intensified efforts to harness endophytic fungi as putative producers of lead molecules with anticancer, anti-inflammatory, antimicrobial, antioxidant, cardio-protective, and immunomodulatory properties. Endophytic fungi have been a valuable source of bioactive compounds over the last three decades. Compounds such as taxol, podophyllotoxin, huperzine, camptothecin, and resveratrol have been effectively isolated and characterized after extraction from endophytic fungi. These findings have expanded the applications of endophytic fungi in medicine and related fields. In the present review, we systematically compile and analyze several important compounds derived from endophytic fungi, encompassing the period from 2011 to 2022. Our systematic approach focuses on elucidating the origins of endophytic fungi, exploring the structural diversity and biological activities exhibited by these compounds, and giving special emphasis to the pharmacological activities and mechanism of action of certain compounds. We highlight the tremendous potential of endophytic fungi as alternate sources of bioactive metabolites, with implications for combating major global diseases. This underscores the significant role that fungi can play in the discovery and development of novel therapeutic agents that address the challenges posed by prevalent diseases worldwide.
Collapse
Affiliation(s)
- Aditi Gupta
- School of Studies in Biotechnology, Pandit Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Vineet Meshram
- School of Studies in Biotechnology, Pandit Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Mahiti Gupta
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, Haryana, India
| | - Soniya Goyal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, Haryana, India
| | - Kamal Ahmad Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Kamlesh Kumar Shukla
- School of Studies in Biotechnology, Pandit Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| |
Collapse
|
2
|
Marine fungal metabolites as a source of drug leads against aquatic pathogens. Appl Microbiol Biotechnol 2022; 106:3337-3350. [PMID: 35486178 DOI: 10.1007/s00253-022-11939-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/26/2022]
Abstract
Aquatic pathogens, including Vibrio, Edwardsiella, Pseudomonas, and Aeromonas, which could result in bacterial diseases to aquaculture, have seriously threatened the world aquaculture production. Marine-derived fungi, which could produce novel secondary metabolites with significant antibacterial activity, may be an important source for finding effective agents against aquatic pathogens. In this review, a systematically overview of the harm of several aquatic pathogens, and 134 antibacterial secondary metabolites against aquatic pathogens from 13 genera of marine-derived fungi, were summarized and concluded. The aim of this review is to find out the relationships between activity and structural type, between bioactive compounds and their hosts, and so on. Altogether, 95 references published during 1997-2021 were cited. KEY POINTS: •Aquatic pathogens, which could result in bacterial diseases to aquaculture, were described. •Marine fungal metabolites with activities against aquatic pathogens were summarized. •The distributions of these bioactive marine fungal metabolites were analyzed.
Collapse
|
3
|
Abstract
A new species, Pezicula endophytica, was isolated from roots and stems of two Dendrobium species in northern Thailand. Evidence to support the new species is based on morphology and phylogenetic analysis of the combined ITS, LSU, and RPB2 DNA sequence dataset. Pezicula
endophytica, which constituted a clade independent from other Pezicula species, has 4% distinct base pair differences in all genes. Pezicula endophytica has larger macroconidia and longer conidiophores compared with phylogenetically neighboring species. This is the first
report of an endophytic Pezicula species from Dendrobium in Thailand.
Collapse
|
4
|
Kaur B, Gupta J, Sharma S, Sharma D, Sharma S. Focused review on dual inhibition of quorum sensing and efflux pumps: A potential way to combat multi drug resistant Staphylococcus aureus infections. Int J Biol Macromol 2021; 190:33-43. [PMID: 34480904 DOI: 10.1016/j.ijbiomac.2021.08.199] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/19/2022]
Abstract
Staphylococcus aureus is a common cause of skin infections, food poisoning and severe life-threatening infections. Methicillin-Resistant Staphylococcus aureus (MRSA) is known to cause chronic nosocomial infections by virtue of its multidrug resistance and biofilm formation mechanisms. The antimicrobial resistance owned by S. aureus is primarily due to efflux pumps and formation of microbial biofilms. These drug resistant, sessile and densely packed microbial communities possess various mechanisms including quorum sensing and drug efflux. Quorum sensing is a cooperative physiological process which is used by bacterial cells for social interaction and signal transduction in biofilm formation whereas efflux of drugs is derived by efflux pumps. Apart from their significant role in multidrug resistance, efflux pumps also contribute to transporting cell signalling molecules and due to their occurrence; we face the frightening possibility that we will enter the pre-antibiotic era soon. Compounds that modulate efflux pumps are also known as efflux pump inhibitors (EPI's) that act in a synergistic manner and potentiate the antibiotics efficacy which has been considered as a promising approach to encounter bacterial resistance. EPIs inhibit the mechanism of drug efflux s as well as transport of quorum sensing signalling molecules which are the supreme contributors of miscellaneous virulence factors. This review presents an accomplishments of the recent investigations allied to efflux pump inhibitors against S. aureus and also focus on related correspondence between quorum sensing system and efflux pump inhibitors in terms of S. aureus and MRSA biofilms that may open a new avenue for controlling MRSA infections.
Collapse
Affiliation(s)
- Bhawandeep Kaur
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Jeena Gupta
- Department of Biochemistry, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sarika Sharma
- Department of Life Sciences, Arni University, Indora, Kangra, H.P. 176402, India
| | - Divakar Sharma
- Department of Microbiology, Maulana Azad Medical College, New Delhi 110002, India.
| | - Sandeep Sharma
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| |
Collapse
|
5
|
Bamunuarachchi NI, Khan F, Kim YM. Antimicrobial Properties of Actively Purified Secondary Metabolites Isolated from Different Marine Organisms. Curr Pharm Biotechnol 2021; 22:920-944. [PMID: 32744964 DOI: 10.2174/1389201021666200730144536] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/30/2020] [Accepted: 06/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The treatment of infection caused by pathogenic bacteria becomes one of the serious concerns globally. The failure in the treatment was found due to the exhibition of multiple resistance mechanisms against the antimicrobial agents. The emergence of resistant bacterial species has also been observed due to prolong treatment using conventional antibiotics. To combat these problems, several alternative strategies have been employed using biological and chemically synthesized compounds as antibacterial agents. Marine organisms are considered as one of the potential sources for the isolation of bioactive compounds due to the easily available, cost-effective, and eco-friendly. METHODS The online search methodology was adapted for the collection of information related to the antimicrobial properties of marine-derived compounds. These compound has been isolated and purified by different purification techniques, and their structure also characterized. Furthermore, the antibacterial activities have been reported by using broth microdilution as well as disc diffusion assays. RESULTS The present review paper describes the antimicrobial effect of diverse secondary metabolites which are isolated and purified from the different marine organisms. The structural elucidation of each secondary metabolite has also been done in the present paper, which will help for the in silico designing of the novel and potent antimicrobial compounds. CONCLUSION A thorough literature search has been made and summarizes the list of antimicrobial compounds that are isolated from both prokaryotic and eukaryotic marine organisms. The information obtained from the present paper will be helpful for the application of marine compounds as antimicrobial agents against different antibiotic-resistant human pathogenic bacteria.
Collapse
Affiliation(s)
| | - Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan 48513, Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
6
|
Raimi A, Adeleke R. Bioprospecting of endophytic microorganisms for bioactive compounds of therapeutic importance. Arch Microbiol 2021; 203:1917-1942. [PMID: 33677637 DOI: 10.1007/s00203-021-02256-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/27/2021] [Accepted: 02/18/2021] [Indexed: 01/09/2023]
Abstract
Presently, several drug discovery investigations on therapeutic management of human health are aimed at bioprospecting for microorganisms, especially endophytic microbes of biotechnological importance. This review investigates the benefits of endophytes, especially in producing bioactive compounds useful in modern medicine by systematically reviewing published data from 12 databases. Only experimental studies investigating either or both bacterial and fungal endophytes and within the scope of this review were selected. The published data from the last 2 decades (2000-2019) revealed diverse endophytes associated with different plants produce a broad spectrum of bioactive compounds with therapeutic benefits. Notably, antibacterial, followed by anticancer and antifungal activities, were mostly reported. Only three studies investigated the anti-plasmodial activity. The variation observed in the synthesis of bioactive compounds amongst endophytes varied with host type, endophyte species, and cultivation medium. Fungal endophytes were more investigated than bacterial endophytes, with both endophytes having species diversity amongst literature. The endophytes were predominantly from medicinal plants and belonged to either Ascomycota (fungi) or Proteobacteria and Firmicutes (bacteria). This review presents excellent prospects of harnessing endophytes and their unique bioactive compounds in developing novel and effective compounds of medicinal importance.
Collapse
Affiliation(s)
- Adekunle Raimi
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa.
| |
Collapse
|
7
|
Abo Nouh FA, Gezaf SA, Abdel-Azeem AM. Recent Advances in Fungal Antimicrobial Molecules. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Das K, Lee SY, Choi HW, Eom AH, Cho YJ, Jung HY. Taxonomy of Arthrinium minutisporum sp. nov., Pezicula neosporulosa, and Acrocalymma pterocarpi: New Records from Soil in Korea. MYCOBIOLOGY 2020; 48:450-463. [PMID: 33312012 PMCID: PMC7717694 DOI: 10.1080/12298093.2020.1830741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/11/2020] [Accepted: 09/27/2020] [Indexed: 06/12/2023]
Abstract
The strains 17E-042, 17E-039, and NC13-171 belong to Ascomycota and were isolated from soil collected from Sancheong-gun and Yeongam-gun, Korea. The strain 17E-042 produced white mycelial colonies that developed a sienna color with a round margin on potato dextrose agar (PDA), and the reverse side developed a light sienna color. Morphologically, this strain was similar to the strains of Arthrinium phragmites and A. hydei, but the shorter conidial size of the newly identified strain (17E-042) was distinct. The strain 17E-039 produced macroconidia that were pale yellow to orange-brown, elongated-ellipsoid to oblong, round at both ends, primarily straight but sometimes slightly curved, 0-septate, thin-walled, and filled with numerous droplets, having diameters of 20.4-34.3 × 8.0-12.0 μm. And the strain NC13-171 formed hyaline to light brown chlamydospores, solitary or in a chain. Multigene phylogenetic analyses were conducted using sequence data obtained from internal transcribed spacer (ITS) regions, 28S rDNA large subunit (LSU), β-tubulin (TUB2), translation elongation factor 1-alpha (TEF1-α), and RNA polymerase II large subunit (RPB2) genes. The results of molecular phylogeny, the detailed descriptions and illustrations of each species strongly support our proposal that these strains from soil in Korea be designated as Arthrinium minutisporum sp. nov. and two new records of Pezicula neosporulosa and Acrocalymma pterocarpi.
Collapse
Affiliation(s)
- Kallol Das
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
| | - Seung-Yeol Lee
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
- Institute of Plant Medicine, Kyungpook National University, Daegu, Korea
| | - Hyo-Won Choi
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Korea
| | - Ahn-Heum Eom
- Department of Biology Education, Korea National University of Education, Cheongju Korea
| | - Young-Je Cho
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Hee-Young Jung
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
- Institute of Plant Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
9
|
Ding Z, Zhou H, Wang X, Huang H, Wang H, Zhang R, Wang Z, Han J. Deletion of the Histone Deacetylase HdaA in Endophytic Fungus Penicillium chrysogenum Fes1701 Induces the Complex Response of Multiple Bioactive Secondary Metabolite Production and Relevant Gene Cluster Expression. Molecules 2020; 25:molecules25163657. [PMID: 32796640 PMCID: PMC7464707 DOI: 10.3390/molecules25163657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 12/04/2022] Open
Abstract
Epigenetic regulation plays a critical role in controlling fungal secondary metabolism. Here, we report the pleiotropic effects of the epigenetic regulator HdaA (histone deacetylase) on secondary metabolite production and the associated biosynthetic gene clusters (BGCs) expression in the plant endophytic fungus Penicillium chrysogenum Fes1701. Deletion of the hdaA gene in strain Fes1701 induced a significant change of the secondary metabolite profile with the emergence of the bioactive indole alkaloid meleagrin. Simultaneously, more meleagrin/roquefortine-related compounds and less chrysogine were synthesized in the ΔhdaA strain. Transcriptional analysis of relevant gene clusters in ΔhdaA and wild strains indicated that disruption of hdaA had different effects on the expression levels of two BGCs: the meleagrin/roquefortine BGC was upregulated, while the chrysogine BGC was downregulated. Interestingly, transcriptional analysis demonstrated that different functional genes in the same BGC had different responses to the disruption of hdaA. Thereinto, the roqO gene, which encodes a key catalyzing enzyme in meleagrin biosynthesis, showed the highest upregulation in the ΔhdaA strain (84.8-fold). To our knowledge, this is the first report of the upregulation of HdaA inactivation on meleagrin/roquefortine alkaloid production in the endophytic fungus P. chrysogenum. Our results suggest that genetic manipulation based on the epigenetic regulator HdaA is an important strategy for regulating the productions of secondary metabolites and expanding bioactive natural product resources in endophytic fungi.
Collapse
Affiliation(s)
- Zhuang Ding
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (X.W.); (R.Z.); (Z.W.); (J.H.)
- Correspondence: ; Tel./Fax: +86-635-8239136
| | - Haibo Zhou
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China;
| | - Xiao Wang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (X.W.); (R.Z.); (Z.W.); (J.H.)
| | - Huiming Huang
- School of Life Science, Liaocheng University, Liaocheng 252059, China;
| | - Haotian Wang
- Faculty of Pharmacy, Bengbu Medical College, Bengbu 233000, China;
| | - Ruiyan Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (X.W.); (R.Z.); (Z.W.); (J.H.)
| | - Zhengping Wang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (X.W.); (R.Z.); (Z.W.); (J.H.)
| | - Jun Han
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (X.W.); (R.Z.); (Z.W.); (J.H.)
| |
Collapse
|
10
|
Duan YD, Jiang YY, Guo FX, Chen LX, Xu LL, Zhang W, Liu B. The antitumor activity of naturally occurring chromones: A review. Fitoterapia 2019; 135:114-129. [DOI: 10.1016/j.fitote.2019.04.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 10/27/2022]
|
11
|
Zhou ZZ, Zhu HJ, Lin LP, Zhang X, Ge HM, Jiao RH, Tan RX. Dalmanol biosyntheses require coupling of two separate polyketide gene clusters. Chem Sci 2018; 10:73-82. [PMID: 30746075 PMCID: PMC6335865 DOI: 10.1039/c8sc03697g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/21/2018] [Indexed: 11/29/2022] Open
Abstract
Polyketide–polyketide hybrids are unique natural products with promising bioactivity, but the hybridization processes remain poorly understood.
Polyketide–polyketide hybrids are unique natural products with promising bioactivity, but the hybridization processes remain poorly understood. Herein, we present that the biosynthetic pathways of two immunosuppressants, dalmanol A and acetodalmanol A, result from an unspecific monooxygenase triggered hybridization of two distinct polyketide (naphthalene and chromane) biosynthetic gene clusters. The orchestration of the functional dimorphism of the polyketide synthase (ChrA) ketoreductase (KR) domain (shortened as ChrA KR) with that of the KR partner (ChrB) in the bioassembly line increases the polyketide diversity and allows the fungal generation of plant chromanes (e.g., noreugenin) and phloroglucinols (e.g., 2,4,6-trihydroxyacetophenone). The simultaneous fungal biosynthesis of 1,3,6,8- and 2-acetyl-1,3,6,8-tetrahydroxynaphthalenes was addressed as well. Collectively, the work may symbolize a movement in understanding the multiple-gene-cluster involved natural product biosynthesis, and highlights the possible fungal generations of some chromane- and phloroglucinol-based phytochemicals.
Collapse
Affiliation(s)
- Zhen Zhen Zhou
- State Key Laboratory of Pharmaceutical Biotechnology , Institute of Functional Biomolecules , Nanjing University , Nanjing 210023 , China .
| | - Hong Jie Zhu
- State Key Laboratory of Pharmaceutical Biotechnology , Institute of Functional Biomolecules , Nanjing University , Nanjing 210023 , China .
| | - Li Ping Lin
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China.,State Key Laboratory Elemento-Organic Chemistry , Nankai University , Tianjin 300071 , China
| | - Xuan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology , Institute of Functional Biomolecules , Nanjing University , Nanjing 210023 , China .
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology , Institute of Functional Biomolecules , Nanjing University , Nanjing 210023 , China .
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology , Institute of Functional Biomolecules , Nanjing University , Nanjing 210023 , China .
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology , Institute of Functional Biomolecules , Nanjing University , Nanjing 210023 , China . .,State Key Laboratory Cultivation Base for TCM Quality and Efficacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| |
Collapse
|
12
|
Noppawan S, Mongkolthanaruk W, Suwannasai N, Senawong T, Moontragoon P, Boonmak J, Youngme S, McCloskey S. Chemical constituents and cytotoxic activity from the wood-decaying fungus Xylaria sp. SWUF08-37. Nat Prod Res 2018; 34:464-473. [PMID: 30257108 DOI: 10.1080/14786419.2018.1488709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A new cyclic pentapeptide, pentaminolarin (1), and a new cytochalasin, xylochalasin (2), along with thirteen known compounds (3-15) were isolated from the wood-decaying fungus Xylaria sp. SWUF08-37. The absolute configurations of 1 were determined by a combination of Marfey's method and TDDFT ECD calculation and the absolute configurations of 2 were established by TDDFT ECD calculation. Compound 12 showed moderate cytotoxicity against HeLa (IC50 = 19.60 µg/mL), HT29 (IC50 = 17.31 µg/mL), HCT116 (IC50 = 14.28 µg/mL), MCF-7 (IC50 = 15.38 µg/mL), and Vero (IC50 = 24.97 µg/mL) cell lines by MTT assay. Compounds 1 and 2 showed slight cytotoxicity against all tested cancer cell lines.
Collapse
Affiliation(s)
- Somchai Noppawan
- Natural Products Research Unit, Department of Chemistry and Centre of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Wiyada Mongkolthanaruk
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Nuttika Suwannasai
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Thanaset Senawong
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Pairot Moontragoon
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Jaursup Boonmak
- Materials Chemistry Research Center, Department of Chemistry and Centre of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Sujittra Youngme
- Materials Chemistry Research Center, Department of Chemistry and Centre of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Sirirath McCloskey
- Natural Products Research Unit, Department of Chemistry and Centre of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
13
|
Luo Y, Qiu L, Deng Y, Yuan XH, Gao P. A new chromone and a new aliphatic ester isolated from Daldinia eschscholtzii. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2018; 20:883-888. [PMID: 29185348 DOI: 10.1080/10286020.2017.1406926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
A new chromone and a new aliphatic ester were isolated from the EtOAc extract of myceliums of Daldinia eschscholtzii. Their structures were elucidated as (R)-5-hydroxy-8-methoxy-2-methylchroman-4-one (1) and (E)-6-(non-3-en-1-yl) -2H-pyran-2-one (2) by interpretation of the spectroscopic evidence.
Collapse
Affiliation(s)
- Yu Luo
- a School of Pharmacy , Southwest Medical University , Luzhou 646000 , China
| | - Ling Qiu
- b School of Pharmacy , Chengdu University of Traditional Chinese Medicine , Chengdu 611137 , China
| | - Yun Deng
- b School of Pharmacy , Chengdu University of Traditional Chinese Medicine , Chengdu 611137 , China
| | - Xiao-Hong Yuan
- c School of Life Science and Engineering , Southwest University of Science and Technology , Mianyang 621010 , China
| | - Ping Gao
- d Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science , Sichuan University , Chengdu 610064 , China
| |
Collapse
|
14
|
Uzma F, Mohan CD, Hashem A, Konappa NM, Rangappa S, Kamath PV, Singh BP, Mudili V, Gupta VK, Siddaiah CN, Chowdappa S, Alqarawi AA, Abd Allah EF. Endophytic Fungi-Alternative Sources of Cytotoxic Compounds: A Review. Front Pharmacol 2018; 9:309. [PMID: 29755344 PMCID: PMC5932204 DOI: 10.3389/fphar.2018.00309] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/16/2018] [Indexed: 12/29/2022] Open
Abstract
Cancer is a major cause of death worldwide, with an increasing number of cases being reported annually. The elevated rate of mortality necessitates a global challenge to explore newer sources of anticancer drugs. Recent advancements in cancer treatment involve the discovery and development of new and improved chemotherapeutics derived from natural or synthetic sources. Natural sources offer the potential of finding new structural classes with unique bioactivities for cancer therapy. Endophytic fungi represent a rich source of bioactive metabolites that can be manipulated to produce desirable novel analogs for chemotherapy. This review offers a current and integrative account of clinically used anticancer drugs such as taxol, podophyllotoxin, camptothecin, and vinca alkaloids in terms of their mechanism of action, isolation from endophytic fungi and their characterization, yield obtained, and fungal strain improvement strategies. It also covers recent literature on endophytic fungal metabolites from terrestrial, mangrove, and marine sources as potential anticancer agents and emphasizes the findings for cytotoxic bioactive compounds tested against specific cancer cell lines.
Collapse
Affiliation(s)
- Fazilath Uzma
- Microbial Metabolite Research Laboratory, Department of Microbiology and Biotechnology, Bangalore University, Bangalore, India
| | - Chakrabhavi D Mohan
- Department of Studies in Molecular Biology, University of Mysore, Mysore, India
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, BG Nagara, Mandya, India
| | - Praveen V Kamath
- Microbial Metabolite Research Laboratory, Department of Microbiology and Biotechnology, Bangalore University, Bangalore, India
| | - Bhim P Singh
- Molecular Microbiology and Systematics Laboratory, Department of Biotechnology, Mizoram University, Aizawl, India
| | - Venkataramana Mudili
- Microbiology Division, DRDO-BU-Centre for Life sciences, Bharathiar University, Coimbatore, India
| | - Vijai K Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Chandra N Siddaiah
- Department of Studies in Biotechnology, University of Mysore, Mysore, India
| | - Srinivas Chowdappa
- Microbial Metabolite Research Laboratory, Department of Microbiology and Biotechnology, Bangalore University, Bangalore, India
| | - Abdulaziz A Alqarawi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed F Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Dickschat JS, Wang T, Stadler M. Volatiles from the xylarialean fungus Hypoxylon invadens. Beilstein J Org Chem 2018; 14:734-746. [PMID: 29719571 PMCID: PMC5905279 DOI: 10.3762/bjoc.14.62] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/20/2018] [Indexed: 11/23/2022] Open
Abstract
The volatiles emitted by agar plate cultures of the xylarialean fungus Hypoxylon invadens were investigated by use of a closed loop stripping apparatus in combination with GC-MS. Several aromatic compounds were found that could only be identified by comparison to all possible constitutional isomers with different ring substitution patterns. For the set of identified compounds a plausible biosynthetic scheme was suggested that gives further support for the assigned structures.
Collapse
Affiliation(s)
- Jeroen S Dickschat
- Kekulé-Institut für Organische Chemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Tao Wang
- Kekulé-Institut für Organische Chemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Marc Stadler
- Abteilung Mikrobielle Wirkstoffe, Helmholtz-Zentrum für Infektionsforschung, Inhoffenstraße 7, 38124 Braunschweig, Germany
| |
Collapse
|
16
|
Wang T, Mohr KI, Stadler M, Dickschat JS. Volatiles from the tropical ascomycete Daldinia clavata (Hypoxylaceae, Xylariales). Beilstein J Org Chem 2018; 14:135-147. [PMID: 29441137 PMCID: PMC5789425 DOI: 10.3762/bjoc.14.9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/04/2018] [Indexed: 11/23/2022] Open
Abstract
The volatiles from the fungus Daldinia clavata were collected by use of a closed-loop stripping apparatus and analysed by GC-MS. A few compounds were readily identified by comparison of measured to library mass spectra and of retention indices to published data, while for other compounds a synthesis of references was required. For one of the main compounds, 5-hydroxy-4,6-dimethyloctan-3-one, the relative and absolute configuration was determined by synthesis of all eight stereoisomers and gas chromatographic analysis using a homochiral stationary phase. Another identified new natural product is 6-nonyl-2H-pyran-2-one. The antimicrobial and cytotoxic effects of the synthetic volatiles are also reported.
Collapse
Affiliation(s)
- Tao Wang
- Kekulé-Institut für Organische Chemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Kathrin I Mohr
- Abteilung für Mikrobielle Wirkstoffe, Helmholtz-Zentrum für Infektionsforschung, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Marc Stadler
- Abteilung für Mikrobielle Wirkstoffe, Helmholtz-Zentrum für Infektionsforschung, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Jeroen S Dickschat
- Kekulé-Institut für Organische Chemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| |
Collapse
|
17
|
Isolation of three new metabolites and intervention of diazomethane led to separation of compound 1 & 2 from an endophytic fungus, Cryptosporiopsis sp. depicting cytotoxic activity. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1989-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
A fruitful decade for fungal polyketides from 2007 to 2016: antimicrobial activity, chemotaxonomy and chemodiversity. Future Med Chem 2017; 9:1631-1648. [DOI: 10.4155/fmc-2017-0028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The last three decades have shown that the fungi can be ‘biofactories’ of novel, bioactive secondary metabolites that produce numerous natural products with novel skeletons and biological activities. Particularly in the last 10 years, large numbers of antimicrobial fungal secondary metabolites have been discovered. This review provides an overview of key, defining developments of the last 10 years regarding the discovery of antimicrobial activity, chemotaxonomy and chemodiversity of fungal polyketides.
Collapse
|
19
|
Tang L, Wei X, An F, Lu Y. Preparative separation of TL1-1 from Daldinia eschscholzii extract by macroporous resin and evaluation of its antimicrobial activities. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1060:22-29. [PMID: 28582661 DOI: 10.1016/j.jchromb.2017.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/17/2017] [Accepted: 05/06/2017] [Indexed: 12/11/2022]
Abstract
2,3-Dihydro-5-hydroxy-2-methylchromen-4-one (TL1-1) has already been reported to exhibit significant activities such as cytotoxicity, antifungal activity and growth inhibitory activity. In order to simply and efficiently separate TL1-1 from crude extracts of Daldinia eschscholzii on a large-preparative scale, XAD-16 resin was selected from ten types of resin based on its superior adsorption and desorption performance. Adsorption equilibrium data for this resin fitted well with pseudo-first order kinetics and the Freundlich model, which were elucidated from kinetic experiments and adsorption isotherms. Under optimized conditions, the purity of TL1-1 increased from 19.21% (w/w) in the crude extract, to 84.64% (w/w) in the final product, with a recovery yield of 75.06% (w/w) by a one-step treatment. Moreover, in a large-scale separation, the purity and recovery of TL1-1 was 80.33% and 72.02% (w/w), respectively. These results demonstrated that a simple adsorption-desorption strategy, using XAD-16 resin, was efficient, which also highlighted its potential for the future large-scale purification and preparation of TL1-1. In addition, studies showed that the purified TL1-1 exhibited moderate antibacterial activity against Ralstonia solanacearum.
Collapse
Affiliation(s)
- Liu Tang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Xingchen Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Faliang An
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, PR China.
| | - Yanhua Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
20
|
Naseer S, Bhat KA, Qadri M, Riyaz-Ul-Hassan S, Malik FA, Khuroo MA. Bioactivity-Guided Isolation, Antimicrobial and Cytotoxic Evaluation of Secondary Metabolites fromCladosporium tenuissimumAssociated with Pinus wallichiana. ChemistrySelect 2017. [DOI: 10.1002/slct.201601942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Syed Naseer
- Bioorganic Chemistry Division Indian Institute of Integrative Medicine (CSIR); Srinagar 190005, Jammu and Kashmir India
| | - Khursheed A. Bhat
- Bioorganic Chemistry Division Indian Institute of Integrative Medicine (CSIR); Srinagar 190005, Jammu and Kashmir India
| | - Masroor Qadri
- Microbial Biotechnology Division; Indian Institute of Integrative Medicine (CSIR); Canal Road Jammu 180 001 India
| | - Syed Riyaz-Ul-Hassan
- Microbial Biotechnology Division; Indian Institute of Integrative Medicine (CSIR); Canal Road Jammu 180 001 India
| | - Fayaz A. Malik
- Cancer pharmacology Division; Indian Institute of Integrative Medicine (CSIR); Canal Road Jammu 180 001 India
| | - Mohammad A. Khuroo
- Department of Chemistry; University of Kashmir; Srinagar 190006, Jammu and Kashmir India, Institute's publication No. IIIM/1962/2016
| |
Collapse
|
21
|
Wei XC, Tang L, Lu YH. Dissolved oxygen control strategy for improvement of TL1-1 production in submerged fermentation by Daldinia eschscholzii. BIORESOUR BIOPROCESS 2017; 4:1. [PMID: 28133592 PMCID: PMC5236084 DOI: 10.1186/s40643-016-0134-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/26/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND 2,3-Dihydro-5-hydroxy-2-methylchromen-4-one (TL1-1) is a phenolic compound with significant anti-fungal and anti-cancer activities produced by Daldinia eschscholzii (D. eschscholzii). However, studies have rarely been reported on the fermentation process of D. eschscholzii due to the urgent demand for its pharmaceutical researches and applications. RESULTS In this work, the optimal fermentation medium for improved TL1-1 yield was first obtained in a shake flask. As the fermentation process was scaling up, the marked effects of dissolved oxygen (DO) on cell growth and TL1-1 biosynthesis were observed and confirmed. Controlling a suitable DO level by the adjustment of agitation speed and aeration rate remarkably enhanced TL1-1 production in a lab-scale bioreactor. Moreover, the fermentation of D. eschscholzii was successfully applied in 500-L bioreactor, and TL1-1 production has achieved 873.63 mg/L, approximately 15.4-fold than its initial production (53.27 mg/L). CONCLUSIONS Dissolved oxygen control strategy for enhancing TL1-1 production was first proposed. Furthermore, control of the appropriate DO level has successfully performed for improving TL1-1 yield and scale-up of D. eschscholzii fermentation process.
Collapse
Affiliation(s)
- Xing-chen Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Box 283#, Shanghai, 200237 People’s Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237 People’s Republic of China
| | - Liu Tang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Box 283#, Shanghai, 200237 People’s Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237 People’s Republic of China
| | - Yan-hua Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Box 283#, Shanghai, 200237 People’s Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237 People’s Republic of China
| |
Collapse
|
22
|
The Fungal Endobiome of Medicinal Plants: A Prospective Source of Bioactive Metabolites. MEDICINAL AND AROMATIC PLANTS OF THE WORLD 2017. [DOI: 10.1007/978-981-10-5978-0_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Habbu P, Warad V, Shastri R, Madagundi S, Kulkarni VH. Antimicrobial metabolites from marine microorganisms. Chin J Nat Med 2016; 14:101-116. [PMID: 26968676 DOI: 10.1016/s1875-5364(16)60003-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Indexed: 12/19/2022]
Abstract
Marine ecological niches have recently been described as "particularly promising" sources for search of new antimicrobials to combat antibiotic-resistant strains of pathogenic microorganisms. Marine organisms are excellent sources for many industrial products, but they are partly explored. Over 30 000 compounds have been isolated from marine sources. Bacteria, fungi, and cyanobacteria obtained from various marine sources secret several industrially useful bioactive compounds, possessing antibacterial, antifungal, and antimycobacterial activities. Sustainable cultivation methods for promising marine organisms and biotechnological processes for selected compounds can be developed, along with the establishment of biosensors for monitoring the target compounds. The semisynthetic modifications of marine-based bioactive compounds produce their new derivatives, structural analogs and mimetics that could serve as novel lead compounds against resistant pathogens. The present review focuses on promising antimicrobial compounds isolated from marine microbes from 1991-2013.
Collapse
Affiliation(s)
- Prasanna Habbu
- Postgraduate Department of Pharmacognosy & Phytochemistry, SET's College of Pharmacy, Dharwad 580002, Karnataka, India.
| | - Vijayanand Warad
- Department of Pharmacognosy and Phytochemistry, Sridevi College of Pharmacy, Mangalore 575006, Karnataka, India
| | - Rajesh Shastri
- Postgraduate Department of Pharmacognosy & Phytochemistry, SET's College of Pharmacy, Dharwad 580002, Karnataka, India
| | - Smita Madagundi
- Postgraduate Department of Pharmacognosy & Phytochemistry, SET's College of Pharmacy, Dharwad 580002, Karnataka, India
| | - Venkatrao H Kulkarni
- Postgraduate Department of Pharmacology, SET's College of Pharmacy, Dharwad 580002, Karnataka, India
| |
Collapse
|
24
|
Yedukondalu N, Arora P, Wadhwa B, Malik FA, Vishwakarma RA, Gupta VK, Riyaz-Ul-Hassan S, Ali A. Diapolic acid A-B from an endophytic fungus, Diaporthe terebinthifolii depicting antimicrobial and cytotoxic activity. J Antibiot (Tokyo) 2016; 70:212-215. [PMID: 27599766 DOI: 10.1038/ja.2016.109] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/29/2016] [Accepted: 08/05/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Nalli Yedukondalu
- Natural Products Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India
| | - Palak Arora
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India.,Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Bhumika Wadhwa
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India.,Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Fayaz Ahmad Malik
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Ram A Vishwakarma
- Natural Products Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India.,Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Vivek K Gupta
- Department of Physics and Electronics, University of Jammu, Jammu, India
| | - Syed Riyaz-Ul-Hassan
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India.,Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Asif Ali
- Natural Products Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India
| |
Collapse
|
25
|
Redefining common endophytes and plant pathogens in Neofabraea, Pezicula, and related genera. Fungal Biol 2015; 120:1291-1322. [PMID: 27742091 DOI: 10.1016/j.funbio.2015.09.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 09/01/2015] [Accepted: 09/30/2015] [Indexed: 11/23/2022]
Abstract
Species in Neofabraea, Pezicula, and related genera have been reported as saprobes, plant pathogens or endophytes from a wide range of hosts. The asexual morphs of Neofabraea and Pezicula had been placed in Cryptosporiopsis, now a synonym of Pezicula, while Neofabraea was also linked to Phlyctema. Based on morphology and molecular data of the partial large subunit nrDNA (LSU), the internal transcribed spacer region with intervening 5.8S nrDNA (ITS), partial β-tubulin region (tub2), and the partial RNA polymerase II second largest subunit region (rpb2), the taxonomy and phylogenetic relationships of these fungi were investigated. Five new species were described in Pezicula based on morphology, while a further eight unnamed phylogenetic lineages revealed further diversity in the genus. Based on these results, the generic concept of Neofabraea was also emended. Phlyctema, which was previously associated with Neofabraea, formed a distinct clade, separate from Neofabraea s. str. Two new neofabraea-like genera, Parafabraea and Pseudofabraea were proposed, along with one new combination in Neofabraea s. str. To stabilise the application of these names, an epitype was designated for Pe. carpinea, the type species of Pezicula, and for N. malicorticis, the type species of Neofabraea.
Collapse
|
26
|
A novel stereo bioactive metabolite isolated from an endophytic fungus induces caspase dependent apoptosis and STAT-3 inhibition in human leukemia cells. Eur J Pharmacol 2015; 765:75-85. [DOI: 10.1016/j.ejphar.2015.08.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 07/31/2015] [Accepted: 08/14/2015] [Indexed: 01/05/2023]
|
27
|
Nalli Y, Mirza DN, Wani ZA, Wadhwa B, Mallik FA, Raina C, chaubey A, Riyaz-Ul-Hassan S, Ali A. Phialomustin A–D, new antimicrobial and cytotoxic metabolites from an endophytic fungus, Phialophora mustea. RSC Adv 2015. [DOI: 10.1039/c5ra18121f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Phialomustin A–D (1–4), four new azaphilone derived bioactive metabolites, were isolated from an endophytic fungus Phialophora mustea associated in nature with Crocus sativus.
Collapse
Affiliation(s)
- Yedukondalu Nalli
- Natural Product Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu 180001
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Dania N. Mirza
- Academy of Scientific and Innovative Research (AcSIR)
- New Delhi-110001
- India
- Microbial Biotechnology Division
- CSIR-Indian Institute of Integrative Medicine
| | - Zahoor A. Wani
- Academy of Scientific and Innovative Research (AcSIR)
- New Delhi-110001
- India
- Microbial Biotechnology Division
- CSIR-Indian Institute of Integrative Medicine
| | - Bhumika Wadhwa
- Academy of Scientific and Innovative Research (AcSIR)
- New Delhi-110001
- India
- Cancer Pharmacology Division
- Indian Institute of Integrative Medicine (CSIR)
| | - Fayaz A. Mallik
- Academy of Scientific and Innovative Research (AcSIR)
- New Delhi-110001
- India
- Cancer Pharmacology Division
- Indian Institute of Integrative Medicine (CSIR)
| | - Chand Raina
- Fermentation Division
- Indian Institute of Integrative Medicine (CSIR)
- Jammu-180001
- India
| | - Asha chaubey
- Fermentation Division
- Indian Institute of Integrative Medicine (CSIR)
- Jammu-180001
- India
| | - Syed Riyaz-Ul-Hassan
- Academy of Scientific and Innovative Research (AcSIR)
- New Delhi-110001
- India
- Microbial Biotechnology Division
- CSIR-Indian Institute of Integrative Medicine
| | - Asif Ali
- Natural Product Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu 180001
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
28
|
Chagas FO, Caraballo-Rodriguez AM, Pupo MT. Endophytic Fungi as a Source of Novel Metabolites. Fungal Biol 2015. [DOI: 10.1007/978-1-4939-2531-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Chen L, Zhang QY, Jia M, Ming QL, Yue W, Rahman K, Qin LP, Han T. Endophytic fungi with antitumor activities: Their occurrence and anticancer compounds. Crit Rev Microbiol 2014; 42:454-73. [PMID: 25343583 DOI: 10.3109/1040841x.2014.959892] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Plant endophytic fungi have been recognized as an important and novel resource of natural bioactive products, especially in anticancer application. This review mainly deals with the research progress on the production of anticancer compounds by endophytic fungi between 1990 and 2013. Anticancer activity is generally associated with the cytotoxicity of the compounds present in the endophytic fungi. All strains of endophytes producing antitumor chemicals were classified taxonomically and the genera of Pestalotiopsis and Aspergillus as well as the taxol producing endophytes were focused on. Classification of endophytic fungi producing antitumor compounds has received more attention from mycologists, and it can also lead to the discovery of novel compounds with antitumor activity due to phylogenetic relationships. In this review, the structures of the anticancer compounds isolated from the newly reported endophytes between 2010 and 2013 are discussed including strategies for the efficient production of the desired compounds. The purpose of this review is to provide new directions in endophytic fungi research including integrated information relating to its anticancer compounds.
Collapse
Affiliation(s)
- Ling Chen
- a Department of Pharmacognosy , School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Qiao-Yan Zhang
- a Department of Pharmacognosy , School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Min Jia
- a Department of Pharmacognosy , School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Qian-Liang Ming
- b Department of Pharmacognosy , School of Pharmacy, Third Military Medical University , Chongqing , China and
| | - Wei Yue
- a Department of Pharmacognosy , School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Khalid Rahman
- c Faculty of Science , School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University , Liverpool , UK
| | - Lu-Ping Qin
- a Department of Pharmacognosy , School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Ting Han
- a Department of Pharmacognosy , School of Pharmacy, Second Military Medical University , Shanghai , China
| |
Collapse
|