1
|
Judickaitė A, Jankaitytė E, Ramanciuškas E, Degutytė-Fomins L, Naučienė Z, Kudirka G, Okumura T, Koga K, Shiratani M, Mildažienė V, Žūkienė R. Effects of Seed Processing with Cold Plasma on Growth and Biochemical Traits of Stevia rebaudiana Bertoni Under Different Cultivation Conditions: In Soil Versus Aeroponics. PLANTS (BASEL, SWITZERLAND) 2025; 14:271. [PMID: 39861623 PMCID: PMC11769410 DOI: 10.3390/plants14020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/03/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
This study compared the effects of seed treatment with low-pressure cold plasma (CP) and atmospheric dielectric barrier discharge (DBD) plasma on morpho-biochemical traits in Stevia rabaudiana Bertoni plants cultivated by two methods: in soil and aeroponics. We investigated the impact of the treatments on the germination, plant growth, and content of secondary metabolites, namely steviol glycosides (SGs), rebaudioside A (RebA), and stevioside (Stev), as well as phenolic compounds and flavonoids. Seeds were treated for 2, 5, and 7 min with CP or DBD and 5 min with vacuum six days before sowing. All growth parameters in aeroponics exceeded the parameters of seedlings in the corresponding groups cultivated in soil. Seed treatments stimulated SGs biosynthesis in seedlings grown in soil, except for CP7. Although there were no stimulating effects of seed treatments on SGs in aeroponics, overall SG concentrations were considerably higher compared to plants cultivated in soil: the RebA+Stev concentration was 1.8-2-fold higher in the control, V5-, and CP-treated groups, and 1.3-fold higher in the DBD5 and DBD7 groups. Thus, aeroponic cultivation has the potential to improve the growth and synthesis of SGs in stevia, while a combination of aeroponics with seed treatments only increases the content of antioxidants and antioxidant activity.
Collapse
Affiliation(s)
- Augustė Judickaitė
- Faculty of Natural Sciences, Vytautas Magnus University, Universiteto Str. 10, LT-53361 Akademija, Lithuania
| | - Emilija Jankaitytė
- Faculty of Natural Sciences, Vytautas Magnus University, Universiteto Str. 10, LT-53361 Akademija, Lithuania
| | - Evaldas Ramanciuškas
- Faculty of Natural Sciences, Vytautas Magnus University, Universiteto Str. 10, LT-53361 Akademija, Lithuania
| | - Laima Degutytė-Fomins
- Faculty of Natural Sciences, Vytautas Magnus University, Universiteto Str. 10, LT-53361 Akademija, Lithuania
| | - Zita Naučienė
- Faculty of Natural Sciences, Vytautas Magnus University, Universiteto Str. 10, LT-53361 Akademija, Lithuania
| | | | - Takamasa Okumura
- Department of Electronics, Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Kazunori Koga
- Department of Electronics, Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
- Plasma-Bio Research Division, Center for Novel Science Initiatives, National Institutes of Natural Sciences, Tokyo 105-0001, Japan
| | - Masaharu Shiratani
- Department of Electronics, Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Vida Mildažienė
- Faculty of Natural Sciences, Vytautas Magnus University, Universiteto Str. 10, LT-53361 Akademija, Lithuania
| | - Rasa Žūkienė
- Faculty of Natural Sciences, Vytautas Magnus University, Universiteto Str. 10, LT-53361 Akademija, Lithuania
| |
Collapse
|
2
|
Marques AM, Brito LDC, Mendonça SC, Gomes BA, Camillo FDC, Silva GWDSE, Sampaio ALF, Leitão SG, Figueiredo MR. An Integrated Strategy of UHPLC-ESI-MS/MS Combined with Bioactivity-Based Molecular Networking for Identification of Antitumoral Withanolides from Athenaea fasciculata (Vell.) I.M.C. Rodrigues & Stehmann. Molecules 2024; 29:4357. [PMID: 39339351 PMCID: PMC11434275 DOI: 10.3390/molecules29184357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Athenaea fasciculata, a Brazilian native species from the Solanaceae family, is recognized as a promising source of bioactive withanolides, particularly Aurelianolide A and B, which exhibit significant antitumoral activities. Despite its potential, research on the chemical constituents of this species remains limited. This study aimed to dereplicate extracts and partitions of A. fasciculata to streamline the discovery of bioactive withanolides. METHODS Using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), various extracts-including n-hexane, methanol, and ethanol-were analyzed, and their mass spectrometry data were processed through the GNPS platform for the generation of molecular networking. The results indicated that crude extracts displayed comparable cytotoxicity against Jurkat cells, by treatment at 150 µg/mL, while alcoholic extracts achieved approximately 80% inhibition of K562 cells and K562-Lucena 1 at the same concentration. Notably, the dichloromethane partition exhibited the highest cytotoxicity across leukemia cell lines, particularly against Jurkat cells (IC50 = 14.34 µg/mL). A total of 22 compounds were annotated by manual inspection and different libraries, with six of them demonstrating significant cytotoxic effects. CONCLUSIONS This research underscores the therapeutic potential of A. fasciculata and highlights the effectiveness of integrating advanced analytical methods in drug discovery, paving the way for further exploration of its bioactive compounds.
Collapse
Affiliation(s)
- André Mesquita Marques
- Department of Natural Products, Pharmaceutical Technology Institute, Farmanguinhos, Fiocruz, Sizenando Nabuco 100 st, Manguinhos, Rio de Janeiro 21041-250, Brazil; (A.M.M.); (F.d.C.C.); (M.R.F.)
| | - Lavinia de Carvalho Brito
- Department of Natural Products, Pharmaceutical Technology Institute, Farmanguinhos, Fiocruz, Sizenando Nabuco 100 st, Manguinhos, Rio de Janeiro 21041-250, Brazil; (A.M.M.); (F.d.C.C.); (M.R.F.)
| | - Simony Carvalho Mendonça
- Department of Natural Products and Food, Faculty of Pharmacy, Center of Health Sciences (CCS), Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (S.C.M.); (B.A.G.); (S.G.L.)
| | - Brendo Araujo Gomes
- Department of Natural Products and Food, Faculty of Pharmacy, Center of Health Sciences (CCS), Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (S.C.M.); (B.A.G.); (S.G.L.)
| | - Flávia da Cunha Camillo
- Department of Natural Products, Pharmaceutical Technology Institute, Farmanguinhos, Fiocruz, Sizenando Nabuco 100 st, Manguinhos, Rio de Janeiro 21041-250, Brazil; (A.M.M.); (F.d.C.C.); (M.R.F.)
| | - Gustavo Werneck de Souza e Silva
- Laboratory of Molecular Pharmacology, Pharmaceutical Technology Institute, Farmanguinhos, Fiocruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro 21041-250, Brazil; (G.W.d.S.e.S.); (A.L.F.S.)
| | - André Luiz Franco Sampaio
- Laboratory of Molecular Pharmacology, Pharmaceutical Technology Institute, Farmanguinhos, Fiocruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro 21041-250, Brazil; (G.W.d.S.e.S.); (A.L.F.S.)
| | - Suzana Guimarães Leitão
- Department of Natural Products and Food, Faculty of Pharmacy, Center of Health Sciences (CCS), Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (S.C.M.); (B.A.G.); (S.G.L.)
| | - Maria Raquel Figueiredo
- Department of Natural Products, Pharmaceutical Technology Institute, Farmanguinhos, Fiocruz, Sizenando Nabuco 100 st, Manguinhos, Rio de Janeiro 21041-250, Brazil; (A.M.M.); (F.d.C.C.); (M.R.F.)
| |
Collapse
|
3
|
Xiang K, Liu Y, Zhu R, Xu Y, Sun D, Yang Y, Yan Y, Yang B, Li H, Chen L. Cytotoxic withanolides from the stems and leaves of Physalis ixocarpa. Food Chem 2024; 439:138136. [PMID: 38064840 DOI: 10.1016/j.foodchem.2023.138136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/13/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
The stems and leaves of the tomatillo (Physalis ixocarpa or Physalis philadelphica) were considered agricultural waste during the processing of tomatillo fruits. However, their potential value for utilization has not yet been explored. The investigation resulted in the isolation of a total of 29 withanolides, out of which 15 never reported. These newly discovered withanolides were then tested for their cytotoxicity against eight different human tumor cell lines. Compounds 2-3, 6-7, 17, 19, and 25-27 displayed encouraging cytotoxic effects. Given the potent inhibitory activity of physagulin C (25) on the proliferation of HepG2 cells in vitro, further investigation was conducted to determine its molecular mechanism. Physagulin C inhibited epithelial-mesenchymal transition (EMT) process through the down-regulation of the JAK2/STAT3 and PI3K/AKT/mTOR pathways. Withanolides presenting in the stems and leaves of tomatillo make the plant possess potential commercial importance. Therefore, tomatillos could be commercialized worldwide in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Ke Xiang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Rui Zhu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Xu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yueying Yang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yushu Yan
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
4
|
Nakano D, Ishitsuka K, Deishi Y, Tsuchihashi R, Kinjo J, Nohara T, Okawa M. Screening of promising chemotherapeutic candidates from plants against human adult T-cell leukemia/lymphoma (VIII): six new withanolides from Physalis philadelphica. J Nat Med 2023; 77:688-698. [PMID: 37202653 DOI: 10.1007/s11418-023-01705-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/28/2023] [Indexed: 05/20/2023]
Abstract
Adult T-cell leukemia/lymphoma (ATL) is a malignancy of mature peripheral T-lymphocytes caused by human T-cell leukemia virus type I (HTLV-I). There are an estimated 5-20 million HTLV-1-infected individuals worldwide. Conventional chemotherapeutic regimens used against other malignant lymphomas have been administered to patients with ATL, but the therapeutic outcomes of acute and lymphoma-type ATL remain extremely poor. In the course of our screening program for novel chemotherapeutic candidate compounds from plants against two human T-cell leukemia virus I-infected T-cell lines (MT-1 and MT-2), we screened 16 extracts obtained from different parts of 7 Solanaceae plants. We identified that the extracts of Physalis pruinosa and P. philadelphica showed potent anti-proliferative activity in MT-1 and MT-2 cells. In our previous study, we have isolated withanolides from extract of aerial parts of P. pruinosa and examined their structure-activity relationships. In addition, we are also investigating further structure-activity relationships about other withanolides from Solanaceae plants (Withania somnifera, Withania coagulans, Physalis angulate, Nicandra physalodes, Petunia hybrida, and Solanum cilistum). In this study, we attempted to isolate their active compounds against MT-1 and MT-2 from extracts of P. philadelphica. We identified 13 withanolides, including six newly isolated compounds [24R, 25S-4β, 16β, 20R-trihydroxy-1-oxowitha-2-en-5β, 6 β -epoxy-22,26-olide (1), 4β, 7β,20R-trihydroxy-1-oxowitha-2-en-5β, 6β -epoxy-22,26-olide (2), 17β,20 S-dihydroxywithanone (3), 2,3-dihydro-3β-methoxy-23β-hydroxywithaphysacarpin (4), 3-O-(4-rhamnosyl)glucosyl-physalolactone B (5), and 17R, 20R, 22S, 23S, 24R, 25R-4β, 5α, 6β, 20β, 22α -tetrahydroxy-16β, 23-diepoxy-1-oxowitha-2-en-26, 23-olide (6)], from the extract and examined the structure-activity relationships. The 50% effective concentration of withaphysacarpin (compound 7) [MT-1: 0.10 µM and MT-2: 0.04 µM] was comparable to that of etoposide [MT-1: 0.08 µM and MT-2: 0.07 µM]. Therefore, withanolides might be promising candidates for the treatment of ATL.
Collapse
Affiliation(s)
- Daisuke Nakano
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-Ku, Fukuoka, 814-0180, Japan
| | - Kenji Ishitsuka
- Division of Hematology and Immunology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Yurie Deishi
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-Ku, Fukuoka, 814-0180, Japan
| | - Ryota Tsuchihashi
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-Ku, Fukuoka, 814-0180, Japan
| | - Junei Kinjo
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-Ku, Fukuoka, 814-0180, Japan
| | - Toshihiro Nohara
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto, 860-0082, Japan
| | - Masafumi Okawa
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-Ku, Fukuoka, 814-0180, Japan.
| |
Collapse
|
5
|
Cuevas-Cianca SI, Romero-Castillo C, Gálvez-Romero JL, Juárez ZN, Hernández LR. Antioxidant and Anti-Inflammatory Compounds from Edible Plants with Anti-Cancer Activity and Their Potential Use as Drugs. Molecules 2023; 28:molecules28031488. [PMID: 36771154 PMCID: PMC9920972 DOI: 10.3390/molecules28031488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/28/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Food is our daily companion, performing numerous beneficial functions for our bodies. Many of them can help to alleviate or prevent ailments and diseases. In this review, an extensive bibliographic search is conducted in various databases to update information on unprocessed foods with anti-inflammatory and antioxidant properties that can aid in treating diseases such as cancer. The current state of knowledge on inflammatory processes involving some interleukins and tumor necrosis factor-alpha (TNF-α) is reviewed. As well as unprocessed foods, which may help reduce inflammation and oxidative stress, both of which are important factors in cancer development. Many studies are still needed to take full advantage of the food products we use daily.
Collapse
Affiliation(s)
- Sofía Isabel Cuevas-Cianca
- Department of Chemical Biological Sciences, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico
| | - Cristian Romero-Castillo
- Biotechnology Faculty, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
- Chemistry Area, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
| | - José Luis Gálvez-Romero
- ISSTE Puebla Hospital Regional, Boulevard 14 Sur 4336, Colonia Jardines de San Manuel, Puebla 72570, Mexico
| | - Zaida Nelly Juárez
- Chemistry Area, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
- Correspondence: (Z.N.J.); (L.R.H.)
| | - Luis Ricardo Hernández
- Department of Chemical Biological Sciences, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico
- Correspondence: (Z.N.J.); (L.R.H.)
| |
Collapse
|
6
|
Zerio CJ, Sivinski J, Wijeratne EMK, Xu YM, Ngo DT, Ambrose AJ, Villa-Celis L, Ghadirian N, Clarkson MW, Zhang DD, Horton NC, Gunatilaka AAL, Fromme R, Chapman E. Physachenolide C is a Potent, Selective BET Inhibitor. J Med Chem 2023; 66:913-933. [PMID: 36577036 DOI: 10.1021/acs.jmedchem.2c01770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A pulldown using a biotinylated natural product of interest in the 17β-hydroxywithanolide (17-BHW) class, physachenolide C (PCC), identified the bromodomain and extra-terminal domain (BET) family of proteins (BRD2, BRD3, and BRD4), readers of acetyl-lysine modifications and regulators of gene transcription, as potential cellular targets. BROMOscan bromodomain profiling and biochemical assays support PCC as a BET inhibitor with increased selectivity for bromodomain (BD)-1 of BRD3 and BRD4, and X-ray crystallography and NMR studies uncovered specific contacts that underlie the potency and selectivity of PCC toward BRD3-BD1 over BRD3-BD2. PCC also displays characteristics of a molecular glue, facilitating proteasome-mediated degradation of BRD3 and BRD4. Finally, PCC is more potent than other withanolide analogues and gold-standard pan-BET inhibitor (+)-JQ1 in cytotoxicity assays across five prostate cancer (PC) cell lines regardless of androgen receptor (AR)-signaling status.
Collapse
Affiliation(s)
- Christopher J Zerio
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - Jared Sivinski
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - E M Kithsiri Wijeratne
- College of Agriculture and Life Sciences, School of Natural Resources and the Environment, Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Ya-Ming Xu
- College of Agriculture and Life Sciences, School of Natural Resources and the Environment, Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Duc T Ngo
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - Andrew J Ambrose
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - Luis Villa-Celis
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - Niloofar Ghadirian
- Department of Molecular and Cellular Biology, University of Arizona, 1007 E. Lowell Street, Tucson, Arizona 85721, United States
| | - Michael W Clarkson
- Department of Chemistry and Biochemistry, University of Arizona, 1041 E. Lowell Street, Tucson, Arizona 85719, United States
| | - Donna D Zhang
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - Nancy C Horton
- Department of Molecular and Cellular Biology, University of Arizona, 1007 E. Lowell Street, Tucson, Arizona 85721, United States
| | - A A Leslie Gunatilaka
- College of Agriculture and Life Sciences, School of Natural Resources and the Environment, Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Raimund Fromme
- School of Molecular Sciences, Biodesign Institute, Arizona State University, 1001 S. McAllister Avenue, Tempe, Arizona 85287, United States
| | - Eli Chapman
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| |
Collapse
|
7
|
Robles-Jimenez LE, Narváez-López AC, Chay-Canul AJ, Sainz-Ramirez A, Castelan-Ortega OA, Zhang N, Gonzalez-Ronquillo M, Vargas-Bello-Pérez E. Effect of different dietary inclusion levels of whole plant green tomato ( Physalis philadelphica) silage on nutrient intake and digestibility, and in vitro rumen fermentation kinetics in sheep. Front Vet Sci 2022; 9:980619. [PMID: 36311670 PMCID: PMC9614127 DOI: 10.3389/fvets.2022.980619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/16/2022] [Indexed: 11/04/2022] Open
Abstract
Mexico has many agricultural by-products that can be used for animal feed, and green tomatoes are produced throughout the country and can be an alternative to overcome the high prices of cereal-based feeds. This study determined in vitro fermentation kinetics, production performance, nutrient intake, digestibility, and nitrogen balance from sheep supplemented with whole plant green tomato (GT) on corn silage (CS) based diets. For 21 days, eighteen Suffolk lambs (38 ± 4 kg of live weight) were grouped into three dietary GT inclusion levels to replace CS: a control diet based on 100% CS (GT0, 570 g /kg dry matter, DM), while 100 g/kg DM (GT100) and 200 g/kg DM (GT200) of GT were included as a replacement for CS. A completely randomized design was used to measure in vitro gas production, in vitro rumen fermentation, chemical composition, and in vivo parameters. In vitro gas production, “A” (ml/g DM), fermentation rates “B,” (h−1), and “C” (h−½), were lower for GT200, while DM disappearance (mg/100mg) was lower for GT100 compared with GT0. Compared to GT0, GT100 and GT200 did not affect (P > 0.05) DM and organic matter (OM) intake (g/kgLW0.75). Ether extract intake was higher for GT0 and GT100 (P < 0.001) compared to GT200. Neutral detergent fiber (NDF) intake was higher (P < 0.05) for GT200 compared with GT0. Intake of lignin was higher (P < 0.001) for GT200 than that of GT0 and GT100. Digestibility coefficients for DM, OM, NDF, and Acid detergent fiber (ADF) were lower (P < 0.05) in GT100 than in the rest of the treatments. Nitrogen intake and N excreted in feces and urine were lower (P < 0.001) for GT0. N balance was negative for all treatments, being higher for GT200 (P < 0.05). Overall, the addition of GT at 100 or 200 g/kg DM in sheep diets negatively affects nutrient digestibility and N balance, so their dietary inclusion is not recommended.
Collapse
Affiliation(s)
- Lizbeth E Robles-Jimenez
- Departmento de Producción Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Alondra C Narváez-López
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Alfonso J Chay-Canul
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Aurora Sainz-Ramirez
- Departmento de Producción Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Octavio A Castelan-Ortega
- Departmento de Producción Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Naifeng Zhang
- Institute of Feed Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Manuel Gonzalez-Ronquillo
- Departmento de Producción Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Einar Vargas-Bello-Pérez
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| |
Collapse
|
8
|
Antitumor Potential of Withanolide Glycosides from Ashwagandha (Withania somnifera) on Apoptosis of Human Hepatocellular Carcinoma Cells and Tube Formation in Human Umbilical Vein Endothelial Cells. Antioxidants (Basel) 2022; 11:antiox11091761. [PMID: 36139835 PMCID: PMC9495654 DOI: 10.3390/antiox11091761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fastest-growing tumor capable of spreading to other organs via blood vessels formed by endothelial cells. Apoptosis and angiogenesis-targeting therapies are attractive for cancer treatment. In this study, we aimed to study the in vitro cytotoxicity of Withania somnifera against human HCC (HepG2) cells, identify potential antitumoral withanolide glycosides from the active fraction, and elucidate cytotoxic molecular mechanisms of identified bioactive compounds. W. somnifera (Solanaceae), well-known as ‘ashwagandha’, is an Ayurvedic medicinal plant used to promote health and longevity, and the MeOH extract of W. somnifera root exhibited cytotoxicity against HepG2 cells during initial screening. Bioactivity-guided fractionation of the MeOH extract and subsequent phytochemical investigation of the active n-BuOH-soluble fraction resulted in the isolation of five withanolide glycosides (1–5), including one new metabolite, withanoside XIII (1), aided by liquid chromatography–mass spectrometry-based analysis. The new compound structure was determined by 1D and 2D nuclear magnetic resonance spectroscopy, high-resolution electrospray ionization mass spectroscopy, electronic circular dichroism, and enzymatic hydrolysis. In addition, withanoside XIIIa (1a) was identified as the new aglycone (1a) of 1. Isolated withanolide glycosides 1–5 and 1a were cytotoxic toward HepG2 cells; withagenin A diglucoside (WAD) (3) exhibited the most potent cytotoxicity against HepG2 cells, with cell viability less than 50% at 100 μM. WAD cytotoxicity was mediated by both extrinsic and intrinsic apoptosis pathways. Treatment with WAD increased protein expression levels of cleaved caspase-8, cleaved caspase-9, cleaved caspase-3, Bcl-2-associated X protein (Bax), and cleaved poly(ADP-ribose) polymerase (cleaved PARP) but decreased expression levels of B-cell lymphoma 2 (Bcl-2). Moreover, WAD inhibited tubular structure formation in human umbilical vein endothelial cells (HUVECs) by inhibiting the protein expression of vascular endothelial growth factor receptor 2 and its downstream pathways, including extracellular signal-regulated kinase (ERK), phosphoinositide 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR). These effects were also enhanced by co-treatment with ERK and PI3K inhibitors. Overall, these results indicate that WAD (3) induced HepG2 apoptosis and inhibited HUVEC tube formation, suggesting its potential application in treating liver cancers.
Collapse
|
9
|
Feng C, Lyu Y, Gong L, Wang J. Therapeutic Potential of Natural Products in the Treatment of Renal Cell Carcinoma: A Review. Nutrients 2022; 14:nu14112274. [PMID: 35684073 PMCID: PMC9182762 DOI: 10.3390/nu14112274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
Renal cell carcinoma (RCC) is a common cancer of the urinary system. The potential therapeutic effects of certain natural products against renal cell carcinoma have been reported both in vivo and in vitro, but no reviews have been published classifying and summarizing the mechanisms of action of various natural products. In this study, we used PubMed and Google Scholar to collect and screen the recent literature on natural products with anti-renal-cancer effects. The main mechanisms of action of these products include the induction of apoptosis, inhibition of angiogenesis, inhibition of metastasis and reduction of drug resistance. In total, we examined more than 30 natural products, which include kahweol acetate, honokiol, englerin A and epigallocatechin-3-gallate, among others, have demonstrated a variety of anti-renal-cancer effects. In conclusion, natural products may have a wider application in kidney cancer than previously believed and are potential candidates for treatment in RCC.
Collapse
Affiliation(s)
- Chenchen Feng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100000, China; (C.F.); (L.G.)
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China;
| | - Yinfeng Lyu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China;
| | - Lingxiao Gong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100000, China; (C.F.); (L.G.)
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100000, China; (C.F.); (L.G.)
- Correspondence:
| |
Collapse
|
10
|
Ha JW, Yu JS, Lee BS, Kang DM, Ahn MJ, Kim JK, Kim KH. Structural Characterization of Withanolide Glycosides from the Roots of Withania somnifera and Their Potential Biological Activities. PLANTS (BASEL, SWITZERLAND) 2022; 11:767. [PMID: 35336649 PMCID: PMC8954635 DOI: 10.3390/plants11060767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Withania somnifera (Solanaceae), commonly known as "ashwagandha", is an ayurvedic medicinal plant that has been used for promoting good health and longevity. As part of our ongoing natural product research for the discovery of bioactive phytochemicals with novel structures, we conducted a phytochemical analysis of W. somnifera root, commonly used as an herbal medicine part. The phytochemical investigation aided by liquid chromatography-mass spectrometry (LC/MS)-based analysis led to the isolation of four withanolide glycosides (1-4), including one new compound, withanoside XII (1), from the methanol (MeOH) extract of W. somnifera root. The structure of the new compound was determined by nuclear magnetic resonance (NMR) spectroscopic data, high-resolution (HR) electrospray ionization (ESI) mass spectroscopy (MS), and electronic circular dichroism (ECD) data as well as enzymatic hydrolysis followed by LC/MS analysis. In addition, enzymatic hydrolysis of 1 afforded an aglycone (1a) of 1, which was identified as a new compound, withanoside XIIa (1a), by the interpretation of NMR spectroscopic data, HR-ESIMS, and ECD data. To the best of our knowledge, the structure of compound 2 (withagenin A diglucoside) was previously proposed by HRMS and MS/MS spectral data, without NMR experiment, and the physical and spectroscopic data of withagenin A diglucoside (2) are reported in this study for the first time. All the isolated compounds were evaluated for their anti-Helicobacter pylori, anti-oxidant, and anti-inflammatory activities. In the anti-Helicobacter pylori activity assay, compound 2 showed weak anti-H. pylori activity with 7.8% inhibition. All the isolated compounds showed significant ABTS radical scavenging activity. However, all isolates failed to show inhibitory activity against nitric oxide (NO) production in lipopolysaccharide-stimulated RAW 264.7 macrophage cells. This study demonstrated the experimental support that the W. somnifera root is rich in withanolides, and it can be a valuable natural resource for bioactive withanolides.
Collapse
Affiliation(s)
- Ji Won Ha
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (J.W.H.); (J.S.Y.); (B.S.L.)
| | - Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (J.W.H.); (J.S.Y.); (B.S.L.)
- New Material Development Team, COSMAX BIO Ltd., 255 Pangyo-ro, Bungdang-gu, Seongnam 13486, Korea
| | - Bum Soo Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (J.W.H.); (J.S.Y.); (B.S.L.)
| | - Dong-Min Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Korea;
| | - Mi-Jeong Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Korea;
| | - Jung Kyu Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (J.W.H.); (J.S.Y.); (B.S.L.)
| |
Collapse
|
11
|
Kowalczyk T, Merecz-Sadowska A, Rijo P, Mori M, Hatziantoniou S, Górski K, Szemraj J, Piekarski J, Śliwiński T, Bijak M, Sitarek P. Hidden in Plants-A Review of the Anticancer Potential of the Solanaceae Family in In Vitro and In Vivo Studies. Cancers (Basel) 2022; 14:1455. [PMID: 35326606 PMCID: PMC8946528 DOI: 10.3390/cancers14061455] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Many of the anticancer agents that are currently in use demonstrate severe side effects and encounter increasing resistance from the target cancer cells. Thus, despite significant advances in cancer therapy in recent decades, there is still a need to discover and develop new, alternative anticancer agents. The plant kingdom contains a range of phytochemicals that play important roles in the prevention and treatment of many diseases. The Solanaceae family is widely used in the treatment of various diseases, including cancer, due to its bioactive ingredient content. The purpose of this literature review is to highlight the antitumour activity of Solanaceae extracts-single isolated compounds and nanoparticles with extracts-and their synergistic effect with chemotherapeutic agents in various in vitro and in vivo cancer models. In addition, the biological properties of many plants of the Solanaceae family have not yet been investigated, which represents a challenge and an opportunity for future anticancer therapy.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| | - Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| | - Patricia Rijo
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisbon, Portugal;
- iMed.ULisboa—Research Institute for Medicines, Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Sophia Hatziantoniou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
| | - Karol Górski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Janusz Piekarski
- Department of Surgical Oncology, Chair of Oncology, Medical University in Lodz, Nicolaus Copernicus Multidisciplinary Centre for Oncology and Traumatology, 93-513 Lodz, Poland;
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland
| |
Collapse
|
12
|
Production and Structural Diversification of Withanolides by Aeroponic Cultivation of Plants of Solanaceae: Cytotoxic and Other Withanolides from Aeroponically Grown Physalis coztomatl. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030909. [PMID: 35164184 PMCID: PMC8838488 DOI: 10.3390/molecules27030909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 11/22/2022]
Abstract
Withanolides constitute one of the most interesting classes of natural products due to their diversity of structures and biological activities. Our recent studies on withanolides obtained from plants of Solanaceae including Withania somnifera and a number of Physalis species grown under environmentally controlled aeroponic conditions suggested that this technique is a convenient, reproducible, and superior method for their production and structural diversification. Investigation of aeroponically grown Physalis coztomatl afforded 29 withanolides compared to a total of 13 obtained previously from the wild-crafted plant and included 12 new withanolides, physacoztolides I−M (9–13), 15α-acetoxy-28-hydroxyphysachenolide C (14), 28-oxophysachenolide C (15), and 28-hydroxyphysachenolide C (16), 5α-chloro-6β-hydroxy-5,6-dihydrophysachenolide D (17), 15α-acetoxy-5α-chloro-6β-hydroxy-5,6-dihydrophysachenolide D (18), 28-hydroxy-5α-chloro-6β-hydroxy-5,6-dihydrophysachenolide D (19), physachenolide A-5-methyl ether (20), and 17 known withanolides 3–5, 8, and 21–33. The structures of 9–20 were elucidated by the analysis of their spectroscopic data and the known withanolides 3–5, 8, and 21–33 were identified by comparison of their spectroscopic data with those reported. Evaluation against a panel of prostate cancer (LNCaP, VCaP, DU-145, and PC-3) and renal carcinoma (ACHN) cell lines, and normal human foreskin fibroblast (WI-38) cells revealed that 8, 13, 15, and 17–19 had potent and selective activity for prostate cancer cell lines. Facile conversion of the 5,6-chlorohydrin 17 to its 5,6-epoxide 8 in cell culture medium used for the bioassay suggested that the cytotoxic activities observed for 17–19 may be due to in situ formation of their corresponding 5β,6β-epoxides, 8, 27, and 28.
Collapse
|
13
|
Trujillo-Pahua V, Vargas-Ponce O, Rodríguez-Zaragoza FA, Ordaz-Ortiz JJ, Délano-Frier JP, Winkler R, Sánchez-Hernández CV. Metabolic response to larval herbivory in three Physalis species. PLANT SIGNALING & BEHAVIOR 2021; 16:1962050. [PMID: 34435930 PMCID: PMC9208789 DOI: 10.1080/15592324.2021.1962050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
The Physalis genus includes species of commercial importance due to their ornamental, edible and medicinal properties. These qualities stem from their variety of biologically active compounds. We performed a metabolomic analysis of three Physalis species, i.e., P. angulata, P. grisea, and P. philadelphica, differing in domestication stage and cultivation practices, to determine the degree of inter-species metabolite variation and to test the hypothesis that these related species mount a common metabolomic response to foliar damage caused by Trichoplusia ni larvae. The results indicated that the metabolomic differences detected in the leaves of these species were species-specific and remained even after T. ni herbivory. They also show that each Physalis species displayed a unique response to insect herbivory. This study highlighted the metabolite variation present in Physalis spp. and the persistence of this variability when faced with biotic stressors. Furthermore, it sets an experimental precedent from which highly species-specific metabolites could be identified and subsequently used for plant breeding programs designed to increase insect resistance in Physalis and related plant species.
Collapse
Affiliation(s)
- Verónica Trujillo-Pahua
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, México
| | - Ofelia Vargas-Ponce
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, México
| | - Fabián A. Rodríguez-Zaragoza
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, México
| | - José J. Ordaz-Ortiz
- Unidad de Genómica Avanzada-Laboratorio Nacional de Genómica Para la Biodiversidad, Irapuato, Guanajuato, México
| | - John P. Délano-Frier
- Unidad de Biotecnología e Ingeniería Genética De Plantas, Centro de Investigación y Estudios Avanzados del IPN, Irapuato, Guanajuato, México
| | - Robert Winkler
- Unidad de Biotecnología e Ingeniería Genética De Plantas, Centro de Investigación y Estudios Avanzados del IPN, Irapuato, Guanajuato, México
| | - Carla V. Sánchez-Hernández
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, México
| |
Collapse
|
14
|
Correction. PLANT SIGNALING & BEHAVIOR 2021; 16:1984521. [PMID: 34613886 PMCID: PMC9208773 DOI: 10.1080/15592324.2021.1984521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
|
15
|
Abstract
Covering: March 2010 to December 2020. Previous review: Nat. Prod. Rep., 2011, 28, 705This review summarizes the latest progress and perspectives on the structural classification, biological activities and mechanisms, metabolism and pharmacokinetic investigations, biosynthesis, chemical synthesis and structural modifications, as well as future research directions of the promising natural withanolides. The literature from March 2010 to December 2020 is reviewed, and 287 references are cited.
Collapse
Affiliation(s)
- Gui-Yang Xia
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China. .,Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Shi-Jie Cao
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.
| | - Li-Xia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Feng Qiu
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.
| |
Collapse
|
16
|
Lee BS, Yoo MJ, Kang H, Lee SR, Kim S, Yu JS, Kim JC, Jang TS, Pang C, Kim KH. Withasomniferol D, a New Anti-Adipogenic Withanolide from the Roots of Ashwagandha ( Withania somnifera). Pharmaceuticals (Basel) 2021; 14:ph14101017. [PMID: 34681241 PMCID: PMC8537031 DOI: 10.3390/ph14101017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 12/30/2022] Open
Abstract
Withania somnifera (Solanaceae), well-known as 'Indian ginseng' or 'Ashwagandha', is a medicinal plant that is used in Ayurvedic practice to promote good health and longevity. As part of an ongoing investigation for bioactive natural products with novel structures, we performed a phytochemical examination of the roots of W. somnifera employed with liquid chromatography-mass spectrometry (LC/MS)-based analysis. The chemical analysis of the methanol extract of W. somnifera roots using repeated column chromatography and high-performance liquid chromatography under the guidance of an LC/MS-based analysis resulted in a new withanolide, withasomniferol D (1). The structure of the newly isolated compound was elucidated by spectroscopic methods, including one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) and high-resolution (HR) electrospray ionization (ESI) mass spectroscopy, and its absolute configuration was established by electronic circular dichroism (ECD) calculations. The anti-adipogenic activities of withasomniferol D (1) were evaluated using 3T3-L1 preadipocytes with Oil Red O staining and quantitative real-time polymerase chain reaction (qPCR). We found that withasomniferol D (1) inhibited adipogenesis and suppressed the enlargement of lipid droplets compared to the control. Additionally, the mRNA expression levels of adipocyte markers Fabp4 and Adipsin decreased noticeably following treatment with 25 μM of withasomniferol D (1). Taken together, these findings provide experimental evidence that withasomniferol D (1), isolated from W. somnifera, exhibits anti-adipogenic activity, supporting the potential application of this compound in the treatment of obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Bum Soo Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Min Jeong Yoo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Heesun Kang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Seoung Rak Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Sil Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Jin-Chul Kim
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Korea
| | - Tae Su Jang
- College of Medicine, Dankook University, Cheonan 31116, Korea
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
17
|
Lee SR, Lee BS, Yu JS, Kang H, Yoo MJ, Yi SA, Han JW, Kim S, Kim JK, Kim JC, Kim KH. Identification of anti-adipogenic withanolides from the roots of Indian ginseng (Withania somnifera). J Ginseng Res 2021; 46:357-366. [PMID: 35600781 PMCID: PMC9120796 DOI: 10.1016/j.jgr.2021.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 09/17/2021] [Accepted: 09/30/2021] [Indexed: 11/21/2022] Open
Abstract
Background Withania somnifera (Solanaceae), generally known as Indian ginseng, is a medicinal plant that is used in Ayurvedic practice for promoting health and longevity. This study aims to identify the bioactive metabolites from Indian ginseng and elucidate their structures. Methods Withanolides were purified by chromatographic techniques, including HPLC coupled with LC/MS. Chemical structures of isolated withanolides were clarified by analyzing the spectroscopic data from 1D and 2D NMR, and HR-ESIMS experiment. Absolute configurations of the withanolides were established by the application of NMR chemical shifts and ECD calculations. Anti-adipogenic activities of isolates were evaluated using 3T3-L1 preadipocytes with Oil Red O staining and quantitative real-time PCR (qPCR). Results Phytochemical examination of the roots of Indian ginseng afforded to the isolation of six withanolides (1–6), including three novel withanolides, withasilolides G–I (1–3). All the six compounds inhibited adipogenesis and suppressed the enlargement of lipid droplets, compared to those of the control. Additionally, the mRNA expression levels of Fabp4 and Adipsin, the adipocyte markers decreased noticeably following treatment with 25 μM of 1–6. The active compounds (1–6) also promoted lipid metabolism by upregulating the expression of the lipolytic genes HSL and ATGL and downregulating the expression of the lipogenic gene SREBP1. Conclusion The results of our experimental studies suggest that the withasilolides identified herein have anti-adipogenic potential and can be considered for the development of therapeutic strategies against adipogenesis in obesity. Our study also provides a mechanistic rationale for using Indian ginseng as a potential therapeutic agent against obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Seoung Rak Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Chemistry, Princeton University, NJ, United States
| | - Bum Soo Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Heesun Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Min Jeong Yoo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sang Ah Yi
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jeung-Whan Han
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sil Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jung Kyu Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jin-Chul Kim
- KIST Gangneung Institute of Natural Products, Natural Product Informatics Research Center, Gangneung, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Corresponding author. School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
18
|
Freitas Misakyan MF, Wijeratne EMK, Issa ME, Xu YM, Monteillier A, Gunatilaka AAL, Cuendet M. Structure-Activity Relationships of Withanolides as Antiproliferative Agents for Multiple Myeloma: Comparison of Activity in 2D Models and a 3D Coculture Model. JOURNAL OF NATURAL PRODUCTS 2021; 84:2321-2335. [PMID: 34445874 DOI: 10.1021/acs.jnatprod.1c00446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multiple myeloma (MM) is a hematological cancer in which relapse and resistance are highly frequent. Therefore, alternatives to conventional treatments are necessary. Withaferin A, a withanolide isolated from Withania somnifera, has previously shown promising activity against various MM models. In the present study, structure-activity relationships (SARs) were evaluated using 56 withanolides. The antiproliferative activity was assessed in three MM cell lines and in a 3D MM coculture model to understand the in vitro activity of compounds in models of various complexity. While the results obtained in 2D allowed a quick and simple evaluation of cytotoxicity used for a first selection, the use of the 3D MM coculture model allowed filtering compounds that perform better in a more complex setup. This study shows the importance of the last model as a bridge between 2D and in vivo studies to select the most active compounds and ultimately lead to a reduction of animal use for more sustained in vivo studies. NF-κB inhibition was determined to evaluate if this could be one of the targeted pathways. The most active compounds, withanolide D (2) and 38, should be further evaluated in vivo.
Collapse
Affiliation(s)
- Micaela F Freitas Misakyan
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Centre in Oncohaematology, 1211 Geneva, Switzerland
| | - E M Kithsiri Wijeratne
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona 85706, United States
| | - Mark E Issa
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Centre in Oncohaematology, 1211 Geneva, Switzerland
| | - Ya-Ming Xu
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona 85706, United States
| | - Aymeric Monteillier
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Centre in Oncohaematology, 1211 Geneva, Switzerland
| | - A A Leslie Gunatilaka
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona 85706, United States
| | - Muriel Cuendet
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Centre in Oncohaematology, 1211 Geneva, Switzerland
| |
Collapse
|
19
|
Xu GB, Xu YM, Wijeratne EMK, Ranjbar F, Liu MX, Gunatilaka AAL. Cytotoxic Physalins from Aeroponically Grown Physalis acutifolia. JOURNAL OF NATURAL PRODUCTS 2021; 84:187-194. [PMID: 33586438 DOI: 10.1021/acs.jnatprod.0c00380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aeroponically grown Physalis acutifolia afforded five new and six known withanolides including 10 physalins. The structures of the new withanolides, acutifolactone (1), 5β,6β-epoxyphysalin C (2), 5α-chloro-6β-hydroxyphysalin C (3), and an inseparable mixture of 5β,6β-epoxy-2,3-dihydrophysalin F-3β-O-sulfate (4) and 5β,6β-epoxy-2,3-dihydrophysalin C-3β-O-sulfate (5), were elucidated by analysis of their spectroscopic data and chemical interconversions. The known withanolides were identified as physalins B (6), D (7), F (8), H (9), I (10), and U (11) by comparison of their spectroscopic data with those reported. Evaluation of 1-11 and the derivatives, 13 and 13a, obtained from 4 and 5 against a panel of four human cancer cell lines [NCI-H460 (non-small-cell lung), SF-268 (CNS glioma), PC-3 (prostate adenocarcinoma), and MCF-7 (breast adenocarcinoma)] and normal human lung fibroblast (WI-38) cells revealed that physalins 2, 3, 8, and 9 exhibited selective cytotoxic activity to at least one of the cancer cell lines tested compared to the normal cells and that 7, 10, and 11 were inactive up to a concentration of 10.0 μM. These data provided some preliminary structure-activity relationships and suggested that the mechanism of cytotoxic activity of physalins may differ from other classes of withanolides.
Collapse
Affiliation(s)
- Guo-Bo Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District 550025, Guizhou, People's Republic of China
| | - Ya-Ming Xu
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - E M Kithsiri Wijeratne
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Fatemeh Ranjbar
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Manping X Liu
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - A A Leslie Gunatilaka
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| |
Collapse
|
20
|
Shenstone E, Lippman Z, Van Eck J. A review of nutritional properties and health benefits of Physalis species. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:316-325. [PMID: 32385801 DOI: 10.1007/s11130-020-00821-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The Physalis genus of the Solanaceae family is home to many edible food crops including tomatillo, goldenberry, and groundcherry. These Physalis members have garnered more attention as consumer interest in novel fruits and vegetables has increased because of increasing awareness of the health benefits of eating a diverse diet. As a result of this interest, several preliminary studies were conducted of these Physalis to evaluate their nutritional and chemical profiles associated with health benefits. Results showed these crops contain many essential minerals and vitamins, notably potassium and immune system supporting Vitamin C, also known for its antioxidant activity. Beyond nutritional properties, these crops also contain a class of steroidal lactones called withanolides, which have been recognized for their antitumor, and antinflammatory properties. In some studies, withanolide extract from Physalis species have exhibited cytotoxicity towards cancers cells. Overall, this review focuses on the nutritional and physiochemical properties of tomatillo, goldenberry, and groundcherry and how they relate to human health.
Collapse
Affiliation(s)
| | - Zach Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Joyce Van Eck
- The Boyce Thompson Institute, 533 Tower Rd., Ithaca, NY, 14853, USA.
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
21
|
Tan J, Liu Y, Cheng Y, Sun Y, Pan J, Guan W, Li X, Huang J, Jiang P, Guo S, Kuang H, Yang B. New withanolides with anti-inflammatory activity from the leaves of Datura metel L. Bioorg Chem 2020; 95:103541. [DOI: 10.1016/j.bioorg.2019.103541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/02/2019] [Accepted: 12/21/2019] [Indexed: 12/24/2022]
|
22
|
Huang M, He JX, Hu HX, Zhang K, Wang XN, Zhao BB, Lou HX, Ren DM, Shen T. Withanolides from the genus Physalis: a review on their phytochemical and pharmacological aspects. J Pharm Pharmacol 2019; 72:649-669. [DOI: 10.1111/jphp.13209] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/16/2019] [Indexed: 12/14/2022]
Abstract
Abstract
Objectives
Withanolides are a group of modified C28 ergostane-type steroids with a C-22, C-26 δ-lactone side chain or a C-23, C-26 γ-lactone side chain. They enjoy a limited distribution in the plant kingdom and predominantly occur in several genera of Solanaceae. Of which, the genus Physalis is an important resource for this type of natural molecules. The present review aims to comprehensively illustrate the structural characteristics and classification of withanolides, and particularly focus on the progression on phytochemical and pharmacological aspects of withanolides from Physalis ranging from January 2015 to June 2019.
Key findings
Approximately 351 natural withanolides with novel and unique structures have so far been identified from genus Physalis, mainly isolated from the species of P. angulata and P. peruviana. Withanolides demonstrated diverse biological activity, such as anticancer, anti-inflammatory, antimicrobial, immunoregulatory, trypanocidal and leishmanicidal activity. Their observed pharmacological functions supported the uses of Physalis species in traditional or folk medicines.
Summary
Due to their unique structure skeleton and potent bioactivities, withanolides are regarded to be promising drug candidates, particularly for developing anticancer and anti-inflammatory agents. Further investigations for discovering novel withanolides of genus Physalis, exploiting their pharmacological values and evaluating their potency as therapeutic agents are significant work.
Collapse
Affiliation(s)
- Min Huang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ji-Xiang He
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui-Xin Hu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Kan Zhang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xiao-Ning Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Bao-Bing Zhao
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Hong-Xiang Lou
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Dong-Mei Ren
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
23
|
Di Gioia F, Petropoulos SA. Phytoestrogens, phytosteroids and saponins in vegetables: Biosynthesis, functions, health effects and practical applications. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 90:351-421. [PMID: 31445599 DOI: 10.1016/bs.afnr.2019.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Phytoestrogens are non-steroidal secondary metabolites with similarities in structure and biological activities with human estrogens divided into various classes of compounds, including lignans, isoflavones, ellagitannins, coumestans and stilbenes. Similarly, phytosteroids are steroidal compounds of plant origin which have estrogenic effects and can act as agonists, antagonists, or have a mixed agonistic/antagonistic activity to animal steroid receptors. On the other hand, saponins are widely distributed plant glucosides divided into triterpenoid and steroidal saponins that contribute to plant defense mechanism against herbivores. They present a great variation from a structural point of view, including compounds from different classes. In this chapter, the main vegetable sources of these compounds will be presented, while details regarding their biosynthesis and plant functions will be also discussed. Moreover, considering the significant bioactive properties that these compounds exhibit, special focus will be given on their health effects, either beneficial or adverse. The practical applications of these compounds in agriculture and phytomedicine will be also demonstrated, as well as the future prospects for related research.
Collapse
Affiliation(s)
- Francesco Di Gioia
- Department of Plant Science, Pennsylvania State University, University Park, PA, United States
| | - Spyridon A Petropoulos
- Department of Crop Production and Rural Environment, University of Thessaly, Volos, Greece.
| |
Collapse
|
24
|
Ballesteros-Vivas D, Álvarez-Rivera G, Del Pilar Sánchez-Camargo A, Ibáñez E, Parada-Alfonso F, Cifuentes A. A multi-analytical platform based on pressurized-liquid extraction, in vitro assays and liquid chromatography/gas chromatography coupled to high resolution mass spectrometry for food by-products valorisation. Part 1: Withanolides-rich fractions from goldenberry (Physalis peruviana L.) calyces obtained after extraction optimization as case study. J Chromatogr A 2018; 1584:155-164. [PMID: 30553502 DOI: 10.1016/j.chroma.2018.11.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/15/2018] [Accepted: 11/21/2018] [Indexed: 11/15/2022]
Abstract
In this work, a multi-analytical platform that allows obtaining and characterizing high-added value compounds from natural sources is presented, with a huge potential in traditional medicine, natural products characterization, functional foods, etc. Namely, the proposed multi-analytical platform is based on the combination of pressurized liquid extraction (PLE), liquid chromatography (LC) and gas chromatography quadrupole time-of-flight mass spectrometry GC-q-TOF-MS(/MS), in vitro assays and modelling tools for guiding extraction optimization. As case study, goldenberry or cape gooseberry fruit (Physalys peruviana L.) was selected. In particular, the potential of P. peruviana calyces, an important by-product of goldenberry processing, as promising source of bioactive compounds was evaluated. Selection of the most suitable solvent for PLE was based on the Hansen solubility parameters (HSP) approach using 4β-hydroxywithanolide E (4βHWE) and withanolide E (WE) as target compounds due to their bioactive potential. A surface response methodology was further applied for the optimization of the PLE parameters: temperature (50, 100 and 150 °C) and solvent composition (% EtOH in the mixture EtOH/EtOAc). The effects of the independent variables on extraction yield, withanolides content (4βHWE and WE), total phenolic content (TPC), total flavonoids content (TFC) and antioxidant activity (EC50 and TEAC) were evaluated in order to obtain withanolide-rich extracts from P. peruviana calyces. The extract obtained under optimal conditions (at 125 °C and 75% EtOH v/v) exhibited satisfactory extraction yield (14.7%) and moderate antioxidant activity (with an EC50 value of 77.18 μg mL-1 and 1.08 mM trolox g-1), with 4βHWE and WE concentrations of 8.8 and 2.3 mg g-1, respectively. LC-q-TOF-MS/MS analysis of the extract allowed the quantitation of 4βHWE and WE and the tentative identification of several other withanolides structures. The obtained results demonstrate the great potential of this multi-analytical approach for developing valorisation strategies of food by-products under sustainable conditions, to obtain bioactive-enriched extracts with potential medicinal or health-promoting properties.
Collapse
Affiliation(s)
- Diego Ballesteros-Vivas
- High Pressure Laboratory, Department of Chemistry, Faculty of Science, Universidad Nacional de Colombia, Carrera 30 #45-03, Bogotá, D.C., 111321, Colombia; Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Gerardo Álvarez-Rivera
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Andrea Del Pilar Sánchez-Camargo
- High Pressure Laboratory, Department of Chemistry, Faculty of Science, Universidad Nacional de Colombia, Carrera 30 #45-03, Bogotá, D.C., 111321, Colombia
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Fabián Parada-Alfonso
- High Pressure Laboratory, Department of Chemistry, Faculty of Science, Universidad Nacional de Colombia, Carrera 30 #45-03, Bogotá, D.C., 111321, Colombia
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049, Madrid, Spain.
| |
Collapse
|