1
|
Tabassum F, Islam SN, Tuz-Zohora F, Hasan CM, Rahman KM, Ahsan M. Isolation of a new iso-quinoline alkaloid and cytotoxicity studies of pure compounds and crude extracts of Ravenia spectabilis engl. Heliyon 2024; 10:e34508. [PMID: 39113993 PMCID: PMC11305309 DOI: 10.1016/j.heliyon.2024.e34508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
A new 2-quinolone alkaloid, iso-oligophyline (1), and two very unusual C34 terpenoids, proposed names ravespanol (2) and ravespanone (3), along with two known compounds, β-sitosterol (4), and methyl linoleate (5), were isolated from the leaf extract of Ravenia spectabilis engl. Methyl linoleate constitutes the first report of isolation from this species. We have already reported the isolation of atanine (6), oligophyline (7), ravenoline (8), and arborinine (9) from the plant. Based on nuclear magnetic resonance (NMR) spectroscopy and mass spectrometric analysis, the structure of the isolated chemicals was determined. The crude fractions and four compounds (6,7,8 and 9) were evaluated for a cytotoxicity study on a panel of six human stomach cancer cell lines (SCL, SCL-6, SCL-37'6, SCL-9, K-3, N21) by MTT assay. Among the plant extracts and isolated compounds, petroleum ether fraction and compound 7 exhibited the highest cytotoxic activity against SCL and SCL-6 cells, where the IC50 values were 17.9 and 16.56 μM, respectively.
Collapse
Affiliation(s)
- Fatema Tabassum
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh
- Department of Pharmacy, Stamford University Bangladesh, 51 Siddheswari Rd, Dhaka, 1217, Bangladesh
| | - Sheikh Nazrul Islam
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Fatema Tuz-Zohora
- University of Asia Pacific, Department of Pharmacy, 74/A, Green Road, Dhaka, 1205, Bangladesh
| | | | - Khondaker Miraz Rahman
- School of Cancer and Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Monira Ahsan
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
2
|
Hassan SM, Farid A, Panda SS, Bekheit MS, Dinkins H, Fayad W, Girgis AS. Indole Compounds in Oncology: Therapeutic Potential and Mechanistic Insights. Pharmaceuticals (Basel) 2024; 17:922. [PMID: 39065774 PMCID: PMC11280311 DOI: 10.3390/ph17070922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer remains a formidable global health challenge, with current treatment modalities such as chemotherapy, radiotherapy, surgery, and targeted therapy often hindered by low efficacy and adverse side effects. The indole scaffold, a prominent heterocyclic structure, has emerged as a promising candidate in the fight against cancer. This review consolidates recent advancements in developing natural and synthetic indolyl analogs, highlighting their antiproliferative activities against various cancer types over the past five years. These analogs are categorized based on their efficacy against common cancer types, supported by biochemical assays demonstrating their antiproliferative properties. In this review, emphasis is placed on elucidating the mechanisms of action of these compounds. Given the limitations of conventional cancer therapies, developing targeted therapeutics with enhanced selectivity and reduced side effects remains a critical focus in oncological research.
Collapse
Affiliation(s)
- Sara M. Hassan
- Biotechnology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Alyaa Farid
- Biotechnology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Siva S. Panda
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA 30912, USA
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | - Mohamed S. Bekheit
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Holden Dinkins
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA 30912, USA
| | - Walid Fayad
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Adel S. Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt;
| |
Collapse
|
3
|
Ma YY, Pu G, Liu HY, Yao S, Kong GH, Wu YP, Li YK, Wang WG, Zhou M, Hu QF, Yang FX. Indole alkaloids isolated from the Nicotiana tabacum-derived Aspergillus fumigatus 0338 as potential inhibitors for tobacco powdery mildew and their mode of actions. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105814. [PMID: 38582586 DOI: 10.1016/j.pestbp.2024.105814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 04/08/2024]
Abstract
To explore active natural products against tobacco powdery mildew caused by Golovinomyces cichoracearum, an extract from the fermentation of endophytic Aspergillus fumigatus 0338 was investigated. The mechanisms of action for active compounds were also studied in detail. As a result, 14 indole alkaloid derivatives were isolated, with seven being newly discovered (1-7) and the remaining seven previously described (8-14). Notably, compounds 1-3 are rare linearly fused 6/6/5 tricyclic prenylated indole alkaloids, with asperversiamide J being the only known natural product of this kind. The isopentenyl substitutions at the 5-position in compounds 4 and 5 are also rare, with only compounds 1-(5-prenyl-1H-indol-3-yl)-propan-2-one (8) and 1-(6-methoxy-5-prenyl-1H-indol3-yl)-propan-2-one currently available. In addition, compounds 6 and 7 are new framework indole alkaloid derivatives bearing a 6-methyl-1,7-dihydro-2H-azepin-2-one ring. The purified compounds were evaluated for their activity against G. cichoracearum, and the results revealed that compounds 7 and 9 demonstrated obvious anti-G. cichoracearum activities with an inhibition rate of 82.6% and 85.2%, respectively, at a concentration of 250 μg/mL, these rates were better than that of the positive control agent, carbendazim (78.6%). The protective and curative effects of compounds 7 and 9 were also better than that of positive control, at the same concentration. Moreover, the mechanistic study showed that treatment with compound 9 significantly increased the structural tightness of tobacco leaves and directly affect the conidiospores of G. cichoracearum, thereby enhancing resistance. Compounds 7 and 9 could also induce systemic acquired resistance (SAR), directly regulating the expression of defense enzymes, defense genes, and plant semaphorins, which may further contribute to increased plant resistance. Based on the activity experiments and molecular dockings, the indole core structure may be the foundation of these compounds' anti-G. cichoracearum activity. Among them, the indole derivative parent structures of compounds 6, 7, and 9 exhibit strong effects. Moreover, the methoxy substitution in compound 7 can enhance their activity. By isolating and structurally identifying the above indole alkaloids, new candidates for anti-powdery mildew chemical screening were discovered, which could enhance the utilization of N. tabacum-derived fungi in pesticide development.
Collapse
Affiliation(s)
- Yue-Yu Ma
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, PR China; Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, PR China
| | - Gui Pu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, PR China
| | - Hua-Yin Liu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, PR China
| | - Sui Yao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, PR China
| | - Guang-Hui Kong
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650031, PR China
| | - Yu-Ping Wu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650031, PR China
| | - Yin-Ke Li
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, PR China; Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650031, PR China
| | - Wei-Guang Wang
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, PR China
| | - Min Zhou
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, PR China
| | - Qiu-Fen Hu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, PR China; Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, PR China.
| | - Feng-Xian Yang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, PR China; Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, PR China.
| |
Collapse
|
4
|
Song J, Zhang B, Li M, Zhang J. The current scenario of naturally occurring indole alkaloids with anticancer potential. Fitoterapia 2023; 165:105430. [PMID: 36634875 DOI: 10.1016/j.fitote.2023.105430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Naturally occurring indole alkaloids are ubiquitously present in nature and possess extensive biological properties and structural diversity. Mechanistically, naturally occurring indole alkaloids have the potential to inhibit cancer cell proliferation, arrest cell cycle and induce apoptosis. Accordingly, naturally occurring indole alkaloids exhibit promising activity against both drug-sensitive and drug-resistant cancers including multidrug-resistant forms. Therefore, naturally occurring indole alkaloids constitute an important source of anticancer drug leads and candidates. The goal of this review is to highlight the current scenario of naturally occurring indole alkaloids with anticancer potential, covering articles published from 2018 to present. The names, sources, and antiproliferative activity are discussed to continuously open up a map for the remarkable exploration of more effective candidates.
Collapse
Affiliation(s)
- Juntao Song
- Department of Oncology and Hematology, Zibo 148 Hospital, Zibo 255300, China
| | - Bo Zhang
- Emergency Department, People's Hospital of Zhoucun District, Zibo 255300, China
| | - Ming Li
- Department of Oncology and Hematology, People's Hospital of Zhoucun District, Zibo 255300, China
| | - Jinbiao Zhang
- Department of Oncology and Hematology, Zibo 148 Hospital, Zibo 255300, China.
| |
Collapse
|
5
|
Indole Alkaloids from the Cigar Tobacco-Derived Endophytic Fungus Aspergillus oryzae and Their Antibacterial Activity. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03872-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Ashrafi S, Alam S, Emon NU, Ahsan M. Isolation, Characterization and Pharmacological Investigations of a New Phenolic Compound along with Four Others Firstly Reported Phytochemicals from Glycosmis cyanocarpa (Blume) Spreng. Molecules 2022; 27:5972. [PMID: 36144708 PMCID: PMC9503977 DOI: 10.3390/molecules27185972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Plants are serving the mankind with important bioactive phytochemicals from the very ancient ages to develop novel therapeutics against different disease states. Glycosmis cyanocarpa (Blume) Spreng is a plant from the Rutaceae family and a very less explored species from the Glycosmis genus. Thus, this present study was intended to present the chemical and biological investigation of Glycosmis cyanocarpa (Blume) Spreng. The chemical investigation resulted in the isolation of one new phenolic compound to the best of our knowledge which is (4-(3-hydroxy-2-methylpropyl)-2-methoxyphenol) (1) along with four known compounds that are isolated for the first time from this species- 3-methyl-1H-indole (2), Tri-transpoly-cis prenol-12 (3), Stigmasterol (4) and β-sitosterol (5). Their chemical structures were elucidated based on extensive spectroscopic methods, including 1D and 2D NMR, and comparison with the available literature data. Isolated phytochemicals were further investigated to unveil their antioxidant properties with IC50 values (ranged from 9.97-75.48 µg/mL), cytotoxicity with LC50 values (ranged from 1.02-1.92 µg/mL), and antibacterial properties against some selected Gram (+) ve and Gram (-) ve bacteria. Among the compounds, 3-methyl-1H-indole (2) was found to be the most active against Staphylococcus aureus. Moreover, the phenolic compound (1) and the alkaloid (2) revealed the highest antioxidant (9.97 µg/mL) and cytotoxic activities (1.02 µg/mL), respectively. Thus, the isolation of these bioactive phytochemicals from the plant revealed a new perception in the study arena of drug discovery and the findings may ease the development and discovery of novel therapeutics. Further investigations are still recommended to understand their exact molecular mechanism and toxicological impact.
Collapse
Affiliation(s)
- Sania Ashrafi
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Safaet Alam
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
- Drugs and Toxins Research Division, BCSIR Laboratories Rajshahi, Bangladesh Council of Scientific and Industrial Research, Rajshahi 6206, Bangladesh
| | - Nazim Uddin Emon
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Monira Ahsan
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
7
|
Synthesis and anticancer screening of some novel Pd-catalysed 3-methyl indole based analogues on Mia PaCa-2 cell line. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|