1
|
Gil MV, Fernández-Rivera N, Gutiérrez-Díaz G, Parrón-Ballesteros J, Pastor-Vargas C, Betancor D, Nieto C, Cintas P. Antioxidant Activity and Hypoallergenicity of Egg Protein Matrices Containing Polyphenols from Citrus Waste. Antioxidants (Basel) 2024; 13:1154. [PMID: 39456407 PMCID: PMC11504875 DOI: 10.3390/antiox13101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
This study reports on the interactions of egg proteins, which represent a major health concern in food allergy, with polyphenols obtained from orange and lemon peels. The antioxidant properties of such citrus peel extracts prior to protein binding were evaluated. The resulting edible, and therefore inherently safe, matrices exhibit reduced IgE binding compared to pure proteins in indirect immunological assays (ELISA) using individual sera from patients allergic to ovalbumin and lysozyme. The reduced allergenicity could arise from the interactions with polyphenols, which alter the structure and functionality of the native proteins. It is hypothesized that the anti-inflammatory and antioxidant properties of the polyphenols, described as inhibitors of the allergic response, could add immunomodulatory features to the hypoallergenic complexes. A docking analysis using lysozyme was conducted to scrutinize the nature of the protein-polyphenol interactions. An in silico study unravelled the complexity of binding modes depending on the isoforms considered. Altogether, the presented results validate the antioxidant properties and reduced allergenicity of polyphenol-fortified proteins. Lastly, this study highlights the upgrading of vegetable wastes as a source of natural antioxidants, thus showing the benefits of a circular economy in agri-food science.
Collapse
Affiliation(s)
- María Victoria Gil
- Department of Organic and Inorganic Chemistry, IACYS-Green Chemistry and Sustainable Development Unit, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain; (N.F.-R.); (P.C.)
| | - Nuria Fernández-Rivera
- Department of Organic and Inorganic Chemistry, IACYS-Green Chemistry and Sustainable Development Unit, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain; (N.F.-R.); (P.C.)
| | - Gloria Gutiérrez-Díaz
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain; (G.G.-D.); (J.P.-B.); (C.P.-V.)
| | - Jorge Parrón-Ballesteros
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain; (G.G.-D.); (J.P.-B.); (C.P.-V.)
| | - Carlos Pastor-Vargas
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain; (G.G.-D.); (J.P.-B.); (C.P.-V.)
| | - Diana Betancor
- Department of Allergy and Immunology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Carlos Nieto
- Department of Organic Chemistry, Faculty of Chemical Sciences, University of Salamanca, Pl. Caídos s/n, 37008 Salamanca, Spain;
| | - Pedro Cintas
- Department of Organic and Inorganic Chemistry, IACYS-Green Chemistry and Sustainable Development Unit, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain; (N.F.-R.); (P.C.)
| |
Collapse
|
2
|
Slama M, Slougui N, Benaissa A, Nekkaa A, Sellam F, Canabady-Rochelle L. Borago Officinalis L.: A Review Oon Extraction, Phytochemical, and Pharmacological Activities. Chem Biodivers 2024; 21:e202301822. [PMID: 38426739 DOI: 10.1002/cbdv.202301822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/02/2024]
Abstract
Borago officinalis L., an annual herb belonging to the Boraginaceae family, is used in the traditional medical practices of various countries and for multiple treatments, including respiratory disorders, colds, influenza, diarrhea, cramps, inflammation, palpitation, hypertension menopause, and post-menopausal symptoms. Its pharmacological properties and biological activities - among them antioxidant, antimicrobial, anticancer, anti-inflammatory, insecticidal, antigenotoxic, and anti-obesity activity - were demonstrated in vitro and in vivo and are related to its rich content of bioactive compounds (mainly phenolic acids, flavonoids, anthocyanins, alkaloids, and terpenes) extracted from various parts of B. officinalis including leaves, flowers, seeds, and roots. This review summarizes all updated information on applied extraction processes, phytochemistry, pharmacology, and toxicity of B. officinalis.
Collapse
Affiliation(s)
- Meriem Slama
- Laboratoire de Génie des Procédés pour le Développement Durable et Les Produits de Santé, Ecole Nationale Polytechnique de Constantine, Constantine, 25016, Algeria
| | - Nabila Slougui
- Laboratoire de Bio Géochimie des Milieux Désertiques, Université Kasdi Merbah Ouargla, Route de Ghardaia, Ouargla, 30000, Algeria
- Ecole Nationale Polytechnique de Constantine, Ville Universitaire Ali Mendjeli, BP 75 A RP Ali Mendjeli, Constantine, 25016, Algeria
| | - Akila Benaissa
- Pharmaceutical Research and Sustainable Development Laboratory (ReMeDD), Department of Pharmaceutical Engineering, Faculty of Process Engineering, Constantine 3 University, Constantine, 25000, Algeria
| | - Amine Nekkaa
- Université de Lorraine, CNRS, LRGP, F-54000, Nancy, France
| | - Feriel Sellam
- Genetic diagnosis and microscopy laboratory, Health and biotechnology division, National Research Center of Biotechnology, Constantine, Algeria
| | | |
Collapse
|
3
|
Kalhor HR, Piraman Z, Fathali Y. Hen egg white lysozyme encapsulated in ZIF-8 for performing promiscuous enzymatic Mannich reaction. iScience 2023; 26:107807. [PMID: 37744039 PMCID: PMC10514465 DOI: 10.1016/j.isci.2023.107807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/05/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Hen egg white lysozyme (HEWL) was exploited for the synthesis of β-amino carbonyl compounds through a direct and three-component Mannich reaction in aqueous, confirming high chemoselectivity toward imine. In order to further extend the applications of the enzyme, HEWL was encapsulated using a metal-organic framework (MOF). The reactivity, stereoselectivity, and reusability of the encapsulated enzyme were investigated. The reaction was significantly enhanced as compared to the non-encapsulated enzyme. A mutated version of the enzyme, containing Asp52Ala (D52A), lacking important catalytical residue, has lost the bacterial site activity against Micrococcus luteus (M. luteus) while the D52A variant displayed an increased rate of the Mannich reaction, indicating a different catalytical residue involved in the promiscuous reaction. Based on site-directed mutagenesis, molecular docking, and molecular dynamic studies, it was proposed that π-stacking, H-bond interactions, and the presence of water in the active site may play crucial roles in the mechanism of the reaction.
Collapse
Affiliation(s)
- Hamid R. Kalhor
- Biochemistry and Chemical Biology Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Zeinab Piraman
- Biochemistry and Chemical Biology Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Yasaman Fathali
- Biochemistry and Chemical Biology Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
4
|
Rezaei M, Kalhor HR. Amyloid fibril reduction through covalently modified lysine in HEWL and insulin. Arch Biochem Biophys 2022; 727:109350. [PMID: 35830943 DOI: 10.1016/j.abb.2022.109350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022]
Abstract
Proteins possess a variety of nucleophiles, which can carry out different reactions in the functioning cells. Proteins endogenously and synthetically can be modified through their nucleophilic sites. The roles of these chemical modifications have not been completely revealed. These modifications can alter the protein folding process. Protein folding directly affects the function of proteins. If an error in protein folding occurs, it may cause protein malfunction leading to several neurodegenerative disorders such as Alzheimer's and Parkinson's. In this study, Hen Egg White Lysozyme (HEWL) and bovine insulin, as model proteins for studying the amyloid formation, were covalently attached with 5(6)-thiophenolfluorescein. The amyloid formation of the covalently labeled lysozyme and insulin were compared with the native proteins. Interestingly, the results indicated that the covalent attachment of fluorescein slowed down the amyloid formation of HEWL and insulin significantly. The amyloid formation was examined using Thioflavin T (ThT) fluorescence assay, circular dichroism, FTIR, and gel electrophoresis. Tandem mass spectrometry was employed to identify the sites of covalent modifications in HEWL. It turned out that two surface lysine residues (K97 and K 116) in HEWL were modified. Computational studies, including docking and molecular simulations, revealed that 5(6)-thiophenolfluorescein makes several non-covalent interactions with HEWL residues, including Lys 97, leading to the reduction of the β-sheet in the protein. Additionally, AFM analysis confirmed the amyloid fibril reduction of lysine-modified bovine insulin and HEWL. Altogether, our results expand mechanistic insights into preventing amyloid formation by providing an approach for reducing amyloid formation by modifying specific lysine residues in the proteins.
Collapse
Affiliation(s)
- Mohsen Rezaei
- Biochemistry and Chemical Biology Research Laboratory, Chemistry Department, Sharif University of Technology, P.O. Box 11155-3516, Tehran, Iran
| | - Hamid Reza Kalhor
- Biochemistry and Chemical Biology Research Laboratory, Chemistry Department, Sharif University of Technology, P.O. Box 11155-3516, Tehran, Iran.
| |
Collapse
|
5
|
Ashrafian H, Zadeh EH, Tajbakhsh M, Majid N, Srivastava GN, Khan RH. Discovery of a tetracyclic indole alkaloid that postpones fibrillation of hen egg white lysozyme protein. Int J Biol Macromol 2021; 183:1939-1947. [PMID: 34097957 DOI: 10.1016/j.ijbiomac.2021.05.212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/11/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
Protein aggregation, such as amyloid fibril formation, is molecular hallmark of many neurodegenerative disorders including Alzheimer's, Parkinson's, and Prion disease. Indole alkaloids are well-known as the compounds having the ability to inhibit protein fibrillation. In this study, we experimentally and computationally have investigated the anti-amyloid property of a derivative of a synthesized tetracyclic indole alkaloid (TCIA), possessing capable functional groups. The fibrillation reaction of Hen White Egg Lysozyme (HEWL) was performed in absence and presence of the indole alkaloid. For quantitative analysis, we used Thioflovin T binding assay which showed ~50% reduction in fibril formation in the presence of 20 μM TCIA. Using TEM imaging, we observed a significant morphological change in our model protein in the presence of TCIA. In addition, we exploited FT-IR assay by which Amide I peak's shifting toward lower wavenumber was clearly observed. Using Molecular Docking, the interaction of the inhibitor (TCIA) with the protein's amyloidogenic region was modeled. Also, different biophysical parameters were calculated by Molecular Dynamics (MD) simulation. Various biochemical assays, conformational change, and hydrophobicity exposure of the protein during amyloid formation indicated that the compound assists HEWL to keep its native structure via destabilizing β-sheet structure.
Collapse
Affiliation(s)
- Hossein Ashrafian
- Department of Chemistry and Biochemistry, the Ohio State University, Columbus, OH, USA; Biochemistry Lab, Chemistry department, Sharif University of Technology, Tehran, Iran.
| | | | | | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202 002, India
| | - Gopal N Srivastava
- Department of Chemistry and Biochemistry, the Ohio State University, Columbus, OH, USA
| | - Rizwan Hassan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202 002, India.
| |
Collapse
|
6
|
Ashrafian H, Zadeh EH, Khan RH. Review on Alzheimer's disease: Inhibition of amyloid beta and tau tangle formation. Int J Biol Macromol 2020; 167:382-394. [PMID: 33278431 DOI: 10.1016/j.ijbiomac.2020.11.192] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/18/2020] [Accepted: 11/28/2020] [Indexed: 12/19/2022]
Abstract
It is reported that approximately 40 million people are suffering from dementia, globally. Dementia is a group of symptoms that affect neurons and cause some mental disorders, such as losing memory. Alzheimer's disease (AD) which is known as the most common cause of dementia, is one of the top medical care concerns across the world. Although the exact sources of the disease are not understood, is it believed that aggregation of amyloid-beta (Aβ) outside of neuron cells and tau aggregation or neurofibrillary tangles (NFTs) formation inside the cell may play crucial roles. In this paper, we are going to review studies that targeted inhibition of amyloid plaque and tau protein tangle formation, to suppress or postpone AD.
Collapse
Affiliation(s)
- Hossein Ashrafian
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, USA; Department of Chemistry, Sharif University of Technology, Tehran, Iran.
| | | | | |
Collapse
|
7
|
Ramezani M, Amiri MS, Zibaee E, Boghrati Z, Ayati Z, Sahebkar A, Emami SA. A Review on the Phytochemistry, Ethnobotanical Uses and Pharmacology of Borago Species. Curr Pharm Des 2020; 26:110-128. [PMID: 31840597 DOI: 10.2174/1381612825666191216152733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Borago L., (family Boraginaceae) is a small genus of annual or perennial herbs with branched flowers, which is commonly found in the Mediterranean region. Some species known as Gavzabȃn in Asian and some African countries are traditionally used instead of Borago. Aims of the review: The purpose of this study was to provide comprehensive scientific information on phytochemistry, traditional uses and pharmacological activities of Borago species to provide an insight into further research on the therapeutic potential of these plants. In many studies, it has been shown that different parts of Borago species, including leaves, flowers, seeds, roots and aerial parts possess numerous ethnobotanical values. MATERIALS AND METHODS All ethnobotanical, phytochemical, pharmacological, and clinical data were collected from online journals, magazines and books (all of which were published in English, Arabic, and Persian) from 1968 to 2018. Electronic databases such as Google, Google Scholar, PubMed, Science Direct, Researchgate, and other online collections were used. RESULTS The phytochemical studies on five species showed a wide range of phytochemicals belonging to different classes of secondary metabolites. From a pharmacological point of view, different extracts and fractions, essential oils, and pure compounds isolated from various Borago species have shown diverse activities in in vitro, in vivo, and clinical studies confirming various traditional uses of Borago genus. CONCLUSION Considering the reported activities of the Borago genus both in traditional and modern medicine, further studies on biological aspects and identification of the mechanism of action for drug discovery are highly required.
Collapse
Affiliation(s)
- Mahin Ramezani
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Elaheh Zibaee
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Boghrati
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Ayati
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed A Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Coffee extracts effectively inhibit the formation of α-chymotrypsin amyloid-like fibrils in aqueous ethanol in vitro. Biol Futur 2020; 71:147-152. [PMID: 34554524 DOI: 10.1007/s42977-020-00006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
Abstract
In this study, an in vitro α-chymotrypsin aggregation model was used to demonstrate that certain extracts of commercial coffees effectively inhibit protein aggregation in 55% ethanol at pH 7.0. To detect the anti-amyloidogenic effect of the various coffee extracts, turbidity measurements and Congo red binding assays were performed as well as the determination of the total polyphenol content of the extracts. The greatest fibril formation inhibitory effect was exerted by the Eduscho coffee extract, which contained also the most of the phenolic compounds. The Eduscho coffee extract inhibited the fibrillation of the α-chymotrypsin dose dependently. Coffee extracts are effective anti-aggregation agents, and their beneficial effects strongly correlate with the total phenolic content.
Collapse
|
9
|
Kalhor HR, Jabbary M. Investigating Reliable Conditions for HEWL as an Amyloid Model in Computational Studies and Drug Interactions. J Chem Inf Model 2019; 59:5218-5229. [DOI: 10.1021/acs.jcim.9b00819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Hamid R. Kalhor
- Biochemistry Research Laboratory, Department of Chemistry, Sharif University of Technology, PO Box: 11365-11155 Tehran, Iran
| | - Mohammadparsa Jabbary
- Biochemistry Research Laboratory, Department of Chemistry, Sharif University of Technology, PO Box: 11365-11155 Tehran, Iran
| |
Collapse
|
10
|
Kalhor HR, Rezaei M. Conversion of 3,6‐O‐Dimethylfluorescein to Fluorescein‐Based Xanthylium Derivative: Characterization and Covalent Attachment to Bovine Serum Albumin. ChemistrySelect 2019. [DOI: 10.1002/slct.201902296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hamid Reza Kalhor
- Biochemistry Research LaboratoryChemistry Department, SharifUniversity of technology, Tehran Iran
| | - Mohsen Rezaei
- Biochemistry Research LaboratoryChemistry Department, SharifUniversity of technology, Tehran Iran
| |
Collapse
|
11
|
Uludağ N, Serdaroğlu G. A DFT Investigation on the Structure, Spectroscopy (FT‐IR and NMR), Donor‐Acceptor Interactions and Non‐Linear Optic Properties of (±)‐1,2‐Dehydroaspidospermidine. ChemistrySelect 2019. [DOI: 10.1002/slct.201901383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nesimi Uludağ
- Namık Kemal UniversityDepartment of Chemistry 59030 Tekirdag Turkey
| | - Goncagül Serdaroğlu
- Sivas Cumhuriyet UniversityDepartment of Science Education 58040 Sivas Turkey
| |
Collapse
|
12
|
Kasi PB, Kotormán M. Among Commercially Available Fruit Juices, Pomegranate Is the Most Effective Inhibitor of PMS-Trypsin Amyloid-Like Fibrils Formation. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19859127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The formation of amyloid fibrils is associated with many human illnesses, such as Alzheimer’s, Huntington’s, and Parkinson’s diseases, amyotrophic lateral sclerosis, spongiform encephalitis, type 2 diabetes, and primary and secondary systemic amyloidosis. Nutrition contributes to the prevention of these diseases. The aim of our work was to look for commercially available fruit juices that can inhibit the formation of amyloid fibrils. Of the fruit juices that we examined, that of pomegranate was found to be the most effective inhibitory agent using turbidity measurements and Congo red binding assay. According to our experiments, pomegranate juice reduced the amount of PMS-trypsin amyloid-like fibrils to 3.7% at 5-fold dilution compared with the sample without pomegranate. The inhibitory effect of the pomegranate juice was concentration dependent.
Collapse
Affiliation(s)
- Phanindra Babu Kasi
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Hungary
| | - Márta Kotormán
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Hungary
| |
Collapse
|
13
|
Kalhor HR, Yahyazadeh A. Investigating the effects of amino acid-based surface modification of carbon nanoparticles on the kinetics of insulin amyloid formation. Colloids Surf B Biointerfaces 2019; 176:471-479. [DOI: 10.1016/j.colsurfb.2019.01.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/04/2019] [Accepted: 01/16/2019] [Indexed: 12/13/2022]
|
14
|
Sadighara P, Araghi A, Tajdar-Oranj B, Peivasteh-roudsari L, Mohajer A, Behzadi R. The Effect of Borage (Echium amoenum) on the Mouse Heart and Hematology Parameters. Cardiovasc Hematol Disord Drug Targets 2018; 19:154-159. [PMID: 30394224 DOI: 10.2174/1871529x18666181105113617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 09/11/2018] [Accepted: 10/10/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND There has been considerable interest in the potential health benefits of borage. Little information is available regarding the safety of this plant. The purpose of this study was to evaluate the impact of borage on the mouse heart. METHODS Different amounts of borage extract were injected in mice. The mice were randomly divided into 4 groups including group1 (Control group without injection), group2, 3 and 4 that received 12.5 mg/kg, 25 mg/kg and 50 mg/kg respectively for 28 days. Oxidative stress parameters (lipid peroxidation, total glutathione groups assay and cupric assay) and biochemical (Creatine kinase activity and total cholesterol) and hematology parameters were evaluated. Furthermore, histopathology study was carried out on heart tissues. RESULTS We found that there was no significant difference in oxidative stress parameters and biochemical parameters between the control group and the groups that received different amounts of borage extract. There were also no changes in histopathology study. In blood parameters, the level of erythrocytes, hematocrit and hemoglobin decreased to 50mg/kg, whereas the level of MCH and MCV decreased in high doses. CONCLUSION This article suggested that borage did not cause significant damage to the heart tissue in mice model. In hematology factors, significant changes were observed in erythrocytes and related parameters. Therefore, hematotoxicity of consumption this plant should be considered at high doses.
Collapse
Affiliation(s)
- Parisa Sadighara
- Department of Environmental Health, Food Safety Division, Faculty of Public Health, Tehran University of Medical sciences, Tehran, Iran
| | - Atefeh Araghi
- Department of Food Hygiene, School of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| | - Behrouz Tajdar-Oranj
- Department of Environmental Health, Food Safety Division, Faculty of Public Health, Tehran University of Medical sciences, Tehran, Iran
| | - Leila Peivasteh-roudsari
- Department of Environmental Health, Food Safety Division, Faculty of Public Health, Tehran University of Medical sciences, Tehran, Iran
| | - Afsaneh Mohajer
- Department of Environmental Health, Food Safety Division, Faculty of Public Health, Tehran University of Medical sciences, Tehran, Iran
| | | |
Collapse
|
15
|
Kalhor HR, Nazari Khodadadi A. Synthesis and Structure Activity Relationship of Pyridazine-Based Inhibitors for Elucidating the Mechanism of Amyloid Inhibition. Chem Res Toxicol 2018; 31:1092-1104. [DOI: 10.1021/acs.chemrestox.8b00210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hamid Reza Kalhor
- Biochemistry Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran 111559516, Iran
| | - Alireza Nazari Khodadadi
- Biochemistry Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran 111559516, Iran
| |
Collapse
|
16
|
Kalhor HR, Jabbari MP. Inhibition Mechanisms of a Pyridazine-Based Amyloid Inhibitor: As a β-Sheet Destabilizer and a Helix Bridge Maker. J Phys Chem B 2017; 121:7633-7645. [DOI: 10.1021/acs.jpcb.7b05189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hamid R. Kalhor
- Biochemistry Research Laboratory,
Department of Chemistry, Sharif University of Technology, PO Box: 11365-11155, Tehran, Iran
| | - M. Parsa Jabbari
- Biochemistry Research Laboratory,
Department of Chemistry, Sharif University of Technology, PO Box: 11365-11155, Tehran, Iran
| |
Collapse
|