1
|
Zhang Q, Zhang S, Wu B, Song Z, Shi J. Methionine represses gray mold of tomato by keeping nitric oxide at an appropriate level via ethylene synthesis and signal transduction. Food Chem 2024; 461:140942. [PMID: 39181046 DOI: 10.1016/j.foodchem.2024.140942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/28/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Methionine (Met) can inhibit plant diseases caused by phytopathogens. However, the effect of Met on gray mold resulted from Botrytis cinerea in tomato is still unclear. This study showed 5 mM Met alleviated disease development of gray mold, enhanced chitinase (CHI) and β-1, 3-glucanase (GNS) activities and the expression of SlCHI, SlGNS, SlPR1 and SlNPR1 in tomatoes, rather than inhibited the growth of B. cinerea directly. Moreover, ethylene biosynthesis and signal transduction before pathogen inoculating were induced by 5 mM Met. Interestingly, Met reduced the nitrosylation levels of ACS4 and ACO6, enhanced the activities of nitric oxide synthase, nitrite reductase (NR) and S-nitrosoglutathione reductase (GSNOR) and the expression of SlNR and SlGSNOR. Tomatoes treated with aminoethoxyvinylglycine and carboxy-PTIO exhibited lower resistance to B. cinerea. These results indicate 5 mM Met promoted ethylene biosynthesis and signal transduction to facilitate NO synthesis and metabolism, enhancing the resistance of tomatoes to B. cinerea.
Collapse
Affiliation(s)
- Qiaocai Zhang
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Song Zhang
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Bin Wu
- Institute of Agro-products Storage and Processing & Xinjiang Key Laboratory of Processing and Preservation of Agricultural Products, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang, China
| | - Zunyang Song
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
| | - Jingying Shi
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
2
|
Suárez I, Collado IG, Garrido C. Revealing Hidden Genes in Botrytis cinerea: New Insights into Genes Involved in the Biosynthesis of Secondary Metabolites. Int J Mol Sci 2024; 25:5900. [PMID: 38892087 PMCID: PMC11173184 DOI: 10.3390/ijms25115900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Utilizing bioinformatics tools, this study expands our understanding of secondary metabolism in Botrytis cinerea, identifying novel genes within polyketide synthase (PKS), non-ribosomal peptide synthetase (NRPS), sesquiterpene cyclase (STC), diterpene cyclase (DTC), and dimethylallyltryptophan synthase (DMATS) families. These findings enrich the genetic framework associated with B. cinerea's pathogenicity and ecological adaptation, offering insights into uncharted metabolic pathways. Significantly, the discovery of previously unannotated genes provides new molecular targets for developing targeted antifungal strategies, promising to enhance crop protection and advance our understanding of fungal biochemistry. This research not only broadens the scope of known secondary metabolites but also opens avenues for future exploration into B. cinerea's biosynthetic capabilities, potentially leading to novel antifungal compounds. Our work underscores the importance of integrating bioinformatics and genomics for fungal research, paving the way for sustainable agricultural practices by pinpointing precise molecular interventions against B. cinerea. This study sets a foundation for further investigations into the fungus's secondary metabolism, with implications for biotechnology and crop disease management.
Collapse
Affiliation(s)
- Ivonne Suárez
- Laboratorio de Microbiología, Departamento de Biomedicina, Biotecnología y Salud Pública, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain;
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª planta, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Isidro G. Collado
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª planta, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Carlos Garrido
- Laboratorio de Microbiología, Departamento de Biomedicina, Biotecnología y Salud Pública, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain;
- Instituto de Investigación Vitivinícola y Agroalimentaria (IVAGRO), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
3
|
Bolívar-Anillo HJ, Izquierdo-Bueno I, González-Rey E, González-Rodríguez VE, Cantoral JM, Collado IG, Garrido C. In Vitro Analysis of the Antagonistic Biological and Chemical Interactions between the Endophyte Sordaria tomento-alba and the Phytopathogen Botrytis cinerea. Int J Mol Sci 2024; 25:1022. [PMID: 38256097 PMCID: PMC10816056 DOI: 10.3390/ijms25021022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Plant pathogenic infections causing substantial global food losses are a persistent challenge. This study investigates a potential biocontrol strategy against the necrotrophic fungus Botrytis cinerea using the endophytic fungus Sordaria tomento-alba isolated from Gliricidia sepium in Colombia. Today, synthetic fungicides dominate B. cinerea control, raising environmental and health concerns. S. tomento-alba exhibits notable in vitro effects, inhibiting B. cinerea growth by approximately 60% during co-culture and 50% in double disc co-culture. Additionally, it suppresses botryanes production and produces the compound heptacyclosordariolone, which has proven effective in inhibiting B. cinerea mycelial growth and spore germination in vitro. This biocontrol agent could be a potential eco-friendly alternative to replace synthetic fungicides. Our study provides insights into the chemical and biological mechanisms underpinning the antagonistic activity of S. tomento-alba, emphasizing the need for further research to understand its biosynthesis pathways and optimize its biocontrol potential. It also contributes molecular evidence of fungal interactions with implications for advanced forums in molecular studies in biology and chemistry, particularly in addressing plant pathogenic infections and promoting sustainable agriculture.
Collapse
Affiliation(s)
- Hernando José Bolívar-Anillo
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cadiz, Spain; (H.J.B.-A.); (I.I.-B.); (E.G.-R.)
- Programa de Microbiología, Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Inmaculada Izquierdo-Bueno
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cadiz, Spain; (H.J.B.-A.); (I.I.-B.); (E.G.-R.)
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Microbiología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cadiz, Spain; (V.E.G.-R.); (J.M.C.)
| | - Estrella González-Rey
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cadiz, Spain; (H.J.B.-A.); (I.I.-B.); (E.G.-R.)
| | - Victoria E. González-Rodríguez
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Microbiología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cadiz, Spain; (V.E.G.-R.); (J.M.C.)
| | - Jesús M. Cantoral
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Microbiología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cadiz, Spain; (V.E.G.-R.); (J.M.C.)
| | - Isidro G. Collado
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cadiz, Spain; (H.J.B.-A.); (I.I.-B.); (E.G.-R.)
| | - Carlos Garrido
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Microbiología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cadiz, Spain; (V.E.G.-R.); (J.M.C.)
| |
Collapse
|
4
|
Wang R, Liu K, Tang B, Su D, He X, Deng H, Wu M, Bouzayen M, Grierson D, Liu M. The MADS-box protein SlTAGL1 regulates a ripening-associated SlDQD/SDH2 involved in flavonoid biosynthesis and resistance against Botrytis cinerea in post-harvest tomato fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1746-1757. [PMID: 37326247 DOI: 10.1111/tpj.16354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
3-Dehydroquinate dehydratase/shikimate dehydrogenase (DQD/SDH) is a key rate-limiting enzyme that catalyzes the synthesis of the shikimate, which is an important metabolic intermediate in plants and animals. However, the function of SlDQD/SDH family genes in tomato (Solanum lycopersicum) fruit metabolites is still unknown. In the present study, we identified a ripening-associated SlDQD/SDH member, SlDQD/SDH2, that plays a key role in shikimate and flavonoid metabolism. Overexpression of this gene resulted in an increased content of shikimate and flavonoids, while knockout of this gene by CRISPR/Cas9 mediated gene editing led to a significantly lower content of shikimate and flavonoids by downregulation of flavonoid biosynthesis-related genes. Moreover, we showed that SlDQD/SDH2 confers resistance against Botrytis cinerea attack in post-harvest tomato fruit. Dual-luciferase reporter and EMSA assays indicated that SlDQD/SDH2 is a direct target of the key ripening regulator SlTAGL1. In general, this study provided a new insight into the biosynthesis of flavonoid and B. cinerea resistance in fruit tomatoes.
Collapse
Affiliation(s)
- Ruochen Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, China
| | - Bei Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Dan Su
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xiaoqing He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Heng Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Mengbo Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Mondher Bouzayen
- GBF Laboratory, Université de Toulouse, INRA, Castanet-Tolosan, 31320, France
| | - Don Grierson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| |
Collapse
|
5
|
Bulasag AS, Camagna M, Kuroyanagi T, Ashida A, Ito K, Tanaka A, Sato I, Chiba S, Ojika M, Takemoto D. Botrytis cinerea tolerates phytoalexins produced by Solanaceae and Fabaceae plants through an efflux transporter BcatrB and metabolizing enzymes. FRONTIERS IN PLANT SCIENCE 2023; 14:1177060. [PMID: 37332725 PMCID: PMC10273015 DOI: 10.3389/fpls.2023.1177060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023]
Abstract
Botrytis cinerea, a plant pathogenic fungus with a wide host range, has reduced sensitivity to fungicides as well as phytoalexins, threatening cultivation of economically important fruits and vegetable crops worldwide. B. cinerea tolerates a wide array of phytoalexins, through efflux and/or enzymatic detoxification. Previously, we provided evidence that a distinctive set of genes were induced in B. cinerea when treated with different phytoalexins such as rishitin (produced by tomato and potato), capsidiol (tobacco and bell pepper) and resveratrol (grape and blueberry). In this study, we focused on the functional analyses of B. cinerea genes implicated in rishitin tolerance. LC/MS profiling revealed that B. cinerea can metabolize/detoxify rishitin into at least 4 oxidized forms. Heterologous expression of Bcin08g04910 and Bcin16g01490, two B. cinerea oxidoreductases upregulated by rishitin, in a plant symbiotic fungus Epichloë festucae revealed that these rishitin-induced enzymes are involved in the oxidation of rishitin. Expression of BcatrB, encoding an exporter of structurally unrelated phytoalexins and fungicides, was significantly upregulated by rishitin but not by capsidiol and was thus expected to be involved in the rishitin tolerance. Conidia of BcatrB KO (ΔbcatrB) showed enhanced sensitivity to rishitin, but not to capsidiol, despite their structural similarity. ΔbcatrB showed reduced virulence on tomato, but maintained full virulence on bell pepper, indicating that B. cinerea activates BcatrB by recognizing appropriate phytoalexins to utilize it in tolerance. Surveying 26 plant species across 13 families revealed that the BcatrB promoter is mainly activated during the infection of B. cinerea in plants belonging to the Solanaceae, Fabaceae and Brassicaceae. The BcatrB promoter was also activated by in vitro treatments of phytoalexins produced by members of these plant families, namely rishitin (Solanaceae), medicarpin and glyceollin (Fabaceae), as well as camalexin and brassinin (Brassicaceae). Consistently, ΔbcatrB showed reduced virulence on red clover, which produces medicarpin. These results suggest that B. cinerea distinguishes phytoalexins and induces differential expression of appropriate genes during the infection. Likewise, BcatrB plays a critical role in the strategy employed by B. cinerea to bypass the plant innate immune responses in a wide variety of important crops belonging to the Solanaceae, Brassicaceae and Fabaceae.
Collapse
Affiliation(s)
- Abriel Salaria Bulasag
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- College of Arts and Sciences, University of the Philippines Los Baños, Los Baños, Laguna, Philippines
| | - Maurizio Camagna
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Teruhiko Kuroyanagi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Akira Ashida
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kento Ito
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Aiko Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Ikuo Sato
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Sotaro Chiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Makoto Ojika
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
6
|
da Silva Ripardo-Filho H, Coca Ruíz V, Suárez I, Moraga J, Aleu J, Collado IG. From Genes to Molecules, Secondary Metabolism in Botrytis cinerea: New Insights into Anamorphic and Teleomorphic Stages. PLANTS (BASEL, SWITZERLAND) 2023; 12:553. [PMID: 36771642 PMCID: PMC9920419 DOI: 10.3390/plants12030553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The ascomycete Botrytis cinerea Pers. Fr., classified within the family Sclerotiniaceae, is the agent that causes grey mould disease which infects at least 1400 plant species, including crops of economic importance such as grapes and strawberries. The life cycle of B. cinerea consists of two phases: asexual (anamorph, Botrytis cinerea Pers. Fr.) and sexual (teleomorph, Botryotinia fuckeliana (de Bary) Wetzel). During the XVI International Symposium dedicated to the Botrytis fungus, which was held in Bari in June 2013, the scientific community unanimously decided to assign the most widely used name of the asexual form, Botrytis, to this genus of fungi. However, in the literature, we continue to find articles referring to both morphic stages. In this review, we take stock of the genes and metabolites reported for both morphic forms of B. cinerea between January 2015 and October 2022.
Collapse
Affiliation(s)
| | - Víctor Coca Ruíz
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| | - Ivonne Suárez
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Laboratorio de Microbiología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| | - Javier Moraga
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Laboratorio de Microbiología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| | - Josefina Aleu
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| | - Isidro G. Collado
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| |
Collapse
|
7
|
A mutant of Monascus purpureus obtained by carbon ion beam irradiation yielded yellow pigments using various nitrogen sources. Enzyme Microb Technol 2023; 162:110121. [DOI: 10.1016/j.enzmictec.2022.110121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/18/2022]
|
8
|
Wang X, Cao J, Qiao J, Pan J, Zhang S, Li Q, Wang Q, Gong B, Shi J. GABA keeps nitric oxide in balance by regulating GSNOR to enhance disease resistance of harvested tomato against Botrytis cinerea. Food Chem 2022; 392:133299. [DOI: 10.1016/j.foodchem.2022.133299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/10/2022] [Accepted: 05/22/2022] [Indexed: 11/24/2022]
|