1
|
Shi J, Yu M, Chen W, Chen S, Qiu Y, Xu Z, Wang Y, Huang G, Zheng C. Recent Discovery of Nitrogen Heterocycles from Marine-Derived Aspergillus Species. Mar Drugs 2024; 22:321. [PMID: 39057430 PMCID: PMC11277891 DOI: 10.3390/md22070321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Nitrogen heterocycles have drawn considerable attention because of their structurally novel and significant biological activities. Marine-derived fungi, especially the Aspergillus species, possess unique metabolic pathways to produce secondary metabolites with novel structures and potent biological activities. This review prioritizes the structural diversity and biological activities of nitrogen heterocycles that are produced by marine-derived Aspergillus species from January 2019 to January 2024, and their relevant biological activities. A total of 306 new nitrogen heterocycles, including seven major categories-indole alkaloids, diketopiperazine alkaloids, quinazoline alkaloids, isoquinoline alkaloids pyrrolidine alkaloids, cyclopeptide alkaloids, and other heterocyclic alkaloids-are presented in this review. Among these nitrogen heterocycles, 52 compounds had novel skeleton structures. Remarkably, 103 compounds showed various biological activities, such as cytotoxic, antimicrobial, anti-inflammatory, antifungal, anti-virus, and enzyme-inhibitory activities, and 21 compounds showed potent activities. This paper will guide further investigations into the structural diversity and biological activities of nitrogen heterocycles derived from the Aspergillus species and their potential contributions to the future development of new natural drug products in the medicinal and agricultural fields.
Collapse
Affiliation(s)
- Jueying Shi
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Miao Yu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Weikang Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Shiji Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Yikang Qiu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Zhenyang Xu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Yi Wang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Guolei Huang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Caijuan Zheng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| |
Collapse
|
2
|
Chen X, Chen S, Guo H, Lu X, Shen H, Liu L, Wang L, Chen B, Zhang Y, Liu Y. Bioactive Alkaloids from the Mangrove-Derived Fungus Nigrospora oryzae SYSU-MS0024. Mar Drugs 2024; 22:214. [PMID: 38786605 PMCID: PMC11123012 DOI: 10.3390/md22050214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/25/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Chemical investigation of marine fungus Nigrospora oryzae SYSU-MS0024 cultured on solid-rice medium led to the isolation of three new alkaloids, including a pair of epimers, nigrosporines A (1) and B (2), and a pair of enantiomers, (+)-nigrosporine C (+)-3, and (-)-nigrosporine C (-)-3, together with eight known compounds (4-11). Their structures were elucidated based on extensive mass spectrometry (MS) and 1D/2D nuclear magnetic resonance (NMR) spectroscopic analyses and compared with data in the literature. The absolute configurations of compounds 1-3 were determined by a combination of electronic circular dichroism (ECD) calculations, Mosher's method, and X-ray single-crystal diffraction technique using Cu Kα radiation. In bioassays, compound 2 exhibited moderate inhibition on NO accumulation induced by lipopolysaccharide (LPS) on BV-2 cells in a dose-dependent manner at 20, 50, and 100 μmol/L and without cytotoxicity in a concentration of 100.0 μmol/L. Moreover, compound 2 also showed moderate acetylcholinesterase (AChE) inhibitory activities with IC50 values of 103.7 μmol/L. Compound 5 exhibited moderate antioxidant activity with EC50 values of 167.0 μmol/L.
Collapse
Affiliation(s)
- Xiaokun Chen
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.C.); (L.W.); (Y.Z.)
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China; (S.C.); (H.G.); (X.L.); (L.L.)
| | - Heng Guo
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China; (S.C.); (H.G.); (X.L.); (L.L.)
| | - Xin Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China; (S.C.); (H.G.); (X.L.); (L.L.)
| | - Hongjie Shen
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China; (H.S.); (B.C.)
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China; (S.C.); (H.G.); (X.L.); (L.L.)
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China; (H.S.); (B.C.)
| | - Li Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.C.); (L.W.); (Y.Z.)
| | - Bin Chen
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China; (H.S.); (B.C.)
| | - Yi Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.C.); (L.W.); (Y.Z.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yayue Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.C.); (L.W.); (Y.Z.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
3
|
Liao LX, Huang JG, Liu QP, Yao M, Wang WJ, Yang XL. Two new quinazoline alkaloids produced by Aspergillus versicolor and their antimicrobial activities. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:320-327. [PMID: 37455565 DOI: 10.1080/10286020.2023.2230895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
Two new quinazoline alkaloids versicomides G-H (1 and 2), together with seven known compounds, were isolated from Aspergillus versicolor HYQZ-215 obtained from the sediment of Qarhan Salt Lake. Their structures were elucidated by NMR, HRESIMS, and quantum chemical ECD calculations data. The antimicrobial activities of these compounds were evaluated against seven agricultural pathogenic fungi and eight clinically drug-resistant bacteria.
Collapse
Affiliation(s)
- Liang-Xiu Liao
- The School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Jun-Guo Huang
- The School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Qing-Pei Liu
- The School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Ming Yao
- The School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Wen-Jing Wang
- The School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Xiao-Long Yang
- The School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
4
|
Zhang Z, Sun Y, Li Y, Song X, Wang R, Zhang D. The potential of marine-derived piperazine alkaloids: Sources, structures and bioactivities. Eur J Med Chem 2024; 265:116081. [PMID: 38181652 DOI: 10.1016/j.ejmech.2023.116081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024]
Abstract
Marine-derived piperazine alkaloids (MDPAs) constitute a significant group of natural compounds known for their diverse structures and biological activities. Over the past five decades, substantial efforts have been devoted to isolating these alkaloids from marine sources and characterizing their chemical and bioactive profiles. To date, a total of 922 marine-derived piperazine alkaloids have been reported from various marine organisms. These compounds demonstrate a wide range of pharmacological properties, including cytotoxicity, antibacterial, antifungal, antiviral, and various other activities. Notably, among these activities, cytotoxicity emerges as the most prominent characteristic of marine-derived piperazine alkaloids. This review also summarizes the structure-activity relationship (SAR) studies associated with the cytotoxicity of these compounds. In summary, our objective is to provide an overview of the research progress concerning marine-derived piperazine alkaloids, with the aim of fostering their continued development and utilization.
Collapse
Affiliation(s)
- Zilong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China.
| | - Yu Sun
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China.
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| | - Xiaomei Song
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China.
| | - Rui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| | - Dongdong Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China.
| |
Collapse
|
5
|
Abstract
Covering: January to December 2021This review covers the literature published in 2021 for marine natural products (MNPs), with 736 citations (724 for the period January to December 2021) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1425 in 416 papers for 2021), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of the number of authors, their affiliations, domestic and international collection locations, focus of MNP studies, citation metrics and journal choices is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
6
|
Wu K, Li Y, Lin Y, Xu B, Yang J, Mo L, Huang R, Zhang X. Structural characterization and immunomodulatory activity of an exopolysaccharide from marine-derived Aspergillus versicolor SCAU141. Int J Biol Macromol 2023; 227:329-339. [PMID: 36535356 DOI: 10.1016/j.ijbiomac.2022.12.127] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/27/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Until now, relatively little is known about marine-derived fungal polysaccharides and their activities. Exopolysaccharide AVP141-A was isolated from the broth of marine-derived fungus Aspergillus versicolor SCAU141 and purified by Diethylaminoethyl-Sepharose Fast Flow and Sephadex G-100. The structural characteristics of AVP141-A was studied by chemical analysis together with high-performance gel permeation chromatography, ion chromatography, Fourier-transform infrared spectroscopy, gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy. The results showed that AVP141-A with the molecular weight of 5.10 kDa was mainly composed of →4)-α-D-Glcp-(1→, branched by α-D-Glcp-(1→ and →6)-α-D-Glcp-(1→ at C-6 positions of the glucan backbone. In particular, sulfate ester (approximately 3.62 %) was found in AVP141-A, which was frequently considered to occur in marine-derived microbial polysaccharides rather than other microbial polysaccharides. Furthermore, AVP141-A significantly enhanced the activity of the inflammatory factors NO, COX-2 and TNF-α in RAW264.7 macrophages by activating the MAPK/p38 and NF-κB/p65 pathways. In addition, metabolomic analysis revealed that most of the pathways with significant changes in RAW264.7 macrophages treated with AVP141-A were amino acid-related pathways, and arginine was the characteristic metabolite. In conclusion, this study identified AVP141-A as a marine fungus-derived sulfated exopolysaccharide with potential for development as an immune activator.
Collapse
Affiliation(s)
- Keyue Wu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yiyang Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yuqi Lin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University-United International College, Zhuhai 519087, China
| | - Jiajia Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Li Mo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
7
|
Wu MJ, Xu B, Guo YW. Unusual Secondary Metabolites from the Mangrove Ecosystems: Structures, Bioactivities, Chemical, and Bio-Syntheses. Mar Drugs 2022; 20:md20080535. [PMID: 36005537 PMCID: PMC9410182 DOI: 10.3390/md20080535] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/17/2022] Open
Abstract
Mangrove ecosystems are widely distributed in the intertidal zone of tropical and subtropical estuaries or coasts, containing abundant biological communities, for example, mangrove plants and diverse groups of microorganisms, featuring various bioactive secondary metabolites. We surveyed the literature from 2010 to 2022, resulting in a collection of 134 secondary metabolites, and classified them into two major families in terms of the biological sources and 15 subfamilies according to the chemical structures. To highlight the structural diversity and bioactivities of the mangrove ecosystem-associated secondary metabolites, we presented the chemical structures, bioactivities, biosynthesis, and chemical syntheses.
Collapse
Affiliation(s)
- Meng-Jun Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Baofu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- Correspondence: (B.X.); (Y.-W.G.)
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- Correspondence: (B.X.); (Y.-W.G.)
| |
Collapse
|
8
|
Liu M, Zhang X, Li G. Structural and Biological Insights into the Hot‐spot Marine Natural Products Reported from 2012 to 2021. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mingyu Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
- State Key Laboratory of Microbial Technology Shandong University Qingdao 266237 China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology Shandong University Qingdao 266237 China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology Qingdao 266235 China
| |
Collapse
|
9
|
Li K, Chen S, Pang X, Cai J, Zhang X, Liu Y, Zhu Y, Zhou X. Natural products from mangrove sediments-derived microbes: Structural diversity, bioactivities, biosynthesis, and total synthesis. Eur J Med Chem 2022; 230:114117. [PMID: 35063731 DOI: 10.1016/j.ejmech.2022.114117] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/28/2021] [Accepted: 01/09/2022] [Indexed: 12/25/2022]
Abstract
The mangrove forests are a complex ecosystem, and the microbial communities in mangrove sediments play a critical role in the biogeochemical cycles of mangrove ecosystems. Mangrove sediments-derived microbes (MSM), as a rich reservoir of natural product diversity, could be utilized in the exploration of new antibiotics or drugs. To understand the structural diversity and bioactivities of the metabolites of MSM, this review for the first time provides a comprehensive overview of 519 natural products isolated from MSM with their bioactivities, up to 2021. Most of the structural types of these compounds are alkaloids, lactones, xanthones, quinones, terpenoids, and steroids. Among them, 210 compounds are obtained from bacteria, most of which are from Streptomyces, while 309 compounds are from fungus, especially genus Aspergillus and Penicillium. The pharmacological mechanisms of some representative lead compounds are well studied, revealing that they have important medicinal potentials, such as piericidins with anti-renal cell cancer effects, azalomycins with anti-MRSA activities, and ophiobolins as antineoplastic agents. The biosynthetic pathways of representative natural products from MSM have also been summarized, especially ikarugamycin, piericidins, divergolides, and azalomycins. In addition, the total synthetic strategies of representative secondary metabolites from MSM are also reviewed, such as piericidin A and borrelidin. This review provides an important reference for the research status of natural products isolated from MSM and the lead compounds worthy of further development, and reveals that MSM have important medicinal values and are worthy of further development.
Collapse
Affiliation(s)
- Kunlong Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Siqiang Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jian Cai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xinya Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Yiguang Zhu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China.
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
10
|
Hill RA, Sutherland A. Hot off the press. Nat Prod Rep 2021. [PMID: 34350932 DOI: 10.1039/d1np90030g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as pyrasplorine A from Aspergillus versicolor.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK.
| | | |
Collapse
|