1
|
Shi K, Jing B, Feng Y, Yu Y. Anemarrhena asphodeloides Bunge total saponins lower lipid via modulating MAOA activity to enhance defense mechanisms in mice and C. elegans. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118814. [PMID: 39277062 DOI: 10.1016/j.jep.2024.118814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/20/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Within Anemarrhena asphodeloides Bunge (AAB), the pivotal bioactive constituents are identified as Anemarrhena asphodeloides Bunge total saponins (ABS). In traditional pharmacology, ABS has exhibited notable anti-inflammatory, hypoglycemic, and cardioprotective properties. Despite these observed effects, the specific protective mechanisms of ABS against metabolic diseases and improving the endocrine system remain largely uncharted. AIM TO STUDY This work intends to shed light on the effects and intrinsic mechanisms of ABS on metabolic diseases. MATERIALS AND METHODS The characterization of ABS components was achieved through High-Performance Liquid Chromatography/Mass Spectrometry (HPLC/MS). To evaluate ABS's anti-inflammatory efficacy, mouse macrophages underwent analysis using the Griess method. Induced differentiation of mouse fibroblasts was assessed through Oil Red O staining. In an obesity model with C57BL/6 N mice, ABS administration prompted measurements of glucose and insulin tolerance. Western blot analysis quantified lipolysis and anti-inflammatory protein expression. Nile red staining gauged body fat content in C. elegans post-ABS treatment. The mechanism of ABS action was elucidated through mRNA sequencing, further validated using RNA interference technology, and nematode mutants. RESULTS ABS showcased the ability to diminish Nitric Oxide (NO) production in inflammatory macrophages and shrink adipocyte lipid droplets. In mice experiments, ABS was effective in alleviating fat accumulation and affecting serum lipid metabolism in diabetic mice. It enhanced oral glucose tolerance and insulin tolerance while increasing lipolysis-associated protein expression. ABS notably reduced fat content in C. elegans. Mechanistically, ABS downregulated NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and monoamine oxidase A (MAOA) expression while enhancing UGT, ilys-2, and ilys-3. Lipolysis emerged as a pivotal pathway for ABS in the therapeutic intervention of metabolic diseases. CONCLUSIONS Our investigation has revealed that ABS exert a role in combating metabolic diseases by enhancing the body's defense mechanisms. ABS activate the NLRP3-neurotransmitter-visceral adipose pathway in mice, thereby bolstering resistance and diminishing fat accumulation. In C. elegans, ABS downregulated the expression of MAOA, bolstered resistance, and augmented glucuronidase activity, consequently leading to a reduction in fat content.
Collapse
Affiliation(s)
- Kexin Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Bentian Jing
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yifan Feng
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510000, China.
| | - Yong Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
2
|
Dai Y, Liu P, Wen W, Li P, Yang C, Wang P, Xu S. Sarsasapogenin, a principal active component absorbed into blood of total saponins of Anemarrhena, attenuates proliferation and invasion in rheumatoid arthritis fibroblast-like synoviocytes through downregulating PKM2 inhibited pathological glycolysis. Phytother Res 2023; 37:1951-1967. [PMID: 36631974 DOI: 10.1002/ptr.7712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023]
Abstract
Increased glycolytic in fibroblast-like synoviocytes (FLS) of rheumatoid arthritis (RA) not only contributes to early-stage disease pathogenesis but leads to sustained proliferation of FLS. Given the importance of PKM2 in glycolysis and apoptosis, PKM2 is considered a potential therapeutic and drug discovery target in RA. Total saponins of anemarrhena (TSA), a class of steroid saponins, originated from Anemarrhena asphodeloides Bge. In this study, we verified that 200 mg/kg TSA could significantly alleviate inflammation and the pathological characteristics of RA and inhibit synovial hyperplasia in AA rats. We confirmed that sarsasapogenin (SA) was the principal active ingredient absorbed into the blood of TSA by the UPLC/Q Exactive MS test. Then we used TNF-α-induced MH7A to get the conclusion that 20 μM SA could effectively inhibit the glycolysis by inhibiting the activity of PKM2 tetramer and glucose uptake. Moreover, 20 μM SA could suppress proliferation, migration, invasion, and cytokine release of FLS, interfere with the growth cycle of FLS, and induce FLS apoptosis by depressing the phosphorylation of PKM2. At last, In-1, a potent inhibitor of the PKM2 was used to reverse verify the above results. Taken together, the key mechanisms of SA on RA treatment through downregulating the activity of PKM2 tetramer and phosphorylation of PKM2 inhibited pathological glycolysis and induced apoptosis to exert inhibition on the proliferation and invasion of RA FLS.
Collapse
Affiliation(s)
- Yuan Dai
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Panwang Liu
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen Wen
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Li
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Yang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Ping Wang
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shijun Xu
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Duan Y, Wu J, Wang F, Zhang K, Guo X, Tang T, Mu S, You J, Guo J. Transcriptomic and metabolomic analyses provide new insights into the appropriate harvest period in regenerated bulbs of Fritillaria hupehensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1132936. [PMID: 36875619 PMCID: PMC9975545 DOI: 10.3389/fpls.2023.1132936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Introduction The bulb of Fritillaria hupehensis, a traditional cough and expectorant medicine, is usually harvested from June to September according to traditional cultivation experience, without practical scientific guidance. Although steroidal alkaloid metabolites have been identified in F. hupehensis, the dynamic changes in their levels during bulb development and their molecular regulatory mechanisms are poorly understood. Methods In this study, integrative analyses of the bulbus phenotype, bioactive chemical investigations, and metabolome and transcriptome profiles were performed to systematically explore the variations in steroidal alkaloid metabolite levels and identify the genes modulating their accumulation and the corresponding regulatory mechanisms. Results The results showed that weight, size, and total alkaloid content of the regenerated bulbs reached a maximum at IM03 (post-withering stage, early July), whereas peiminine content reached a maximum at IM02 (withering stage, early June). There were no significant differences between IM02 and IM03, indicating that regenerated bulbs could be harvested appropriately in early June or July. Peiminine, peimine, tortifoline, hupehenine, korseveramine, delafrine, hericenone N-oxide, korseveridine, puqiedinone, pingbeinone, puqienine B, puqienine E, pingbeimine A, jervine, and ussuriedine levels were upregulated in IM02 and IM03, compared with IM01 (vigorous growth stage, early April). The Kyoto Encyclopedia of Genes and Genomes enrichment analysis indicated that the accumulation of steroidal alkaloid metabolites mainly occurred prior to IM02. HMGR1, DXR, CAS1, CYP 90A1, and DET2 may play a positive role in peiminine, peimine, hupehenine, korseveramine, korseveridine, hericenone N-oxide, puqiedinone, delafrine, tortifoline, pingbeinone, puqienine B, puqienine E, pingbeimine A, jervine, and ussuriedine biosynthesis, whereas the downregulation of FPS1, SQE and 17-DHCR may lead to a reduction in peimisine levels. Weighted gene correlation network analysis showed that CYP 74A2-1, CYP 74A2-2, CYP 71A26-1, CYP 71A26-2, and CYP74A were negatively correlated with peiminine and pingbeimine A, whereas CYP R and CYP707A1 were positively correlated. . CYP 74A2-1 and CYP 74A2-2 may play a negative role in peimine and korseveridine biosynthesis, whereas CYP R plays a positive role. In addition, the highly expressed C2H2, HSF, AP2/ERF, HB, GRAS, C3H, NAC, MYB-related transcription factors (TFs), GARP-G2-like TFs, and WRKY may play positive roles in the accumulation of peiminine, peimine, korseveridine, and pingbeimine A. Discussion These results provide new insights into scientific harvesting of F. hupehensis.
Collapse
Affiliation(s)
- Yuanyuan Duan
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
- Hubei Engineering Research Center of Under-forest Economy, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Jiaqi Wu
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Fanfan Wang
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Kaiqi Zhang
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Xiaoliang Guo
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Tao Tang
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Sen Mu
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Jingmao You
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Jie Guo
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
- Hubei Engineering Research Center of Under-forest Economy, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|