1
|
Arrieta-Baez D, Quezada Huerta C, Rojas-Torres GS, Perea-Flores MDJ, Mendoza-León HF, Gómez-Patiño MB. Structural Studies of Mexican Husk Tomato ( Physalis ixocarpa) Fruit Cutin. Molecules 2023; 29:184. [PMID: 38202766 PMCID: PMC10780591 DOI: 10.3390/molecules29010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Green tomato (Physalis ixocarpa) is a specie native to Mexico, and it is known as "tomatillo" or "husk tomato". The fruit contains vitamins, minerals, phenolic compounds, and steroidal lactones, presenting antimicrobial activity and antinarcotic effects. Therefore, it is not only used in traditional Mexican cuisine, but also in traditional medicine to relieve some discomforts such as fever, cough, and amygdalitis. However, it is a perishable fruit whose shelf life is very short. As a part of the peel, cuticle, and epicuticular waxes represent the most important part in plant protection, and the specific composition and structural characterization are significant to know how this protective biopolymer keeps quality characteristics in fresh fruits. P. ixocarpa cutin was obtained by enzymatic treatments (cellulase, hemicellulose, and pectinase) and different concentrations of TFA, and studied through Cross Polarization Magic Angle Spinning Nuclear Magnetic Resonance (CPMAS 13C NMR), Ultra-High Performance Liquid Chromatography coupled to Mass Spectrometry (UHPLC-MS), and was morphologically characterized by Confocal Laser Scanning Microscopy (CLSM) and Scanning Electron Microscopy (SEM). The main constituents identified under the basis of UHPLC-MS analysis were 9,10,18-trihydroxy-octadecanoic acid and 9,10-epoxy-18-hydroxy-octadecanoic acid with 44.7 and 37.5%, respectively. The C16 absence and low occurrence of phenolic compounds, besides the presence of glandular trichomes, which do not allow a continuous layer on the surface of the fruit, could be related to a lower shelf life compared with other common fruits such as tomato (Solanum lycopersicum).
Collapse
Affiliation(s)
- Daniel Arrieta-Baez
- Instituto Politécnico Nacional—(Centro de Nanociencias y Micro y Nanotecnologías), Unidad Profesional Adolfo López Mateos, Col. Zacatenco, Mexico City 07738, Mexico; (D.A.-B.); (M.d.J.P.-F.); (H.F.M.-L.)
| | - Camila Quezada Huerta
- Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas, Unidad Profesional Adolfo López Mateos, Av. Luis Enrique Erro S/N, Colonia Lindavista 07738, Mexico; (C.Q.H.); (G.S.R.-T.)
| | - Giovana Simone Rojas-Torres
- Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas, Unidad Profesional Adolfo López Mateos, Av. Luis Enrique Erro S/N, Colonia Lindavista 07738, Mexico; (C.Q.H.); (G.S.R.-T.)
| | - María de Jesús Perea-Flores
- Instituto Politécnico Nacional—(Centro de Nanociencias y Micro y Nanotecnologías), Unidad Profesional Adolfo López Mateos, Col. Zacatenco, Mexico City 07738, Mexico; (D.A.-B.); (M.d.J.P.-F.); (H.F.M.-L.)
| | - Héctor Francisco Mendoza-León
- Instituto Politécnico Nacional—(Centro de Nanociencias y Micro y Nanotecnologías), Unidad Profesional Adolfo López Mateos, Col. Zacatenco, Mexico City 07738, Mexico; (D.A.-B.); (M.d.J.P.-F.); (H.F.M.-L.)
| | - Mayra Beatriz Gómez-Patiño
- Instituto Politécnico Nacional—(Centro de Nanociencias y Micro y Nanotecnologías), Unidad Profesional Adolfo López Mateos, Col. Zacatenco, Mexico City 07738, Mexico; (D.A.-B.); (M.d.J.P.-F.); (H.F.M.-L.)
| |
Collapse
|
2
|
Wu S, Li X, Jiang J, Huang H, Cheng X, Li G, Shan Y, Zhu X. Reveal the relationship between the quality and the cuticle composition of Satsuma mandarin (Citrus unshiu) by postharvest heat treatment. J Food Sci 2023; 88:4879-4891. [PMID: 37876294 DOI: 10.1111/1750-3841.16803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/08/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023]
Abstract
To investigate the influence of heat treatment (HT) on Satsuma mandarin fruit's postharvest quality and cuticle composition, we immersed the fruit for 3 min in hot water at 52°C and subsequently stored them at room temperature (25°C) for 28 days, and fruit quality parameters, such as good fruit rate, weight loss rate, firmness, total soluble solids, total titratable acidity, and ascorbic acid content, were monitored. Additionally, changes in the peel's cuticle composition were analyzed, and wax crystal morphologies on the fruit surface were examined using scanning electron microscopy (SEM). The findings revealed that appropriate HT effectively preserved fruit quality. The main compositions of wax and cutin on the fruit's surface remained consistent between the HT and the CK during storage. The total content of wax and cutin initially increased, peaking on the 14th day of storage, and then decreased, falling below the levels observed on day 0. Notably, the total amount of cutin in the HT group exceeded that of the control group. Specifically, ω-hydroxy fatty acids with mid-chain oxo groups and mid-oh-ω-hydroxy fatty acids constituted approximately 90% of the total cutin content. Moreover, the HT group exhibited higher (p < 0.05) total wax content in relation to the control. Fatty acids and alkanes were the predominant components, accounting for approximately 87.5% of the total wax. SEM analysis demonstrated that HT caused wax crystals to melt and redistribute, effectively filling wax gaps. It suggests that HT holds promising potential as a green, safe, and eco-friendly commercial treatment for preserving the postharvest quality of Satsuma mandarin. PRACTICAL APPLICATION: In this study, Satsuma citrus (Citrus unshiu) underwent heat treatment (HT) and was subsequently preserved at room temperature (25°C) for 28 days. The findings revealed that HT significantly improved fruit quality compared to the control group. These findings provide valuable insights into the advancement of eco-friendly and pollution-free citrus preservation methods, offering essential strategies and process parameters for their practical application.
Collapse
Affiliation(s)
- Sisi Wu
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
| | - Xiang Li
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Hunan Province International Joint Laboratory on Fruits and Vegetables Processing Quality and Safety, Changsha, China
| | - Jing Jiang
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
| | - Hua Huang
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
| | - Xiaomei Cheng
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
| | - Gaoyang Li
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Laboratory on Fruits and Vegetables Processing Quality and Safety, Changsha, China
| | - Xiangrong Zhu
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Laboratory on Fruits and Vegetables Processing Quality and Safety, Changsha, China
| |
Collapse
|
3
|
Valorization of Agro-Industrial Wastes by Ultrasound-Assisted Extraction as a Source of Proteins, Antioxidants and Cutin: A Cascade Approach. Antioxidants (Basel) 2022; 11:antiox11091739. [PMID: 36139813 PMCID: PMC9495669 DOI: 10.3390/antiox11091739] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/19/2022] [Accepted: 08/28/2022] [Indexed: 11/30/2022] Open
Abstract
The use of agro-industrial wastes to obtain compounds with a high added-value is increasing in the last few years in accordance with the circular economy concept. In this work, a cascade extraction approach was developed based on ultrasound-assisted extraction (UAE) for tomato, watermelon, and apple peel wastes. The protein and antioxidant compounds were obtained during the first extraction step (NaOH 3 wt.%, 98.6 W, 100% amplitude, 6.48 W/cm2, 6 min). The watermelon peels (WP) showed higher proteins and total phenolic contents (857 ± 1 mg BSA/g extract and 107.2 ± 0.2 mg GAE/100 g dm, respectively), whereas the highest antioxidant activity was obtained for apple peels (1559 ± 20 µmol TE/100 g dm, 1767 ± 5 µmol TE/100 g dm, and 902 ± 16 µmol TE/100 g dm for ABTS, FRAP and DPPH assays, respectively). The remaining residue obtained from the first extraction was subsequently extracted to obtain cutin (ethanol 40 wt.%, 58 W, 100% amplitude, 2 W/cm2, 17 min, 1/80 g/mL, pH 2.5). The morphological studies confirmed the great efficiency of UAE in damaging the vegetal cell walls. WP showed a higher non-hydrolysable cutin content (55 wt.% of the initial cutin). A different monomers’ profile was obtained for the cutin composition by GC-MS, with the cutin from tomato and apple peels being rich in polyhydroxy fatty acids whereas the cutin extracted from WP was mainly based on unsaturated fatty acids. All of the cutin samples showed an initial degradation temperature higher than 200 °C, presenting an excellent thermal stability. The strategy followed in this work has proved to be an effective valorization methodology with a high scaling-up potential for applications in the food, pharmaceutical, nutraceutical, cosmetics and biopolymer sectors.
Collapse
|
4
|
Gómez-Patiño MB, Estrada-Reyes R, Vargas-Diaz ME, Arrieta-Baez D. Cutin from Solanum Myriacanthum Dunal and Solanum Aculeatissimum Jacq. as a Potential Raw Material for Biopolymers. Polymers (Basel) 2020; 12:polym12091945. [PMID: 32872115 PMCID: PMC7565047 DOI: 10.3390/polym12091945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 12/02/2022] Open
Abstract
Plant cuticles have attracted attention because they can be used to produce hydrophobic films as models for novel biopolymers. Usually, cuticles are obtained from agroresidual waste. To find new renewable natural sources to design green and commercially available bioplastics, fruits of S. aculeatissimum and S. myriacanthum were analyzed. These fruits are not used for human or animal consumption, mainly because the fruit is composed of seeds. Fruit peels were object of enzymatic and chemical methods to get thick cutins in good yields (approximately 77% from dry weight), and they were studied by solid-state resonance techniques (CPMAS 13C NMR), attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM) and direct injection electrospray ionization mass spectrometry (DIESI-MS) analytical methods. The main component of S. aculeatissimum cutin is 10,16-dihydroxypalmitic acid (10,16-DHPA, 69.84%), while S. myriacanthum cutin besides of 10,16-DHPA (44.02%); another two C18 monomers: 9,10,18-trihydroxy-octadecanoic acid (24.03%) and 18-hydroxy-9S,10R-epoxy-octadecanoic acid (9.36%) are present. The hydrolyzed cutins were used to produce films demonstrating that both cutins could be a potential raw material for different biopolymers.
Collapse
Affiliation(s)
- Mayra Beatriz Gómez-Patiño
- Instituto Politécnico Nacional-CNMN, Unidad Profesional Adolfo López Mateos, Col. Zacatenco, México City CDMX CP 07738, Mexico;
| | - Rosa Estrada-Reyes
- Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico;
| | - María Elena Vargas-Diaz
- Instituto Politécnico Nacional-Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás D.F. 11340, Mexico;
| | - Daniel Arrieta-Baez
- Instituto Politécnico Nacional-CNMN, Unidad Profesional Adolfo López Mateos, Col. Zacatenco, México City CDMX CP 07738, Mexico;
- Correspondence: ; Tel.: +52-1-55-5729-6000 (ext. 57507)
| |
Collapse
|
5
|
Sooksai T, Bankeeree W, Sangwatanaroj U, Lotrakul P, Punnapayak H, Prasongsuk S. Production of cutinase from Fusarium falciforme and its application for hydrophilicity improvement of polyethylene terephthalate fabric. 3 Biotech 2019; 9:389. [PMID: 31656727 DOI: 10.1007/s13205-019-1931-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/29/2019] [Indexed: 11/28/2022] Open
Abstract
Among 23 isolates of cutinase-producing fungi from Thailand, one strain of Fusarium falciforme PBURU-T5 exhibited the greatest cutinase activity (3.36 ± 0.12 U ml-1) against p-nitrophenyl butyrate. This strain was found to produce an inducible cutinase when cultivated in the liquid mineral medium containing cutin from papaya peel as the sole carbon source. By optimizing the production condition based on the central composite experimental design, the maximal cutinase activity up to 4.82 ± 0.18 U ml-1 was attained under the condition: 0.4% (w/v) papaya cutin as the carbon source, 0.3% (w/v) peptone as the nitrogen source, incubation temperature at 30 °C for 4 days, and initial pH 7.0. The crude enzyme was optimally active at 35 °C and pH 9.0 which was suitable for textile industrial application. The treatment with the crude PBURU-T5 cutinase (100 U g-1 dry weight of fabric) could enhance the wetting time, water adsorption and moisture regain of polyethylene terephthalate fabric up to 1.9-, 1.2- and 1.3-fold, respectively, comparing with the conventional 1M NaOH treatment. The increment of these fabric properties by enzymatic treatment could facilitate the dyeing process and enhance the fabric softness. Thus, F. falciforme PBURU-T5 is the promising source of cutinase for the modification of the PET fabric surface.
Collapse
Affiliation(s)
- Taweeporn Sooksai
- 1Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
- 2Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Wichanee Bankeeree
- 1Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Usa Sangwatanaroj
- 3Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Pongtharin Lotrakul
- 1Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Hunsa Punnapayak
- 1Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
- 4Department of Biology, Faculty of Science and Technology, University Airlangga, Surabaya, 60511 Indonesia
| | - Sehanat Prasongsuk
- 1Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
6
|
Bermúdez-García E, Peña-Montes C, Martins I, Pais J, Pereira CS, Sánchez S, Farrés A. Regulation of the cutinases expressed by Aspergillus nidulans and evaluation of their role in cutin degradation. Appl Microbiol Biotechnol 2019; 103:3863-3874. [DOI: 10.1007/s00253-019-09712-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/17/2019] [Accepted: 02/23/2019] [Indexed: 11/29/2022]
|
7
|
Analysis of Sustainable Materials for Radiative Cooling Potential of Building Surfaces. SUSTAINABILITY 2018. [DOI: 10.3390/su10093049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The main goal of this paper is to explore the radiative cooling and solar heating potential of several materials for the built environment, based on their spectrally-selective properties. A material for solar heating, should have high spectral emissivity/absorptivity in the solar radiation band (within the wavelength range of 0.2–2 μm), and low emissivity/absorptivity at longer wavelengths. Radiative cooling applications require high spectral emissivity/absorptivity, within the atmospheric window band (8–13 μm), and a low emissivity/absorptivity in other bands. UV-Vis spectrophotometer and FTIR spectroscopy, are used to measure, the spectral absorption/emission spectra of six different types of materials. To evaluate the radiative cooling potential of the samples, the power of cooling is calculated. Heat transfer through most materials is not just a surface phenomenon, but it also needs a volumetric analysis. Therefore, a coupled radiation and conduction heat transfer analysis is used. Results are discussed for the selection of the best materials, for different applications on building surfaces.
Collapse
|